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Interior Estimates for Ritz-Galerkin Methods 

By Joachim A. Nitsche and Alfred H. Schatz 

Abstract. Interior a priori error estimates in Sobolev norms are derived from interior Ritz- 
Galerkin equations which are common to a class of methods used in approximating solutions 
of second order elliptic boundary value problems. The estimates are valid for a large class 
of piecewise polynomial subspaces used in practice, which are defined on both uniform and 
nonuniform meshes. It is shown that the error in an interior domain 2 can be estimated 

with the best order of accuracy that is possible locally for the subspaces used plus the 
error in a weaker norm over a slightly larger domain which measures the effects from out- 

side of the domain Q. Additional results are given in the case when the subspaces are de- 
fined on a uniform mesh. Applications to specific boundary value problems are given. 

0. Introduction. There are presently many methods which are available for com- 
puting approximate solutions of elliptic boundary value problems which may be classi- 
fied as Ritz-Galerkin type methods. Many of these methods differ from each other 
in some respects (for example, in how they treat the boundary conditions) but have 
much in common in that they have what may be called "interior Ritz-Galerkin equa- 
tions" which are the same. Here we shall be concerned with finding interior estimates 
for the rate of convergence for such a class of methods which are consequences of 
these interior equations. Let us briefly describe, in a special case, the type of question 
we wish to consider. 

Let &2 be a bounded domain in RN with boundary M2 and consider, for 
simplicity, the problem of finding an approximate solution of a boundary value prob- 
lem 

(0.1) \u =f in Q2, 
(0.2) Au= g on U2, 

where A is some boundary operator. Suppose now that we are given a one-parameter 
family of finite-dimensional subspaces Sh (0 < h < 1) of an appropriate Hilbert 
space in which u lies and that, for each h, we have computed an approximate solution 

Uh c Sh to u using some Ritz-Galerkin type method. Here we have in mind, for 
example, methods such as the "engineer's" finite element method [8], [22], the 
Aubin-Babuska penalty method [2], [4], the methods of Nitsche [12], [13] or the 
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Lagrange multiplier method of Babuka [3]. Consider now subdomains &20 and &21 
of Q2. with &20 cc CC C2. We seek estimates for the error u - uh as h 0 
in various Sobolev norms on &20, valid for a large class of such methods. The 
estimates will implicitly take into consideration possible "pollution" from effects 
outside of &20. These may be, for example, due to the following: (i) the smooth- 
ness of the boundary; (ii) the way in which a given method treats the boundary 
conditions; (iii) the smoothness of the solution outside of say &2,. 

In the special case of Eq. (0.1), our interior equations are as follows: Let 
u satisfy (0.1) in &21 and uh E Sh be given satisfying 

(0.3) aC dx = au \lAo 
Ja\x. x 99O agiyxI -x 

dx, V99E Sh(2) ' 'J=1 E ai~x)d ut ia (axig) 8 (l 
where S'(&2 1) is the subspace of S1 consisting of elements whose support is con- 
tained in &21. For example, we may consider Sh to be such that its restriction to 

Q1 consists of splines generated by a B-spline basis defined on a uniform mesh of 
size h (cf. [19]). The broad class of triangular elements with maximum size h de- 
fined by Bramble and Zlamal [8] (here the triangulation need not be uniform) 
or Hermite splines on a uniform mesh of size h are other examples of such spaces. 
The Eq. (0.3) is common to all the methods previously cited. 

One type of result we shall prove is the following: Suppose the subspace Sh 
has the following approximability property (and some others shared for example by 
the subspaces cited above). Let u E Hr(21), then there exists a Ue E Sh such that 

(0.4) I|u - Uh 0, Q1 < ChrIUIIr, Q 1 

where II 11r, 1 is the norm on the Sobolev space Hr(&21) and Ho(&21) = L2(Q1). 
Suppose further that u1 G Sh satisfies (0.3). Then, for any given nonnegative in- 
teger p, there exists a constant C independent of h, u and u, such that for h 
sufficiently small 

(0.5) Ilu-Uh - lo no S C(hr IU lir, Q I + IHu Uh 1L-P, Q 1)- 

Here the negative norm 11 II- 21 denotes the norm of dual space of the Sobolev 
space H P(1) (cf. Section 1). 

In view of (0.4), the estimate (0.5) may be interpreted as follows: If u G 

Hf(&21), then the error in the norm of L2(&20) over any compact subdomain Q20 
of Q1 may be estimated with the best order of accuracy that the subspace Sh can 
provide over Q1 plus the error in the much weaker norm of H-P(&21). We 
emphasize that, since (0.3) is local in nature, so is the estimate (0.5), in the sense 
that, when related to boundary value problems, they do not explicitly involve the 
particular boundary operators, the nature of the boundary, the manner in which the 
particular method treats the boundary operators and the nature of the solution out- 
side of Q1. As remarked previously, all of these may have an effect on the rate of 
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convergence on QO0 All of these effects are lumped together in the term 
Hlu - Uh ILp n 1, which must be estimated separately for each particular problem. 
One way this can be done is to first use the inequality liell-p , < liellp, a For 
many methods, the estimate for llellp, . already exists in the literature and is 
obtained by using a modification of a duality argument of Nitsche [15]. The sig- 
nificance of the negative norm is that, under some very important circumstances, 
one can prove high rates of convergence in negative norms with relatively less re- 
quirements on the smoothness of u than one would need, for example, to obtain 
the same rate of convergence for the error in the L2 norm. 

Interior estimates for L2 projections were given in [17]. Interior estimates 
for elliptic difference operators were obtained by Thom&e and Westergren [20] and 
Thomee [21]. We would like to thank the organizers of the conference "On the 
mathematical foundations of the finite element method", University of Maryland, 
Baltimore, June 1972 for allowing us to present the results given in this paper. 

