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A Variable Order Finite Difference Method
for Nonlinear Multipoint Boundary Value Problems

By M. Lentini and V. Pereyra

Abstract. An adaptive finite difference method for first order nonlinear systems

of ordinary differential equations subject to multipoint nonlinear boundary conditions
is presented. The method is based on a discretization studied earlier by H. B. Keller.
Variable order is provided through deferred corrections, while a built-in natural
asymptotic estimator is used to automatically refine the mesh in order to achieve a
required tolerance. Extensive numerical experimentation and a FORTRAN program
are included.

1. Introduction. In this paper, we intend to show how a finite difference tech-
nique can be developed to produce high order approximations to the solution of mul-
tipoint, nonlinear boundary value problems for first order systems of equations.

We shall present extensive numerical evidence and comparisons with results pub-
lished in the current literature showing that the method is extremely accurate and that
it performs very efficiently.

Moderate accuracy can also be obtained economically in terms of time and
storage by working on very coarse meshes. All our results have been obtained with a
general purpose program, whose structure can be (and has been) employed in other
applications (Pereyra [20]).

Following Keller [11] we consider the nonlinear first order system

(1.1a) V'@ -, y@)=0, a<t<b,
subject to the multipoint boundary conditions:

(1.1b) gy, i) =0, a<7 <71,<--- <7, <bh

™

The vector functions y(z), f(z, ), and g will take values in R”. Considering the
nonuniform net {t].}:
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982 M. LENTINI AND V. PEREYRA
(12) t,=a tj. t]._l + h]., 1 <j</J, t.=b,

the simple finite difference scheme

1
(133) Nhuj=,;j(uj—uj_l)—%[f(t]__l, u]'—-l)+f(tj’ ul)] =0’ ]=1’...’J’

(1.3b) glu <, u, )=0,

X .. "
will produce O(#?) accurate discrete approximations under mild conditions which

will be spelled out in Section 2. An asymptotic expansion in even powers of A for

the global discretization error up— y(t].) can be shown to exist, and this knowledge
justifies the use of deferred corrections which will increment the order of the method

in two units per correction, working always on the same basic mesh.

The adaptive scheme of Section 4 is designed so that the highest order method,
compatible with the current mesh and with increasing returns in accuracy, is always
used. The main tool employed to decide which path to follow in the program logical
tree is the very natural and effective asymptotic error estimator described in Section 3.

By reduction to first order systems in the usual way, systems of higher order
equations can be treated. In this respect, we remark that, in sharp contrast to other high
order methods, not only the unknown function but all its derivatives up to one unit less
than the order of the equation are approximated with the same asymptotic order.

From the current literature, we have chosen a set of representative problems used
to test variational spline methods, shooting and parallel shooting, and a finite differ-
ence technique similar to (1.3), but where high order is achieved via Richardson extra-
polation.

Numerical results obtained with our technique are presented in Section 5. In
each case, we give pointers to the papers in which the test has been used before, and
in a few relevant cases we compare different numerical results. Due to the fact that
most numerical tests in this area are published with little detail concerning implemen-
tation, computer times, and so on, it is hard to make any final judgement about the
relative merits of the different techniques. The ultimate comparison will be that given
by the user which will require: ease of use, applicability or adaptability to its particular
problem, and overall: economy in computer cost and reliability.

Our program (which is appended) has been developed with these requirements
in mind, and we have tried to achieve the quality and high standards of the general
purpose software currently available for initial value problems.

In this first stage, we present a version which is not as general as the one described
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theoretically. We consider only linear two-point boundary conditions of the form
Ay(a) + By(b) = a and uniform meshes.

However, we have used (Section 6) a variation of the program (not presented
here) which handles a jump discontinuity. It is fairly clear that a general program can
be written with a moderate amount of additional work. We are really waiting to develop
an effective automatic procedure for choOsihg nonuniform meshes before undertaking
a more general program.

2. Keller’s Results for the Basic Method [8], [9], [11]. The main theoretical
support for our method is provided by the thorough analysis that H. B. Keller has made
of the second order scheme (1.3), and by the general theory of deferred corrections
developed by the second author of this paper [16]. For completeness, we shall now
describe the minimum material necessary to present our results.

