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On the Eigenvectors 
of a Finite-Difference Approximation 

to the Sturm-Liouville Eigenvalue Problem 

By Eckart Gekeler 

Abstract. This paper is concerned with a centered finite-difference approximation to 

to the nonselfadjoint Sturm-Liouville eigenvalue problem 

Ltu] =- [a(x)ux]x - b(x)ux + c(x)u = Xu, 0 < x < 1, 

u(O) = u(i) = 0. 

It is shown that the eigenvectors Wp of the M X M-matrix (Ax = 1 /(M + 1) mesh 

size), which approximates L, are bounded in the maximum norm independent of M 

if they are normalized so that 1WpI2 = 1. 

1. Introduction. The present paper is concerned with the nonselfadjoint problem 

(1) ~~~[a (x)ux] IX 
- b (x)ux + C(x)u = Xu, 0 < x < 

1, 

u(0) = u(l) = 0, 

where a(x) > a > 0, c(x) > 0, and a, b, c are all bounded and smooth functions. 
This problem has an infinite sequence of positive and distinct eigenvalues 0 < X1 < 
X2 < X3 < * * * and a corresponding sequence of smooth eigenfunctions u, u2 , U ** 

(see, for instance Protter-Weinberger [10, p. 37] and Coddington-Levinson [4, p. 212]). 
Following Courant-Hilbert [5, p. 334], the eigenfunctions uP are uniformly bounded 

in the supremum norm if they are normalized so that 

f1IUp(X))2 dx = 1, p = 1, 2, 3, 

Of course, by the well-known transformation 

(2) u(x) = exp (- f/ dt) w(x) 

(1) may be put in the selfadjoint form 
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- [a (x)wx ]x + c (x)w = Xw, 0 < x< 1, 

w(O) = w(l) = 0, 
where 

c (x) = c(x) + ?2bx(x) + '14b2(x)/a(x). 

Here, in order to obtain c (x) > 0, we have to make a restricting assumption on by. 
Therefore, we choose the direct approximation of (1) by means of the finite-difference 
equations 

ak+l /2(vk+ 1 - vk) ak-1/2(Vk -vk-1) Vk+ 1 Vkk-? 
- -~~~~~~~~b - i + c vk = AV, 

Ax 2 k ~~~2Ax kk k, 

(3) k =1,***,M, 

VO = VM+l = 0, 

where M E N, Ax = 1/(M + 1), and vk v(kAx). Equivalently, we may write (3) 
in matrix-vector notation 

(3') LV =AV, 

where V = (v1, , vM)T and the matrix L may be easily derived from (3). 

Let Ib(x)I ? ( and 0 < Ax < 2o/j. Then the matrix L is equivalent to a real 
symmetric matrix (see Carasso [2] ). Using this fact and Theorem 1.8 of Varga [1 1], 
it can be shown that all eigenvalues AP of (3) are real and positive, 0 < Al ? A2 6 
A3 ? - * 6 AM' and there exists a complete sequence of corresponding eigenvectors 
VP. A result of Carasso [2, Corollary 1] says that there exist a constant K and an 
integer po, both independent of M, such that 

IVP 1.= max IvP I<Kp"12, p p?M, 

1I ~ ~ ~ ~ ?? 
if 

M 
IVP 122 = A, VP2=1 

k=1 

In the selfadjoint case, this result goes back to Brickner [1]. In this paper, we prove 
the following theorem: 

THEOREM. Let a(x) > a > O and c(x) > 0, 0 < x < 1. Assume that a, b, 

and c are differentiable bounded functions with bounded derivatives. Let Ib(x)I ? A. 
Let 0 < Ax < ca/I and let { VP}m1 be the eigenvectors of (3), normalized so that 

I VP =1. Then 

foVP som c K, P id1, *pendentM, 

for some constant K independent of M. 
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Remark 1. In the case of the equation u~x = Xu, this result may be proved by 
explicit computation of the eigenvectors VP (see Isaacson-Keller [9, 9.1.1]). 

Applications of the Theorem to the theory of finite-difference approximations to 
parabolic and hyperbolic partial differential equations are given in [3], [7], [8]. 

2. Proof of the Theorem. Instead of L, we consider, as in [2], the eigenvectors 
D-1 VP of the similar matrix D-1LD defined below. But, in contrast to Carasso [2], 
who uses a discrete maximum principle for his estimation, we then transpose the proof 
of Courant-Hilbert [5, p. 334] to the resulting discrete problem. 

The following basic results are needed. 
LEMMA 1 (CARASSO[2,LEMMA 1], [3, LEMMA 3.1]). Let D = (d1, * * * ,dM) 

be the diagonal matrix with 

d 1 d + [ri- ak+ l1/2 -bk+ l Ax12 ]1l/2 i2 M 

For O < Ax < 2a/o, we have di > O and 

IDL. < K1, 1Do1 ?K2 

for constants K1, K2 independent of M. Furthermore, LF1LD = (P + Q)/AX2 where 
P =(Pik)i. k=l ,* * * ,1A 

Pik (Pk+ 1 /2 + Pk-1/2), i =k, 

=Pk+1/2' i= k+1, 

= P2i+1/2, k =i + 1, 

= 0, otherwise, 

Pk+ 1/2 (ak+ 1/2 bk+ 1Ax/2)1 '2(ak+ 1/2 ? bkAx/2)1/2, 

and Q = (q1, - * *, qM) is the diagonal matrix with 

qk = (ak+ l /2 + ak-1/2) (Pk+ 1/2 + Pk-1/2) +AX 2Ck. 