An outline of our paper is as follows. Section 1 contains notations and some 
preliminary notions. In Section 2, we define the approximating properties of the 
subspaces Sh which we shall need. In Section 3, we introduce the interior equa- 
tions and, in Section 4, we prove some interior duality estimates. Section 5 con- 
tains the first of our results on interior rates of convergence which are valid, for 
example, for some classes of piecewise polynomial subspaces which may be defined 
on uniform or nonuniform meshes. In Section 6, we consider subspaces which 
have certain translation invariant properties (satisfied by the previous examples 
defined on uniform meshes). This allows us to discuss the interior rate of conver- 
gence of difference quotients of uh to derivatives of u. In Section 7, we apply 
the results to specific boundary value problems and to several methods. 

This paper is concerned with interior Galerkin equations associated with 
second order differential operators. The methods easily generalize to corresponding 
higher order equations. 

1. Notation and Preliminaries. All functions considered in this paper will be 
real valued. Let R be a bounded open set in RN (N-dimensional Euclidean 
space). 

For s > 0 any real number HS(R) will denote the Sobolev space of order 
s on R. i.e., for s > 0 an integer, HS(R) is the completion of C'(El) un- 
der the norm 

HU / D 12/R 
(s, R = 

Ic / 
E 

S 
, 

where H0(R) = L2(R) and flu 112 R = fR IU12 dx. For k > 0, an integer, and 
k < s < k + 1, Hs(R) is defined by interpolation between Hk(R) and 
Hk + 1(R) (cf. [11]). 
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For s > 0 an integer, H1S(R) will denote the completion of C;'(R) under 
the norm (1.1). For k > 0 an integer and k < s < k + 1, IS(R) is defined 
by interpolation between Hk(R) and Hk + 

For s ?0O any real number, IP(R) will denote the completion of C O (R) 
under the norm 

(1.2) IIUII,, R sup (u, v)/IIvII-, R 
vEE H (R) 

where (u, v) = fR uv dx. 
For s ? 0 any real number, Hs(&2) will denote the completion of C'(R) under 

the norm 
IIu Ills, R = SUp (U, v)/01IIvS, R 

v&H-s(R) 

Let &21 be a bounded open set in RN. In what follows, we shall be concerned 

with bilinear forms of the type 
N IV! 

(1.3) B(u, v) = J ( E a11(x)DjuDjv +, bi(x) (Dju)v + c(x)uv A, 

defined on H'(&21) x H'(&21), where, for simplicity, the coefficients ai, bi, c are 
assumed to be of class C'(f2 1). 

Such forms may be associated (in a nonunique way) with partial differential opera- 
tors of the form 

N N 
(1.4) Lu=- E aijDDju + Ej aiDju +au=f 

ij=1 i=1 

The form B comes about by integrating by parts so that 

(1.5) (Lu, v) = B(u, v) 
holds for all u, v C C' (&21). 

In what follows, C1, C2, ., CIt will denote constants. We shall frequently omit 

subscripts and simply write C for a constant which is not necessarily the same in any 

two places. C(G, p) means, for example, that the constant C depends on the known 

parameters G and p. 
We shall not require that B(u, v) be symmetric. We define the adjoint B* of 

B to be 

(1.6) B* (u, v) = B(v, u). 

The following regularity assumption will be made concerning B(u, v): 
RI. There exists a constant di > 0 such that, if G CC &21 is any (open) sphere 

with diam (G) < d,, then B(u, v) is coercive over H 1(G), i.e., there exists a constant 
C, depending only on di such that 

(1.7) (C1)2I UII, G ?B(u, u) ? 
(C1f2IlUII, G for all u eH'(G). 

Remark 1.1. It follows immediately from (1.5) that B* satisfies RI. 
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Remark 1.2. Assumption RI is always satisfied if di is sufficiently small, provid- 
ed B(u, v) is uniformly elliptic on &21' i.e., there exists a constant C > 0 such that 
for all x C i 1 and all real vectors 

N N N 

(1. X. 
. 

N 
. 

? EN E 05(~tt > C Et2. 
j=1 i=1 i=1 

For then Gaording's inequality holds in &21' i.e., there exist positive constants C2 and 
C3 such that 

C2llull2, Q1 -C3 Ilu ll, < B(u, u) for all u C H 

Now, Poincare's inequality states that 

lull 0, G < diam (G) lu ll1, G for all u eH1(G). 
The inequality (1.7) follows immediately from the last two inequalities by taking 
diam (G) < di to be sufficiently small. 

We shall find the following lemma useful later on. 

LEMMA 1.1. (Cf. e.g. [1], [5].) Let G CC &21 be a sphere with diam (G) d. 
Suppose that f C HS(G), s > 0, then there exist uniquely determined functions u and 

v belonging to Hs + 2(G) n H '(G) satisfying 

(1.8) B(u, 4)=B*(v, 4) = (f, 4) for all 4 C H' (G). 

Furthermore, there exists a constant C, which depends on s but is independent of 

f and G, such that 

(1.9) HuIlsu+2, G < Cllfll s, G IVIIS+2, G < Cllflls, G 

2. Finite-Dimensional Subspaces of H'(&21). Let &2, CC RN be an open set. 
In this section, we shall define a class of finite-dimensional subspaces of H'(921) 

which have properties that are shared by many finite-dimensional subspaces used in 
practice to approximate solutions of partial differential equations. We shall first state 
the approximation properties which we shall need and then give some examples. 

Let h be a parameter and k and r given integers with 1 < k < r. S, &21) 

will denote a one-parameter family of finite-dimensional subspaces of Hk(&21). For 

0C 2,1, we define 

Sk r(Ao) = {UP r(QEl su Spp Up Q? 1: . 

Let Go and G, with Go CC G CC &21, be arbitrary but fixed concentric spheres. 
We shall make the following approximability assumptions concerning SIk r(Q 1 

There exists an ho < 1, depending in general on Go and G, such that for all 
h C (0, ho]: 

A.1. (i) For each u C H'(G), there exists an ? E Shk r(2 1) such that for any 
0 As <k, s <l<r, 
(2.1) llu - lls G < Chl sllu 1, G. 
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(ii) Furthermore, if u c H'(G0)k then 7 E S r(G) 
REMARK. If co E C' (Go) and u E H'(G), then cou E H'(GO) and it follows 

from (ii) that 7r E Sh r(G) and 

(2.2) Icvu - r7ls G c< Chl SIIU 1i, Gc 

where C = C(G, G, cv). 