A solution y*() of (1.1) is said to be isolated if the linearized problem (around
»*) has a unique solution. We assume that (1.1) has an isolated solution y*(¢). Then,
for sufficiently small 4, and all 2 < h,, we have:

(i) The difference equation (1.3) has a unique solution in a neighborhood of
{»*(¢,)}, which can be computed by Newton’s method. The convergence is quadratic
for appropriate initial values.

(i) max; lu; - y*(z;)I = O(?).

(i) u; = y*(@,) = ZpL ke, (1)) + O™ *?),j=0, -, J.

(iv) Writing (1.3) in vector form

= i = ce T
®,(U)=0, with U=(u,, ,u;), and
By )
o= | M4
i Ny

we have the stability condition
2.1 v - vi<cle,U) - @, C independent of &,

(which can be readily obtained from (3.4a) of [11]).

Most of these results can be extended to the important case in which the data
functions f and g are only piecewise smooth, with jump discontinuities allowed at
the boundary points {T]-}.
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We shall also need the Fréchet derivative (Jacobian matrix) of the operator
®, (V). This matrix has the following block structure:

| -
B
|
S, R, Q0 0
\
(VR \\ \
. II\ \ \
. (D’ = \ \
22) AGE RN
: . \\ \
| \\ \ b
N \
1 \
_0 | S, R, ]

where all the submatrices are of size n x n, and

Gj=(a/au].)g, j=0,:-,J,
—_ |1, 14 1, 1 _
5= [hj1+2fi—l]’ R, th 2 fp I=L g

71, = @, Jou )2, ).

]

3. Deferred Corrections and Asymptotic Error Estimates. By using Taylor
series we can easily obtain an asymptotic expansion for the local discretization error

7,0 = ®,(»*). In fact,

L » h?v
@3.1) TN | A ¥h)=— S —— . p2v) _!
h(y )( j—1 ]) sztl ‘221)—1(21} + 1) f;'(—1/2 (211)' .

+ 0(h2L + 2)’
where

f;(fl;)/z Ef(2V)(tj-—l + %hj’ y*(tj—l + %h]))

Let F,(»™) be the segment of the expansion (3.1) containing its first k terms.
For each 1 <j <J, let i be the only index for which

(3.2) Tij < tJ._l + %h]. < Tin.
Then we define S, as

2k
(3.3) S 0¥y + )= 2w, f,

3 '—p].+i’
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where the p; are chosen so that

(B34 Tij <tf*l’j.+" <Tij+l.

is satisfied. The weights w;; are chosen so that

3.5) S, 0%) = 1,0%) + O(h*F+?)

at each LA +%h]-,j=1,'~,J.

Clearly, (3.4) imposes a condition on the mesh:

CM: There must be at least (2k — 1) mesh points between boundary points.

Though it is not strictly necessary to require (3.4) in the case we are consider-
ing at present, we prefer to assume (3.4) to hold since this will be essential in the
case of piecewise smooth data, where we must avoid straddling a singularity in order
to obtain the desired accuracy (cf. Section 6).

Once CM is assured, (3.3) can always be constructed since it is simply a numer-
ical differentiation formula applied to each component of the (perhaps piecewise
smooth) vector function f. With a small modification, the correction generator of
[19] can be used for this purpose (cf. also [16], [17]).

From [16], [18], it follows that, if Y*~1) isan O(h2¥) accurate discrete
solution, then (3.5) is satisfied if y* is replaced by Y*—1 and that, for k=1,
the solution A®~1) of the linear problem

(3.6) o y*k-a=s5,_ (¢ ) -5

is an asymptotic error estimator for ¢, _, =Y, _; — ¢hy*, where Sy =0, and
¢, projects »*(x) on the mesh functions. In fact, we shall have

— 2k+2
(3.7) Ao, =€, +OH¥F2).

The successively more accurate mesh solutions Y*) are obtained by deferred cor-
rections, i.e., by solving for Y*) the nonlinear problems:

(3.8) @, () =5,(x* 1), k=1,

These nonlinear problems can be solved by Newton’s method, i.e., by the iteration:
-V — [® -1,

3.9 Y., =Y, [@h(YI)] e, (Y),

starting from an appropriate Y,,. Naturally, each step is performed by solving a
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linear system entirely similar to (3.6). Because of the special structure of the sparse
matrix <I>;,, there are various direct methods which can be employed. In the case of
separated two-point boundary conditions, it is advisable to use the band or block
tridiagonal methods of Varah [25] and Keller [11].