Remark 2. The change of variables V = DW is a discrete analog to (2) [2]. 
LEMMA 2 (CARASSO [2, THEOREM 1]). Let AP, VP be the characteristic 

pairs of the matrix L with I VP 12 = 1. Let uP be an eigenfunction of (1) cor- 
responding to Xp and let UP be the vector of dimension M obtained from uP by 
mesh-point evaluation. Assume u P normalized so that P_1 Up 12 ID-' VP 12, then, 
as Ax>*O,we have 

(4) IXP - API < K3(p)AX2, IUp - VPI2 ? K4(p)AX2, 
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where K3, K4 are positive constants depending only on p. 
In the selfadjoint case, Lemma 2 was proved by Gary [6]. 
Remark 3. The estimation (4) implies IUP - VPIJ < K4(p)AX3/2. 
LEMMA 3. Let 

Cl(W) = , [Pk+ 1 /2(Wk Wk+ 1) Pk-1 /2(Wk Wk-1)] qkwk/AX2. 
k=1 

Then, under the assumptions of the Theorem, 

C( WP) = - qlpl + 1 /2WP+ I w PI/Ax2 + 0(1), 1= 1,* ,M, 

where WP = D- 1 VP and 0(1) denotes a function which has a bound independent 
of M. 

Proof. We show at first that Iqk/Ax21 < K 5 independently of M. To this 

end, it suffices to consider ak+1 /2 - Pk+ 1/2* By means of the binomial theorem, we 

obtain 

ak+l,2 Pk+1/2 

ak+ 1/2 ak+ 1/2 ( 4a + 0(5x2)) (I+ 4a 
+ 0(Ax / 

Inserting bk+l = bk + O(Ax), we find that 

(5) ak+1/2 Pk+1/2 = O(AX 2). 

Now, since wP = O, 

C1(WP) =-qj 1 +2W 1+W I 

1qk i-i qk+l -qk 
+ E (Pk+ 1/2 Pk-1 /2)wpkwk + 

2 Pk+ X /2" k+1l 
k=1 Ax k=1 Ax 

But, by the mean value theorem, we have Pk+ 1 - Pk = O(A x) and 

(qk+ 1 - qk)/Ax2 = O(Ax). Hence, using Schwarz's inequality and IWP12 < K6, we 
obtain the desired result. 

Now, according to Lemma 1, it suffices to prove the Theorem for the eigenvectors 
WP = D-1VP of the matrix (P + Q)/Ax2 which also has the eigenvalues AP. We 

multiply the kth row of 

(1/Ax2)(P + Q)WP = AP WP 

by 
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i /l2(Wp WP+d)P-/(W k1 

and obtain, by adding all rows from k = 1 to k 1, 

(6) Fp2(wP-wP l2 (6) 1 
~~~~~~~~~~~~~Pi /2 (WPl Wpo)2 

+~~~~~~~~~~~~~~~~~~~~~~~~~~1 P-tl2w~w APAX L 
PxQOkWPWPk= 

where (k - 1/2)Ax < tk < (k + 1/2)Ax. In order to eliminate the term on the right 
side of (6), we sum up Eqs. (6) for I = 1 to 1 = M, add (P1 /2(wWp - wPO)/Ax)2 to 
both sides, and divide by M + 1 = 1/ Ax. Then 

rP1 2(Wi -WpO) M rPI+ 1 /2(WI+ 1-Wlp)1 M 

L iIAiw'iX wJ2_____ _ 1 wx)]2 'AxS C,(WP) 

(7) M M I 

+Ap x PI+ I 2WI lWp APAX ? x QOX~kWPkWP 
1=1 k=l 

But 

(8) O<cx/2<P1+1/2<K7 (K7>1) 

if 0 < Ax < ax/1. Thus, using the fundamental relation 

M 
Z P+ 112 (WI+1 -W)2 WTPW 
1=0 

(wo = wM+I = 0), we derive 

Ax [1+ l /2(wi+i 1w])} AxK7(WP)rPWP/Ax 

M 
= AXK7(WP)T(P + Q)WP/AX2 - AXK7 F qlw'w/Ax2 

1=1 

S AxK7AP(WP)TWP +K5K7AX(Wp)TWp = K7AP ?K5K7, 

1q1/Ax2 

Ax . 7 

indpendntl ofM and I WV'7 
since 2q /AX21 independentlyofMand jWpI2=1. Hence, applying Schwarz's 
inequality, we find from (7) by means of the assumption and Lemma 3 that 

[P 120(W 1 0w)IAx K 8Ap + K9. 
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From this estimation, Eq. (6), and Lemma 3, we deduce that 

(Ap - qjl,/X2) pi WP+ 1Wl6 K 1 A + K11. 

Consequently, observing (8), we obtain, in case AP > K5, that 

(9) WIPlWIP < K 1= I,* ,M 

for some constant K12 independent of M. For AP < K5,the assertion of the Theorem 
follows by Lemma 2, Remark 3. 

Finally, we return once more to Eq. (6). The above estimation yields 

FPi+ 12(wl 1 -w'P)12 
[ J < K13 Ap+ K14) M, 

or, using (9), 

Iwl'I2 , IwlpI2 + ?Wp 112 = (wgp~ -wlp)2 + 2wIPwIP' 

A2 [pA+x12(w'+1 -w j 2? 

< Ax 2(K15Ap +K16)+K17 =K, = 1, ,M. 

Hence, max1l<p.<M{IWPIK} is bounded independently of M. 
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