A.2. Let X E Co' (Go) and uh ESh r(sh ) then there exists an 71 E Sh r(G) 
such that 

(2.3) ||SoUh- n1, G -<- Ch IIUh 11, G 

where C = C(G0, G, A). 

A.3. Forfeach h C (0, ho], there exists a set Gh, Go CC Gh CC G such that, 
if O < v < s < k, then for all E Sk, r(C1) 

(2.4) RI0Phsp Gh < ChvshIpIvI Gh, 
Remark. If Green's formula is valid on Gh and p > 1 is an integer, then it 

can be shown, as a consequence of (2.4), that 

(2.5) h0p110, Gh < Ch 1I111-pI Gh1 

where C = C(G0, G). 

We shall now give some examples of subspaces which satisfy A.1, A.2, and A.3. 
Example 1. Let Sk r(&21) denote the restriction to E2 of Hermite splines de- 

fined on a uniform mesh with sides of length h. Here k = m, r = 2m, m = 1, 2, 
, etc. For m = 2, these are the piecewise cubic polynomials which are of class C1. 

Example 2. Consider R2 and let Sh r(?l) be the restrictions to Q2 of the 
triangular elements of Bramble-Zlamal [8]. Briefly, these are piecewise polynomials 
in two variables of order 4m + 1 (m = 0, 1, -) defined on a regular triangulation 
(i.e., the smallest interior angle of all the triangles is uniformly bounded away from 
zero) whose length of the largest side of any triangle is less than or equal to h. We 
note here that these triangulations are generally not uniform. Here, we may take 
k=m +1 and r=4m +2 (m=O, 1,-e-). 

Example 3. Let Sh r(21) be the restriction to Q2 of splines generated by 
a B-spline basis [19], defined on a uniform mesh in RN with sides of length h. 
These are tensor products of one-dimensional piecewise polynomials of order m - 1 
which are globally Cm-2 (m = 2, 3, ). Here, k = m - 1, r = m (m = 2, 3, ). 

For these examples, Property A.1 is well known. Property A.3 follows easily 
from [14]. Property A.2 is more delicate than Property A.1. We shall verify it here 
in the case of Example 2. 

Let Go, G, X and uh be as in A.2, and let G be covered by a regular 
triangulation on which the Bramble-Zlamal elements are defined. Let us number the 
triangles by Ti. Then it follows from (15) of [8] that 
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(2.6) ||CU -1h G _Ch2(4m + 1) Uh 4m + 2, Tip 

where 

IU 12= [D aUII, 4m ++2, Ti E 1p +, Ti 
loal=4tn + 2 

and the sum in (2.6) is taken over those triangles Ti such that their union contains 
the support of co. Certainly, this may be chosen so that UiTj C G for h sufficient- 
ly small. Now, using Leibnitz's rule on each of the triangles Ti, noticing that 
D'uh = 0 for 1Ial = 4m + 2 (since uh is a polynomial of order 4m + 1 in two 
variables), we obtain 

(2.7) Ikvuh -r7II|,| ?Ch2(4m + 1)ZEIUhII1m+l Tie 

where C in general depends on co. Since uh is a polynomial and the triangulation 
is regular, we have 

IIUh 114m + 1 Ti 
< Ch4m IIUhJI , Ti' 

where C is independent of uh and Ti. Hence, 

|| U -711 Ch2 E11Uh 112 Ti< Ch2 11Uhll 11 

which is precisely (2.3). 
We remark that the proof of Property A.2 in the case of Hermite splines (Ex- 

ample 1) follows in a similar manner using the results of Bramble-Hilbert in [6], where 
an estimate is obtained analogous to (2.6). We'make essential use of the fact that 
only those derivatives which annihilate the Hermite splines occur on the right-hand 
side. 

3. Interior Equations. Let B(u, v) be defined by (1.3) and u E H'(Q21). We 
shall be primarily interested in deriving error estimates for u - uh, where uh E 

Sk r(&2 1) satisfies 

(3.1) B(u -uh,,) =O = pV9E k r(,X ). 

Let us note that, in view of (1.4) and (1.5), (3.1) may be rewritten as 

(3.2) B(uh, p)=(Lu, p) = f, (p) V(p EES r(Qkl). 

An interesting special case occurs when Lu = 0 or B(u, v) = 0 V v E H1 (&21), for 
then uh E Shk r(X1) satisfies 

(3-3) B(u. , up) = 0 Vzp EE Shk r(Ql) 

Here, Uh may be thought of as a discrete analogue (relative to the subspace 

S"k A(Q2)) of a weak solution of Lu = 0 in &21. Such uh will play a central 
role in deriving error estimates. 

In obtaining error estimates for difference quotients for certain classes of sub- 
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spaces, it will be convenient for us to consider uh satisfying a more general form 
of (2.1); namely 

(3.4) B(e, eo) = B(u - uh, ) = Ae(SO) V (o E Sk r(Qi) 

In general, Aj(c) is, for each v E H'(&21), a bounded linear functional defined for 
C EHs(Q2) for any -1 ?s. 

For any open set G C &1 and - 1 < s, an integer, we define 

(3.5) IieIl-s, G sup IAe(V)l/llVlls+2,Go 
VC s+2 =EH (G) 

Here, we are essentially defining the norms on Ae by duality with respect to the 
H' (G) norm. 

Let us note that, if Go C G1, then 

(3.6) IAelLs, Go < IAell-s, G1' 

and, if - 1 s ?S s2, then 

(3.7) l[ell-S2, G < Iell-sl, G1 

4. Interior Duality Estimates. For the remainder of this section, we shall assume 
that R. 1, A. 1, A.2 and A.3 hold and that Go CC G are concentric spheres with 
diam (G) ? di (as in R.1) and G CC &21. We shall now discuss the properties of 
the error e = u - uh satisfying B(e, eo) = Ae(p) for all p E Sh r(G) 

The main result in this section is the following: 
LEMMA 4.1. Let u E H'(Q21), Uh E Shk r(Qi) with 1 ? k < r and let p > 0 

be a fixed but arbitrary integer. Let Go CC G be as above and suppose that e = 
u - uh satisfies 

(4.1) B(u - uh, p) =Ae(p), ViPESh r(Q) 

Then 

(4.2) Ilell, GO < C(hllell1, G + Ilellp, G + hl/ell1, G + lIelo, G)5 
where C = C(GO, G, p, ai1, bi, c). 