Clearly, the difficulties in the asymptotic theory observed before in the simple
two-point boundary value problem [19], because of the use of different differentia-
tion formulas at different points, are also present in this case at each subinterval.
However, as in the simpler problem, we hope to show with our numerical experimen-
tation that, notwithstanding these theoretical difficulties, this is a very effective
technique.

Solution of the Linear Systems of Equations. We shall describe briefly the
direct solution of block systems of the form (2.2). We have included in (2.2) an
extra subdivision in order to treat the 2 x 2 “super-block” matrix:

(3.10) @' = [%}—Bi] i Z*J

N~

n n*/
Considering the partitioned vectors

X0
X0
Xx == Xl ’ b= y
X .
X.
i
L

the super-block system

A | B
(3.11) H] | ,
c!Dp

is solved by elimination. More explicitly:

(3.112) x, = (4 = BD'C)"!(b, - BD™'D),
(3.11b) Dx = (b~ Cx,).

The main part of the computation is the solution of the block-bidiagonal sys-
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tems with the matrix D, corresponding to the computation of D~ 'C, D~b. By
putting C = [Cb], V= [VIw], where V' =D~!C, w=D"'b, we have that the
system DV =_C is solved by the recursion:

V=pr-l( _¢T =1 ..
(3.12) I§ R]. (C]. SJ.VJ._I), j=1, , J,

where ?0 =0, and the ’17]-, 5]- correspond to the appropriate partitionings of V,C
Naturally, the matrices R]- are not inverted, but, rather, a good Gaussian elimination
code with pivoting is used to solve the corresponding matrix systems. This provides
what Keller [11] calls partial pivoting. With ¥, (3.11) reduces to the solution of
the linear system

(3.13a) - BV)x, = (b, — Bw),
(3.13b) X=w-— Vx,.

Observe that in most cases the block-vector B will be quite sparse since there
will usually be many more grid points than boundary points. This should be taken
into account in the computation.

4. The Adaptive Method. In [19], a variable order algorithm based on results
similar to those of Section 3 was developed for the two-point boundary value problem
for second order equations. It was indicated there that the scheme had more general
applications, as we shall proceed to show now (cf. [20] also).

The problem we set ourselves to solve is the following: “Given a boundary value
problem (1.1), a basic mesh 2, (containing the boundary points 7,i=1,, N),
and a tolerance TOL, find an approximate solution Y* defined (at least) on Q,
and satisfying

4.1) ly* - ¢, y*I < TOL.”

The basic mesh 2, is the region in which the user wants to know the solution
(minimal description):

(42) ’ &, ={t]'}f:0,..,,J'
We define the indices j;, by
43) i

v, =, "Lt i=1,-,N- 1,

and
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7N = min v,.
1 1

By &, 2> We shall denote the refinement of £2, obtained by including all the
midpoints ;,_, + %hj. Thus, J becomes 2J.

Algorithm. let k=0.

If n >4, then we can compute S, (cf. (3.1) and (3.5)). In that case, on
2, we solve ®,(Y)=0 for Y(®) and also solve @;,(Y(O))A == Sl(Y(O)) for
A Since 1A is an error estimate for 1Y(?) — ¢..»*Il, we check if 1A <
TOL and, if this condition is satisfied, we exit successfully.

If n <4, then the first step just described cannot be performed and we refine
the mesh and try again. If OLDERROR = IA(®) | > TOL, then we enter in the
general correction loop:

Correction loop: set k equal to k + 1;
if n <2k + 2 then refine the mesh;
otherwise solve for Y(¥) the nonlinear equation:

@, (Y) =S, (y*-1),

Compute and save S, ,H(Y(")).
Solve for A%) the linear equation:

o, (YA =5, (D) -5, (O

if NEWERROR = IA®) || < TOL, then exit successfully;

otherwise if NEWERROR <(C x OLDERROR (where 0 < C < 1) then
set OLDERROR to NEWERROR and go to Correction loop;
otherwise refine the mesh end.

The strategy behind this algorithm is that the highest order method compatible
with the current mesh is always used, unless the level of diminishing returns is reached
and no further improvement is obtained by increasing the order on the present mesh.
This last decision corresponds to the condition NEWERROR < C + OLDERROR,
where the constant C measures the minimum rate of improvement required of a
correction in order to continue on the given mesh. This strategy is dictated by the
accumulated experience on multiple applications that indicates that greater efficiency
is achieved in this way than by refining the mesh prematurely. (Recall that the
dimensjonality of the problem increases when the mesh is refined.)