In order to prove Lemma 4.1, we shall use the following: 
LEMMA 4.2. Let s > 0 be an integer. Then, for y = min (s + 1, r - 1), 

(4.3) IleIL-s, G0 < C(h' leII1 G + lle IL-s1, G + h'Y Ileelli, G + letelL-s, G) 
where C= C(s, GOP G, aii, bi, c). 

Proof of Lemma 4.1. Let us first show that (4.2) follows from (4.3). Let 

Go CC GQ CC ... CC GP= G be concentric spheres. We have from (4.3), with 
s= 0 and -y= 1, that 

lle l1, GO S C(hlle l1, G1 + IelL-1, G1 + h IWeh1, G1 + hIWehI0, G1) 
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We now reapply (4.3) to estimate tlell1 G1 Since h < 1, we have that 

let0, G 0 < CQhIlet1t, G2 tell 2 G2 + hIIAeII1, G2 + IIAeIt0, G2), 

where we used (3.6) and (3.7). Continuing in this fashion, the desired result (4.2) 
is easily obtained. 

Proof of Lemma 4.2. Let Go CC G' CC G be concentric spheres and let 
c Co' (G') with w 1 on Go. Then, for s > O, we have that 

tt G0 < l1wetls, G sup (we, f )/lf ls, G 
f GH' (G) 

Now, we C H 1(G) and it follows from Lemma 1.1 that, for each f E Hs(G), there 
exists a unique V G H 2(G) f H1 (G) such that (ii, f) = B(77, v) for all 77 E H1(G) 
with tItvst + 2, G < CtOftls G. Hence 

(4.4) tletL, G0 < C sup B(we, v)/tIvIts + 2, G 
vEHs +2(G) 

Let us now examine B(we, v) in detail. We have 
N N 

B(we, v)= JG _ E a1jDi(we)Djvdx 
(4.5) j1 

N 

+ JG i (Di (be))vdx G c wev dx. 

Integration by parts yields 

B(we, v)= B(e, wv) 
I N N 

(4.6) + e[D1(ai1(Di w)v) + a1jDiwDiv + bi(Di w)v]dx 
j=l i=l 

=B(e, wv) + L 

We shall now estimate these terms. Since e satisfies (4.1), we have, for any 
0 

4, CZ Sk r(G), 

IB(e, wv)l < IB(e, wt) - 4')t + [4e(wv - )1 + We(wv)t 

Choosing 4 satisfying (2.2), we obtain, using (3.5), that 

(4.7) W(e, wv) I C(h' tle tl , G + h" 'A e tt i, G + ttA e tLs, G)llVlls + 2, G, 

where y = min (r - 1, s + 1). 
Since Di( w C C(G'), it follows that 

(4.8) II S CtletLs-1, GIIVIIs+ 2, G- 

The inequality (4.3) now follows from (4.8), (4.7), (4.6) and (4.4). 

5. Interior Error Estimates. We now turn to error estimates for solutions of 
(3.1). We shall first state our results. 

THEOREM 5.1. Let E2 CC CC R , u G H(?), uh C Shk r(Ql) where 
1 < k < r and p is a nonnegative integer, arbitrary but fixed. Suppose that R.1, 
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A.1, A.2 and A.3 are satisfied. There exists a 0 < hi S 1 such that, if e = u - u. 
satisfies (3.1), then for all h E (0, h 1] 

(i) If s = 0, 1 and Il S r, 

(5.1)~ ~~~eI, .0e < QO Ch lsl~uI, Q + IlellP, ,1). 

(ii) If 2 S s S I S r, s S k < r, then 

(5.2) IIeII., Q0 <C (hlusuII,, + 1 ? hl'sIell-P, 1 

where C= C(p, Qo ?Q1, aij, bi, c). 
We note that if B(u, v) = 0 V v E H' (?1), then uh satisfies 

0h 

(5.3) B(uh, 0p) = O V S kS r(Ql) 

Using Theorem 5.1, we may obtain estimates for both u and Uh. In particular, 
for uh we are at liberty to set u 0 in Theorem 5.1 and we have 

(5.4) 11u~~||hll Q11 20 < C11uh L -P. E1 

If u - u2 satisfies (3.4) we have: 
THEOREM 5.2. Suppose that the conditions of Theorem (5.1) are satisfied ex- 

cept that e = u - uh satisfies (3.4); then instead of (5.1) we have 

(5.5) IjeI no < QC(h'11u1II, n1 + IIeILP, ? 
hit/tell1, n 1+ 1Ie10, n1) 

and 

(5.6) jell1 0 <C h'' [lul1 I+ llelL p, p1 + ll~elli, Q1), 

where C = C(p, 20 21, a,,, bi, c). 
We shall first prove a local version (Lemma 5.2) of the estimate (5.4). For the 

remainder of this section, we shall assume that R.1, A. 1, A.2 and A.3 hold. 

LEMMA 5.1. Suppose that Uh E Sh, r(Ql) satisfies (5.3) and that Go CC 
G CC Q21 are concentric spheres with diam (G) < di. Let p be a nonnegative 
integer arbitrary but fixed; then, for h sufficiently small, 

(5.7) lIuhll, G < C(hlluh IN , G + IluNlL p, G)' 

where C= C(p, GO' G, ai1, bi, c). 
Proof. For any given v eEH' (G), let Pv e Shk r(G) and P*v k S, r(G) be 

defined as the solutions of the equations 

(5.8) B(v-Pv, ep) V. PeSk 
r(G)= 

(5.9) B(X, v-P*v) = O. V X E Sk r(G). 

It follows from (1.7) that Pv and P*v exist and are unique and furthermore 
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IIPVII1, G S CVB(Pv, PV) S C sup B(Pv, 0)/I111, G 
(5.10) GoES k, r(G) 

S C sup B(v, eP)/II1, G < IIVII1, G' 

GSk, r(G) 

In a similar fashion, we obtain 

(5.11) IP*VVii1 G < CIIVII1, G- 

Let Go CC G' CC G be concentric spheres, co E Co(G') with co 1 on 
Go and set o= CUh. We have 

(5.12) IIuhII1, Go < I1 Ih1l, G < h1 1h ''hII1, G + IIP|hIl|, G- 

We shall estimate these terms separately. Since PUZh E S k, r(G) satisfies (5.8) with 
V =u h, it follows from (1.7) that 

jlu h - 'h 1ll, G < CIIUh 77 111, G for any E Sk, r(G) 
In view of (2.3), we have 

(5.13) ||U h - PU-h 11l G < Ch IIUh 11 1, G 

Now let us consider the second term on the right-hand side of (5.12). For 

P, = ?, we have 

(5.14) ItIUh lll, G < CB(PUh, 4) = CB(Oh, 4') 
where 14' = P'Zh/IIUh ll, G and therefore 11 1, G = 1. It follows from (4.6) that 

B(u h, 4') B(uh 4') 

N 
+ uh [Di (ai (Djco)4') + a 1Di wDj. + bi (Di . )] dx 

=B(uh, 4+) I. 
Since uh satisfies (5.3) and supp (co) C G', we have 

B(uhj)= B(uh,J-) + I for any n ES r(G) 
In view of (2.3) and the definition of I, it follows that 

B(u h, 4) < C(h Iju 1 , G + hIUh 110, G')- 

Applying Lemma 4.1 with e = Uh and Ae = 0 and G' in place of Go, we obtain 

(5.15) B(uZh, 4) < C(hIu, Ili, G + IIUhIL-p, G)- 

The estimate (5.7) now easily follows from (5.12), (5.13), (5.14) and (5.15), which 
completes the proof. 

LEMMA 5.2. Suppose the conditions of Lemma 5.1 are satisfied; then 

(5.16) |Uh 1ll, Go < CI1uh IL P, G' 

where C= C(p, GO G, aij, bi, c). 
Proof. Let Go CC G1 CC *-- CC Gp + 2 = G be concentric spheres. Lemma 
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5.1 applies to each pair Gj CC Gj + 1 (with possibly different constants C,). We 
have from (5.5) that 

1Uh Ill, Gj < Cj(hIlUh ll, Gj + 1 + 11uh 1-p, Gj+ 

Starting with j = 0 and iterating p + 1 times, we obtain 

(5.17) hlUh111, Go <C(hOP luhilll, Gp+ 1 + hluhll|p G +1) 

Now, let Gh, Gp + 1 cc Gh CC Gp + 2 = G, be as in A.3, then it follows from (2.4) 
and (2.5) that 

(5.18) hP+1 uhl1l, Gp +1 < hP +l uhll, Gh < CllUhIl-p, Gh < Cl1UhIl-p, G- 

The inequality (5.16) now follows immediately from (5.17) and (5.18). 
We shall now prove a local version of Theorems 5.1 and 5.2. 
LEMMA 5.3. Suppose the conditions of Theorem 5.2 are satisfied, then (5.1), 

(5.2), (5.5) and (5.6) hold with QO and Q2 replaced by Go and G, concentric 
spheres satisfying the conditions of Lemma 5.1. 

Proof. Let G CC G' CC G' CC G CC Q and w = 1 on G', w E Co(G') 
and set u - .u. Let k'ES5 r(G) be the unique solution of 

(5.19) B(-(wso)=A~e(() V fES k, r(G). 
Now 

hrU l G uC sup BQu 7- , v)/hhvhh G 
Vu H 1(G) 

(5 .20) B(u - 71, v - P*V) Ae(P*V) 

vEH 1(G) IIIIG IIVI1, G 

where P*v E SZ r(G) satisfies (5.9). Hence, for any n e SZ r(G)E 

(5.21) B(U' - Yv V)=B(U - IV-P*V)SCI <h1, G IIVII@ , G' 

where we have used (5.1 1). Also 

(5.22) Ae(P*V)S -IAe 1h, GIIP' Vllh, G < 1lAehli, GIIVIII, G' 

It follows now from (5.20), (5.21), (5.22) and (2.1) that 

'-II - 1, G < 7tif |U-71|11 G + 1|Aelli, G 

(5.23) kjrn GG 

SC(h' hIuI11, G + 1lieli, G) 
for 1 S<I - r. 

Let us now estimate hlu - Uhhh1, GO 

(5.24) lIt' Ut'hll1, GO < IItU - 71ii, Go + 1i7- Uhii1, Go 

Certainly, Eqs. (3.4) and (5.19) hold for all ep E Sk r(G'). Subtracting these 
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two equations, we have 

B(uh - u, uo) =O VP E S k,r(G') 

and we may apply Lemma 5.2 to uh - Tu, with Go and G replaced by Go and 
G', respectively. It follows then from (5.16) that 

MUh - 'IIll, Go <- CIIuh - 1l7UpG' 
'0 

(5.25) ? C(lu -UhILP, Go + ? II 'f 
JiILs GoG 

? C(llellp, G ? IIU - 'Ill, G)- 
Hence, (5.24) becomes 

IIu -hill Go < C(Ii- iiZI11 G + Iell-p, G) 

and, applying the estimate (5.23), we have 

(5.26) Ileu1| G0 < C(h' 1 IIUII , G+ lIeIl-p, G + IIell, G)i 

which proves a local analogue of (5.6) and hence of (5.1) (with s = 1 by simply 
taking Ae = 0). Let us now prove the local analogues of (5.1) (with s = 0) and 
(5.5). We first apply Lemma 4.1 to the spheres Go and G' and obtain 

(5.27) Ilello, Go < C(hIlelIl, G' + IlIell-p, G' + hlelil, G' + lello, G'). 