Another important feature, especially for nonlinear problems, is the following.
After the very first step on the basic mesh, where, usually, we will not have good
initial values, we can count on accurate initial values for starting all the successive
iterations. In fact, to solve the equations ®,(Y) = Sk(Y(" —1)), we can use
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as starting values Y*=1) jtself , while, upon refinement of the mesh, we can use the
latest value of Y on the coarse mesh, plus values interpolated from them for the
missing points in the new mesh.

"The error estimate NEWERROR is profitably used in two ways, aside from the
one already mentioned above. After the first step of the process, we use it to set
the level, at which the residual in the solution of the nonlinear equations, must be
reduced, in the next step. When the grid is refined, the degree of interpolation used
to produce initial values for the new grid points, and the level of correction at which
the process will start, are also decided on the basis of information related to earlier
estimates. When convergence of Newton’s method cannot be achieved due to lack of
information to start the process, one might be forced to resort to more elaborate
techniques, as we exemplify in Section 7.

5. Numerical Results. In this section, we shall report on a fairly extensive set
of tests, mostly collected in the open literature. In all cases, we write the equations
as first order systems, although in the references they might have been treated as high
order equations. All results have been obtained on an IBM/360 model 50 computer
working with long words (= 16 decimal digits), using the FORTRAN program SYSSOL
listed in the Appendix. There are two user parameters that must be given to SYSSOL:
TOL = user’s desired accuracy (see 4.1) and N = number of points in the initial mesh.
Problem 1. ‘

Y =5
' _ .3 . .2
Yy, =y —sin t (1 +sin*y),
»,0)=y,(m=0.

Exact solution. y,(t) =sin t;y,(t) = cos t.

In [19], an adaptive method for second order equations was developed using
as a basic discretization the O(h*) Milne-Numerov formula. Results obtained with
SYSSOL are listed in Table 1. The user parameters were: TOL =5 x 10715
and N =09.

TABLE 1
Final estimated Final true Number of Final mesh
error error corrections size
SYSSOL 3.2,—15 2.2,—15 6 33

[19] 7.0, -17 2.8, —15 3 33
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We observe in Table 1 that very similar results are obtained with both methods,
but, reflecting the fact that 4 orders are gained per correction, the method of [19]
requires only half the number of corrections. Computer times are unfortunately non-
comparable, since the results for [19] were obtained on an IBM/360 Model 91. How-
ever, we believe that the technique of [19] should be preferred whenever it applies.
As a matter of reference, the computer time on an IBM/360/50 for SYSSOL was
13.12 sec.

Problem 2.

Y=Y,y
y;, =400(y, + cos®mt) + 2m* cos 2nt,
»,0) =y, (1)=0.

Exact solution.

—-20
e 1 —
yl(t) - e20t + 207

e - COSzTrI,
1+e20 1+e20

206720207 90

+ e~ 20 1+ e 20

y,(0= e~ 2% 4 7 sin2mt.

In Stoer and Bulirsch [24, Chapter 2, §6] , this example is used to compare the
following methods:

(Ma) Simple shooting method (obviously, the example is designed to fail for this
method, and so it does);

(Mb) Multiple shooting of Bulirsch;

(Mc) O(h?) finite difference method for second order equations;

(Md) Variational method using cubic splines.

We thank Professor Stder for making his results available to us before [24] was ready.

In Table 2, we compare the maximum absolute errors of the various methods with
those obtained by SYSSOL, with TOL=5 x 10~ !1, N=65.

TABLE 2
Max. abs. error Comments
Ma 13,-3 —
Mb 50,-12 20 intermediary points.
Mc 5.6,—6 219 mesh points.
Md 1.8, -6 100 subintervals.
SYSSOL 99, — 12 65 mesh points; 7 corrections.

21.74 sec. of computing time.
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Problem 3.
yl y2’
, ¥
yy=el,
»(0)=y(1) = 0.

Exact solution.