Applying the estimate (5.26) to (5.27), with Go and G replaced by G' and G, 
respectively, we obtain the desired result 

(5.28) IIeII0, Go < C(h'IIUIIu G + Ilell-p, G + hlWelIl, G + IIeII0, G)- 

We now turn to the proof of a local version of (5.2). Let 2 ? s ? k, Go CC 
Gh CC G CC G. Then, for any n E Sk r(i), 

Ile Is, Go 7 IIU - 7s, G ? IN - Uh IIs, Gh ? IIU 7II, G ? hlsII,, -h 111, Gh 

< IIU - 71Is G + h' su - 7111 G + h sllelll, G1 

where we used (2.4). We now choose 7 satisfying (2.1) and estimate Ielle1 G1 

using (5.26) with Ae = 0 and G1 in place of Go, We obtain 

(5.29) Ilehls, G0 < C(hO Sl II1 G + h sIlelLp, G)5 

which completes the proof. 
Proofs of Theorems 5.1 and 5.2. Let d = min (d0/2, d1/2) where do = 

dist (&20, a&21). Cover &2O with a finite number of spheres G0(xi), i = 1, , In 
centered at xi E &2 with diam G0(xj) = d. Let G(xi), i = 1, , m, be 
corresponding concentric spheres with diam G(xi) = 2d. Applying (5.26) and (5.28) 
wehavefor s=0,1 and 1 l r, 
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(5.30) Ilells, Go(xi) < Ci(hlsIIulll, G(xi) + Ilell-P, G(xi)) 

< Ci(hsl huill, ,1 + IlelLp, n1) 
and from (5.29) for 2 < s < k and s I < r, 

(5.31) IleIs, G0(xi) ? Ci(hl SIIu 111, a + ? 1-sIleL p 

The inequalities (5.1) and (5.2) follow from (5.30) and (5.31), which concludes 
the proof of Theorem 5.1. The proof of Theorem 5.2 follows precisely in the same 
way from the inequalities (5.26) and (5.28) with the help of (3.6). We shall leave 
the details to the reader. 

6. Convergence of Difference Quotients. The estimates for the error and its 
derivatives given in the previous section are valid, for example, for subspaces StZ r 

which may be defined on nonuniform meshes. In this section, we shall consider 
subspaces which have certain translation invariant properties (which are satisfied, for 
example, by spline subspaces on a uniform mesh). This will allow us to obtain some 
results concerning the rate of convergence of difference quotients of the approximation 
Uh to derivatives of u. 

Let p = (Ml , pN) be a multi-integer. We define the translation operator 

Th v(x) = v(x + ph) 

and the forward difference quotients 

ahI iV 
= h- (T I - It, 

where I is the identity operator and, for any multi-index ao, 

a'U a'U = ah 01 ... a0NN U. 

We consider difference operators Qh of order m of the form 

(6.1) Qhu . , Tval, 
V, IPI<m 

where the CB are the constants and all but a finite number of the Cvp vanish. 
We note that Qhu may be written as a linear combination of translation operators 
with coefficients which depend only on h. 

In what follows, we shall make use of the discrete Leibnitz rule 

a(v) = E (:Tgaa- u amp, )= )- ( . 11 < e 0 1hh h 0 O 

Our additional assumption on the subspaces Sh r(Qh) is as follows: 
A.4. Let v be any multi-integer, fixed but arbitrary, and let 0 CC &21, then 

there exists an h, (in general depending on v, &?0 and i1) such that for all 
h E (0, hI 
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We shall now prove 
THEOREM 6.1. Suppose that the conditions of Theorem 5.1 are satisfied and in 

addition A.4 holds. Let Qn be a finite difference operator of order m of the form 
(6.1). If 1 ? 1 ? r, u ? Hm + 1(&21) and p is any nonnegative integer, fixed but 
arbitrary, then there exists an ho such that for all h E (0, ho] 

(6.3) IIQhell no ?C(hl'IluI1,+m m 1 + lielLp,, n ) 

where C = C(p, Q0, 21, aip bi, C). 
Proof Let us first remark that the proof in the case that B(u, v) has constant 

coefficients is almost an immediate consequence of Theorem 5.1 and A.4. For, if 

0CC cc CC &2 1' then it is easily seen that for h sufficiently small 

(6.4) B(Qhe, up) = B(e, Q*p) = 0 Vp E SCZ r(kO) 
Here, Q* is the difference operator adjoint to Qh. Noticing that for p' = m + p, 
IIQhelLp, < C lie li-Lp, o, we may apply Theorem 5.1, with f?0, 2'Q and p' 
replacing BX &21 and p, respectively, and (6.3) follows immediately. 

For the case of variable coefficients, we first note that any difference operator of 
the form (6.2) is a linear combination of products of translations and difference 
quotients which commute. It is obviously sufficient to prove (6.3) in the case that 

Qhe = T'3a'e. We shall first' show that 

(6.5) IIT aceI1, o < C(h' 1 lu 11, + Q, + IleIIL_ a) 

Our proof will proceed by induction. Since 

(6.6) IlTvellj, no < llelij, no 

for h sufficiently small, the inequality (6.5), in the case loll = 0, follows immediately 
from (6.6) and (5.1). 

Let us now assume that lal > 1. In view of the inequality (6.6), we may re- 
strict ourselves to estimating ate. Let us investigate the equation satisfied by ate. 
For ease of computation, we shall assume that B(u, v) is of the form 

N 

B(u, V) = 2 ai1DiuDjv dx; 

the lower order terms can be handled in exactly the same manner. Using the Leibnitz 
rule, we have 

N 

B(ac e, up) = E ac(a1jDie)Djsp dx 

(6.7) - i,^ 1 2(c7 a) 0 'a11Tij%3D1eDlsOdx. 

It follows, in a manner similar to that used in proving (6.4), that, for h sufficiently 
small, the first integral on the right-hand side of (6.7) vanishes for all P E Sk r h 
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Therefore, for lIl = t + 1, 
N 

(6.8) B(Vew o)Ae(=PYf) = - |1 E Ad ( a _#)a Gi ma DieDjo dx 
1= j1 f3< 

where 1i1 < t. We may therefore apply Theorem 5.2 with ate replacing e, and 

QO and ?'O replacing Q1. For h sufficiently small and E2 CC CC E2 Cc 

&2 Q, we have 

(6.9) 10-elll, n' AC E llagelll, Q 

By our induction hypothesis, we have for each 131 < t 

(6.10) lalae 11 it ?C(h' 1hut Iu 1, + ? lieIL p, d. 