7O="tn2+2m [easo($ (:-1))].
¥,(6) =c » tan (% (f - %))

where ¢ satisfies cxsec ¢/4 =+/2. To 16 significant figures, ¢ = 1.336055694906108... .
This problem has been solved by a variety of techniques in [2], [5], [7], [11], [19
[21]. In Table 3, we present some comparative figures. A description of the various
methods follows (in some cases, we have chosen only the most accurate results):
M1: Ritz-Galerkin with polynomial subspaces PgN ),
Basis: indefinite integrals of Legendre polynomials.
Iterative method: Gauss-Seidel-Newton [2].
M2: Ritz-Galerkin with cubic Hermite subspaces ng), coupled with four-point
Gaussian quadrature scheme [5].
M3: Ritz-Galerkin with smooth cubic splines Sp(Dz, A(h),z) [7].
M4: Keller’s method with Richardson’s extrapolations, [11].
M5: O(h®), Milne-Numerov, linear deferred corrections [19].
M6: Milne-Numerov with successive extrapolations [19] .
M7: Adaptive deferred corrections (SYSSOL).
We report max. abs. error for each method.

TABLE 3
Method Error Comments
M1 503, -8 Dimension of P{) =6,
M2 6.28, — 8 Dimension of H(?) = 24.
M3 7.15, -7 Dimension of S1(72) = 16.
M4 1.09, — 11 Three extrapolations. Basic mesh, 4 = 1/3.
M5 7.36, — 10 N =38.
M6 401, - 12 Two extrapolations. Basic mesh, # = 1/4.
M7 5.35, - 12 k=2. No =9. N final = 17.
Time on IBM 360/50: 4.1 seconds.
M7 398, - 15 k=4. No =17. N final = 33.

Computer time: 8.76 seconds.
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We observe that the only results with an accuracy comparable to SYSSOL are those
obtained with successive extrapolations (a very near cousin!) but that, as usual, the ac-
curate results correspond only to the coarsest mesh used (with 2 and 3 interior points
respectively in M4 and M6).

Problem 4. (Bending of a thin beam clamped at both ends.)

Y =,
Yy =Yy
V3=V,

¥, =@ +141° + 498> + 32t - 12)e”,

¥,00)=y,(0)=y,(1)=y,(1)=0.

Exact solution. y(t) =t*(1 —t)2e’.

In [2], [5], this problem is solved by a variational method using smooth Hermite
subspaces Hf,z)(rr) of piecewise cubic polynomials.

In Table 4, we compare max. abs. errors for the solution and its first derivative.
The value of k indicates the final number of correction terms.

TABLE 4
Max. abs. error Max. abs. error

Method function derivative
Ritz-Galerkin
H) of dim. 46 1.70, — 6 127, -4
SYSSOL
17 points 4.70, — 7 9.03, — 7
k=2
SYSSOL
33 points 1.82, — 14 9.65, — 15
k=6

The computer time on an IBM 360/50 for the most accurate results was of 13.82
sec., using 138 K.-bytes of main storage.
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Problem 5.
Y=Yy
vy =80, ¥,y
Vy=Y,

y,0)=y,0)=y,(6)=0; y,()=¢,
with s=10,c=10"3,a=8=2.5.
Exact solution.

-

Y= ‘:—2 Y/r + t =y cosh(rt)/r + % sinh(rt)/r],
v, = f_‘; 1 — 1 sinh(r) + % cosh(rt):l ,

Yy = ‘;—2 —ﬁy/r + Bt + ay cosh(rt)/r — 8 sinh(rt)/"] )

-

Yo~ 32 .B + oy sinh(rt) — cosh(rt)] ,

where

«

r=va+8, y= (B cosh(rs) + 1) / sinh(rs).

993

In [3], Falkenberg solves this problem by a method he calls “step wise inversion™
which is related to the Godunov-Conte method. This is also a problem which is unstable
for simple shooting. In Table 5 we show again max. abs. errors for the various compon-

ents as obtained with Falkenberg’s algorithm and with SYSSOL.

TABLE 5
max. abs. . abs. max. abs. max. abs.
Method error in Terror in error in error in
Y1 Y, Y3 Va
Falkenberg
10 steps 1078 10=° 1078 107°
SYSSOL
33 points 6 x 10711 15 x1071% 33 x 107! 64 x 107!
k=17
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Computer time on IBM 360/50 was 36.10 sec. for Ny =9.

Finally, in Table 6, we present the results of a fairly extensive set of tests, which
shows the behavior of SYSSOL on the five problems of this section for different toler-
ances and initial step sizes.

TABLE 6
Problem 1 2
No
TOL 5 9 17 33 65 5 9 17 33 65
1073 .96 .83 1.61 2.01 4.57 9.36 7.42 6.27 4.84 8.51
(9) (9 (17) (33) (65) (33) (33) (33) (33) (65)
10'6 3.27 3.21 (2.89] 3.19 6.19 15.09 13.87 10.73 [10.69 13.39
(17) (17) (A7)} (33) (65) (33) (33) (33) (33) (65)
10'9 5.07 5.2 4.75| 6.73 11.48 26.89 26.77 25.39 26.09 [17.18
(17)  (17) |(17)| (33) (65) (65) (65) (65) (65) (65)
Problem 3 4
No
TOL 5 9 17 33 65 5 9 17 33 65
10_3 .56 .38 .73 1.41 4.90 3.16 2.5] 3.22 6.40 13.11
(9) 9) (17)  (33) (65) (9) (9) (17) (33) (65)
10'6 1.38 [1.03] 1.26 2.81 6.45 6.65 6.24 6.57 9.86 18.98
(9 (9) (17)  (33) (65) (17) (17) (17) (33) (65)
1077 2,61 2.57 J2.51} 4.01 7.85 10.71 10.23 8.83 14.56 18.68
17) (7) A7) (33) (65) (17) a7y |anf 33 (65)
Problem S
NO Time in seconds needed to reach the
TOL 5 9 17 33 65 indicated TOLerances in Problems 1
10'3 2.22 1.73 J1.61| 3.37 7.23 to 5. The number in parentheses is
-6 () ) a7n) (33) (65) the final number of points in the
10 18.02 17.50 14.04 [11.56] 13.09 R i
(33) (33) (33) | (33) (65) mesh.. The box?s indicate the mini
10-9‘ 29.81 29.12 25.07 233 26.35 mum time for fixed problem and tol-
(33) (33) (33) ] (33) (65) erance.

The tolerances chosen (values of TOL) could be described as low, medium and
medium-high, while, in the individual results already given, we exemplified the results
for high precision (on this computer). These results are important since they show that
the algorithm is not geared exclusively towards high precision, which might be inade-
quate in many present day applications, but also performs economically at “engineering
precisions”.

We observe in Table 6 that for each problem and a given tolerance (horizontal
lines), the final number of mesh points Ng is independent of the initial one NV, until
N, >Nf, when they start coinciding. What is more important, the minimum time, for
given problem and tolerance (marked by a box), is attained when Ny reaches N,. We
shall call the mesh with this number of points N(TOL): the optimal mesh for the problem
(and tolerance). There is only one exception in the 15 cases shown: Problem 4, TOL =
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10~ 6. However, we see that the difference in times falls in the area of uncertainty due
to the multiprogramming environment (about 10%). Therefore, it would be quite im-
portant, from the point of view of this algorithm, to be able to predict N(TOL) early
in the game.

Another point shown in this table is that underestimating N(TOL) is less costly
than overestimating it. Very schematically, we can subsume the results of Table 6 in the
following diagram, where we present the curves time/(minimum time) versus
log,(V, — 1) for two hypothetical, though typical, cases.

time
min. time ﬂ‘

2 +

1 1 1 \\*N',Iogz(No-H

1 2 3 4 5

6. Piecewise Smooth Data. In [9], Keller develops, in all detail, the theory
mentioned in Section 2, restricted to the linear case but allowing jump discontinuities
in the function f(z, y(¢t)) = A(t)y(¢) + g(¢). The only restriction is that those dis-
continuities must be limited to occur on the set of boundary points. In Section 3,
we introduced a limitation stronger than necessary in the way by which the correction
operators S, were calculated. This was done foreseeing the extension to the piece-
wise smooth case. In fact, the only care we must exert in order that the whole theory
(and practice) of deferred correction holds true in this case, is not to straddle dis-
continuities in the calculation of the S,. By working systematically on the smooth
subintervals, all the necessary expansions are valid (cf. [9]).