The inequality (6.5) now easily follows from (5.6), (6.9) and (6.10). 
The proof of (6.3) now follows from (6.4) and (5.5) in the same manner. One 

only has to observe that, in place of (6.9), one has the inequality 

lie I10, ? 0 C E elajell0, Qi0 

The details will be left to the reader. 

Our next concern is the convergence of difference quotients of Uh to derivatives 

of u. We shall say that a difference operator Qh = Qh of order Ioel approximates 

a derivative D' with order of accuracy t in L2, if for any pair of domains &?0 Cc 

E21 

(6.11) IIDt'u - QuIullo, no0 C(?Q20 &)htllullt+ 1a, n1' 

for all h sufficiently small and u E Ht + Io' (&l). 

THEOREM 6.2. Suppose that the conditions of Theorem 6.1 are satisfied and 

let Qh approximate D' with order of accuracy r in L2. Furthermore, let p be 

a nonnegative integer, fixed but arbitrary. There exists an h 1 > 0 such that for all 

h E (0, h1] 

(6.12) IIDu - Qhuh IO, no < C(hr Ilu IIr+IlI Q1 + IelelLp, S ), 

where C = C(p, 20,21, a ai bi, c). 

We remark that, in contrast to the results of Theorem 5.1, Theorem 6.2 says 

that if u is sufficiently smooth on E1 and Q' a sufficiently good approximation 

to Do, then the rate of convergence of Qhuh to D' is of order hr plus the 

term Ilell-p, n 
Proof The proof is obvious because of the inequality 

IDu QNuhII1, Q ? IID' u - Q'uII0 &O + IIQ'ell0, no 



INTERIOR ESTIMATES FOR RITZ-GALERKIN METHODS 953 

7. Examples. In this section, we shall exemplify the theory given in the pre- 
vious sections by considering specific methods for approximating specific elliptic 
boundary value problems on a bounded domain 2 CC RN. In what follows, we 
shall assume that the subspaces S", (&2) C Hk(S2), k > 1, used in approximating 
the solution, are such that their restrictions to a given subdomain &?1 CC Q satisfies 
the assumptions A1, A2 and A3. Several examples of such subspaces have been 
given in Section 2. 

For the purposes of our applications, we shall further assume that Sh, r() has 
the following approximation property on Q: There exists a constant C independent 
of u and h such that for k < t <r and all u GHt(E2) 

k 

(7.1) inf hi EIIU - I ? Ch I III l =1 
hi k ,r I 

We shall sometimes use subspaces Shk, r() whose elements are required to vanish 
on a 2. In this case, we shall require that (7.1) hold only for u E Ht(&2) n Ho 1 (E2). 
The assumption (7.1) holds for the examples cited in Section 2, provided for instance 
&2 is a Lipschitz domain. If additional requirements on the subspaces are needed when 
considering a specific method, we shall indicate this at that time. 

Example 1. The Neumann Problem. Let Q be a bounded domain in RN with 
smooth boundary MQ. Let u be a solution of 

(7.2) -Au + u f in Q. 
au/an 0 on a, 

where au/an is the outward normal derivative of u to MQ. Let uh E Sh r(Q) be 
the approximate solution defined by 

(7.3) B(Uh~ )=ft 
ax2 ax- 

dx + uhsOdx &fj dx = B(u, sp) 

for all s? ES r(&). Here Sk r(Q) need not satisfy any conditions on MQ and 

any one of the previous examples of subspaces can be used. We note that this pro- 
cedure is well defined if f E H-1 (E2) and that in general 

(7.4) I~~~~luel 111 < Cillf lll_ 1, n' 
IIU 1I, + 2, n < C(S)IIflIls, if 0 < s. 

It was shown in [7], that, if (7.1) holds, then for e = u - uh 

(7.5) IIeII2-r a < iljelllr2, a ?Chr-2+t tUIlU a, 1 At <r, r > 1. 

If 20 CC Q1 CC Q2, then our interior Eqs. (2.1) are satisfied for h sufficiently 
small and, using the inequality IleII2-r a 1 < Ile1122r a, we obtain from Theorem 
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5.1 that, if u E Hr(p 1) f H2 (n), then 

(7.6) Ielles no < Chr(llUllr s1r ? 1Ul12, n)- 

If u E Hr(E?1) n H1(n), then 

(7.7) jell, no < Chr (llUllr, n1 + ll 11 1, n). 

We note that the best estimates one can obtain on all of n for any u E HY(92) is 

jlello 0 < ChrjjUjjr a2, jlell1 a < Chrj 1IIUjjr, a 

In contrast to those, (7.6) and (7.7) say that we obtain quasi-optimal estimates in 
L2(&?0) and H'(E?0) provided in both cases u E Hr(f?1) and u E H2(E?) and 

H' (&2), respectively. It follows from interior a priori estimates for elliptic equations 
that (7.6) and (7.7) may be replaced by 

(7.8) jjejjo, no< Chr(1lflr-2, n1 + 1lf110, 2) 

and 

(7.9) jjellj, no < Chr l(1OfIlr-2, 1 +? lllfllLn), 

respectively. 
In this particular problem, we are at liberty to choose our subspaces to be defined 

on a uniform mesh; hence, the results of Section 6 on difference quotients are 
applicable. 

If o& is any multi-index and Qh is a finite difference operator of the form 
(6.1) which approximates Dt with order of accuracy r, then, for h sufficiently 
small, we obtain from Theorem 6.2 that 

(7.10) jl~u - QhUh no0 Chr(jlUjjr+ lac1, n1i + ?U ll2, n) 

One can show that in terms of data 

(7.11) jID`U - Q'uhj no < Chr(jfjr 1+-2, ?11f110 a) 

Example 2. The Dirichlet Problem, Babu~ka's Method of Lagrange Multipliers 
and Two Methods of Nitsche. In Babu~ka [3] and Nitsche [12] and [13], methods 
are introduced for approximating solutions of 

(7.12) -Auu=f in Q2, 

(7.13) u=O on a92 

(in [3] and [12] in general u = g on U2) in which the approximating subspace 
need not satisfy boundary conditions. In [3], the subspaces Sk X(2) need not 
satisfy any additional requirements and may be taken to be any one of the examples 
given. However, another one-parameter family of subspaces is introduced, which are 
defined only on a? and which may be thought of as approximating the normal 
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derivative of u on M?. In [12] and [13], subspaces are constructed which have 
certain additional properties near M?. What is important here is that subspaces used 
in these methods can be chosen to satisfy the conditions of Theorem 5.1 and, if 
SO CC Q1 CC &? and h is sufficiently small, then the interior equations for all 
of these methods are the same, i.e., of the form 

IU i= 5 ax) aE - dx(f, o) = B(u, So) Vo k Sk(& ?). 