The only small modifications that must be introduced in the general routine
are due to the fact that, at discontinuity points, we must use the proper information.
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For instance, let 4, =T be a discontinuity point of f(z, ¥(¢)), and let fj;, f,j be
the respective one-sided limits. Then

1 |
Nhuf,-_hj R 1R A
i
and
Ny, =G —u) =S+,
W iy e T ) T2 U Pl
i

Similar care must be exerted in the implementation of formula (3.3) and in the
computation of the Jacobian. However, the same code as for the smooth case can
be used for computing the S, at each subinterval [r, 7;,,], ie., for (t]._ 1 TRy,
T=hi ¥ L iy

Problem 6.
Y=,
Vo =Yy
V=V,

224, 0<x<1/2,

48, 1/2<x<1,
1,0)=y,(0)=y,(1)=y,(1)=0.

Exact solution.

- +21-t2, 0<r<1/2,
_ 8 16
7, (0= 29 27
20t - 1)* +§(z—1)3 +T5(t—1)2, 12<t<1.
4’3"%t2+%” 0<t<1/2,
¥,(0) = 57 27
8(t—1)3+—8-(t—1)2+—8-(t—1), 12<t<1.
12t2—%71+281, 0<r<1/2,
ya(’)=$ 57 27
24(t—1)2+T(t—1)+—-, 12<t<1.
324t - 57/4, 0<r<1/2,
v, =
4 48(z — 1) + 57/4, 12<t<1.
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In [21], this discontinuous problem is solved by a variational method using cubic
Hermite spaces ng) . In that paper, a comparison is made with a finite difference
method, showing the dangers of a naive approach to the problem. In Table 7 we
compare the variational method with our finite difference method.

TABLE 7
Method max. abs. error Comments

Variational 1.25, -5 Dimension of Hff) =18
Five-point 8.53, -3 79 mesh points
finite differences
SYSSOL 443, —6 9 points

1 correction
SYSSOL 1.39, — 17 33 points

5 corrections

One of the main points made in [21], when comparing the variational method
with the finite difference method, was that while the former method showed a per-
fect asymptotic behavior, the latter failed to show even second order convergence, and
computations on various meshes had a very erratic behavior. The reason for these
results is apparent to us now: the 5-point finite difference method straddled the
singularity at 1/2 for points near it, while the cubic Hermite method, being essen-
tially a two-point method did not. That is the reason why our finite difference
method is also impervious to the jump discontinuity. Our last piece of evidence is
to show then that our method has the proper asymptotic behvaior, and we do that
in Table 8.

N is the number of mesh points, k is the correction number, and the number
in parentheses after a correction column is the computed order of the method for

that column. The theoretical order for correction k is O(h2**?2).

TABLE 8
Mk 0 1 2 3

9 605,-3 - 443,-6 - - - - -
17 153,—-3 (20) 2.75,—7 (4.0) 1.08,—9 (6.0) 422,—12 -
33 382, -4 (20) 172, -8 (40) 1.68 —11 (6.0) 1.65 — 14 (8.0)
65 9.56,—5 (2.0) 1.07,—9 (4.0) 2.62, — 13 (6.0) 694, — 17 (7.9)

Problem 6 is linear and has a piecewise polynomial solution: a fairly favorable case.
The following is a nonlinear problem with a nonpolynomial solution with dis-
continuous second derivative.
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Problem 7. ,
Y=Y,
y
, - 1x3, 1<x<1.5,
Yy =
o, 1.5<x <2,

y,(1)=0, »,(2)=2/3.
Exact solution.

In x, 1<sx<1.5, I/x, 1<x<1.5,
y®=1, y,x) =
Fx+m15—1, 15<x<2 2/3, 15<x<2.

User parameters for this problem were N, =65, TOL =5 x 10715, With four cor-
rections on this mesh and a total of eight Newton iterations the tolerance was met,
using 18.07 sec. of computing time.*

The results of this section were obtained with a more primitive (and modified)
version of SYSSOL, and are reported only as a matter of reference.

7. Use of a Continuation Method for Stubborn Problems. In [15], [22], [23],
some more challenging problems appear. These are “horror” problems generally
appearing in practical applications which have resisted the action of most methods.
Some of them are impervious to the use of shooting methods, while others present
difficulties in the convergence of the iterations used for the solution of the nonlinear
equations that occur in the various methods. Difficulties with the simple shooting
mlethod have been avoided in many cases by resorting to the more sophisticated tech-
nique of parallel shooting [8], [15], which is essentially a hybrid, combining shoot-
ing with finite differences. As we have already shown in Problem 2, our algorithm
can also overcome the difficulties originated by unstable or stiff systems. In the
following problem, however, we found for the first time divergence in Newton’s
method, when starting from our usual crude values yi(t].) = 0. Thus, we have been
forced to employ a more sophisticated technique for solving the nonlinear equations.