It was shown in [7] that the estimate (7.5) is valid for all three of these 
methods provided MQ is smooth and hence it follows that the error estimates 
(7.6), (7.7) and (if a uniform mesh is used on E2) (7.10) remain valid. We remark 
that the same estimates hold if in (7.12) the Laplacian is replaced by any second 
order elliptic operator of the form (1.4), such that the corresponding boundary 
value problem has a unique solution. 

Example 3. Dirichlet's Problem on the Unit Square. Let us again consider the 
problem (7.12), (7.13) on &? in R2 where & = {xI O<x < 1, i = 1, 2}. We 
shall approximate u using subspaces Shk, r() which vanish on M?. Let uh C 

k, rX2) be the approximate solution defined by 

(7.14) B(uh, ) f ZaX ax dx =(f, )= B(u, so) o E rSh 

In order to obtain interior estimates, we estimate lie112-r, Q. We shall show 
that the estimate (7.5) remains valid here. The basic idea in obtaining this estimate 
in this case may be found in [18]. For completeness, we shall outline the proof. 
Now 

(7.15) Jje112.r, 2 = SUp (e, V)YIIVIr_2, S2 
vEC '(SZ) 

For each v C C' (&), let E be the solution of (7.12), (7.13) with f = v. In 
general, solutions of (7.12), (7.13) need not be smooth even for smooth f and the 
best one can say is that, if fE C (&?), then u C H3-e(2) n H1(&?) for any e > 0. 
However, in the case that v E CC' (&), then, in fact, e ? C (&?) and the a priori 
estimate 

(7.16) 114'I1s, r < C11lV1s- 2, 0 < S. 

holds, where C is independent of v and depends only on s. In order to see this, 
we notice that 4 may be continued to a square domain G where &? C G as a 
solution of - Ad = g in G, 4,=0 on aG where g C C' (G), g = v on Q. 
This is done by repeated reflection of 4 across the edges as an odd function. It 
then follows from standard interior estimates for solutions of (7.12) that 4 is Co 
on every subdomain of G and hence on Q. The estimate (7.16) is valid for 
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smooth solutions. Hence, for any n E r' we have, using (7.14), that (e, v) = 

- (e, A4) = B(e, )=B(e, i-) or 

(7.17) I(e, v)l < 11ellljQ inf 110 _q Ac a < Chr- lilejj, 110 11r, f2 
E Sh Tek, r 

In view of (7.17), (7.16), (7.15) and the fact that uh is the best approximation 
inSk r to u in Ho 1(2), the inequality (7.5) now follows. This immediately im- 
plies that the estimates (7.10), (7.6) and (7.7) are valid in this case, even though 
there are corners. However, the method of proof of the' estimate (7.4) depends very 
much on the fact that the interior angles of &? are rr/2. We shall now treat the 
case of the L-shaped membrane where we are generally not able to show that (7.5) 
holds. 

Example 4. Dirichlet's Problem on the L-shaped Membrane. We again consider 

(-I 1) (1 I) (7.12) and (7.13) where &2 is the L-shaped 
domain (see figure). For our subspace, we 
choose SIk r(2) = Sh to be piecewise linear 
functions on a uniform triangulation of &2 

(-1,0) I ____ which vanish on U2 and again denote by 
u\ the approximate solution determined by 

(7.14). Now, in general, if f is C?(f2) or 
even C' (E2), then the most one can say of 
solutions u of (7.12), (7.13) is that u E 

? )I H5/3-e(?) flH1(n) for any e > 0. The 

following estimate (cf. [9]) is valid for any f EH-1/3-e(2), 

IIU115/3_e, n <C11f11-113-,, n- 

We shall now estimate liellp, Q. For any p > 0, we have 

I1ellp = sup (e, v)/IjjvII Qu 
tie c vC= C 0o 

Again, let AO = v on Q, 4/=0 on a2; then, in general, 4 E H5/3-,(2) for 
any e > 0 (in contrast to the unit square where 4' E C'(f?)). We then have for 
any n E S', 2(Q) 

(e, ()=-(e, /AO) =B(e, 0) = B(e, 0 - nl) < 11elij a inf 110 -71li, a2 

< Ch413 - 2 u 1/_eaAl 13_ea- 

From this it follows that for any p > 0 

(7.18) IjeL j _pa C(e)h4/3- 2E6 I1u115/3.., _a 

Hence, in general, the convergence seems to be no better in any negative norm than 
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in L2(E2). In particular, for all u CH-513-,, we have 

(7.19) hell0, n_ ?Ch4/3 2E1lU115/3-, n. 

where C is independent of h and u. 
If we apply the estimate (7.18) to the results of Theorem 5.1, we see that for 

all u EH2(Q2) (here r= 2) 

(7.20) elle10, 20 < C(h21u 112 Q1 + h4/3-2ellUll5/3_ EJ 

Hence, for h small, the order of convergence is h4/3-26 which is no better 
than that over all of 2 and the estimate (7.20) yields nothing new since (7.18) is 

also trivially valid with hlello a replaced by Iello,0 no 
In some sense, this inequality is sharp. Following an idea of Babugka, one can 

show that, for each h, there exists a function u = tP such that 

Ileh, n = h U | Uh lO o >n Ch4/3 el hll1/3 
0 115/3~-e, n2 

We shall not give the details here. 

However, we note that this does not say that for a given fixed u the rate of 
convergence in the interior is not higher than h43- This is an open question at 
this time. 
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