Problem 8. (A boundary layer problem.)

V=Y,

Vo=V

Vy=— 155y, + .yl +1-y2 + 2,

Ve =Vs

V== 155y, ys + Lly,y, + .20, — 1),
y,(0)=y,(0)=y,0)=y,(35)=0, »,35=1.

We acknowledge here the tele-debugging abilities of Professor H. B. Keller who dis-
:overed an error in the Jacobian matrix in an earlier version, without ever seeing the program.
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Exact solution. Unknown.

In [6], Holt presents a numerical solution in graphic form obtained via an
ad hoc finite difference method and reports difficulties obtaining initial values. In
[15], Osborne uses parallel shooting with success depending again upon the initial
values, but, unfortunately, no information is given about the computed solution. In
[231, Roberts, Shipman and Ellis replace the system by

01 0 0 O
0 0 1 0 0
1 y'=10 02 0 0 0|y+eegy)
0 0 0 0 1
0 0 0 02 0
=0 t+es ),

where Cy +g=f They use a continuation method [14] consisting of setting €, =
€,_, tAe,v=1,-,€,=0, and solving the intermediate problems by simple
shooting until €, reaches the value 1, where the original problem is recovered. A
table of the computed missing boundary values is offered, though no mention of
their accuracy is made. In the intermediate problems, (it seems), ten iterations are
performed, presumably each one of them costing the integration of an initial value
problem. No indication of computer times are given.

We have chosen to use a variation of this procedure in which only one Newton
step is performed for each €,, since our aim is simply to provide initial values to
-start a successful iteration for €, = 1. This goal has been achieved and highly ac-
curate results have been obtained as we show below. Again, the changes in the main
program have been minimal; this is offered as an option in the final library subroutine.

In Table 9, we list the calculated missing boundary conditions of Roberts et al.,
and those obtained with SYSSOL modified as indicated above. We used Ae =.1.

As usual, % is the correction number. N was 65.

The computer time on an IBM 360/50 was 135.28 sec.

The program SYSSOL given in the Appendix will perform continuation auto-
matically as an option. The user has to embed his problem in a one parameter family
of problems

Y =1 y;e),

such that, for € =0, the problem is “simple”, and, for € = 1, the original problem
is recovered. This option is considered automatically whenever the parameter
DELEPS €(0, 1). It is the responsibility of the user to have the appropriate sub-
routine for calculating f(z, y; €) and its Jacobian. In this case, initial values for Y
must also be given.
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TABLE 9
Method ¥5(0) y5(0) y,(3.5) y3(3.5) y5(3.5)
[23] -0.97819707 0.64678660 -1.5308940 1.1744953 -0.31437074
SYSSOL
k=0  -0.97793385 0.64706375 -1.5300011 1.1731673 -0.31483749
k=1  -0.97819829 0.64678677 -1.5308960 1.1745015 -0.31437128
k=2  -0.97819758 0.64678682 -1.5308941 1.1744980 -0.31437042

k=3 -0.97819757999 ¢ 0.64678682479 * -1.5308940685 1.1744981003 -0.31437042497

k=4 -0.97819757997 0.64678682478 -1.5308940684 1.1744981012 -0.31437042438

We point out that our asymptotic error estimate indicates that the max. abs.

11

error on all the components (for k = 4) is equal to 6.67 X 10~ , tending to

confirm that all the figures shown in the last line of Table 9 are exact.

8. Generalization of the Milne-Numerov Method to Even-Order Systems of
Special Type. In this section we shall consider systems of the form:

(8.1 YO =y, YD), - y2r-2))

with separable two-point boundary conditions. Such systems can always be reduced
to larger second order systems with no first derivatives present. Thus, without loss
of generality, we consider instead:

(8.2) V' =ft y)=0

with the boundary conditions

Y@=« y®)=4 and yO)=0@,0), -, »,0).

Taking a uniform mesh with step A, we discretize these systems with the three-
point Milne-Numerov formula (cf. [4], [12], [17] for n =1).

1 1 _
Nyt ==y~ 2 Yy, ) =5 (G $105, 45, D=0,

®3) "n'iT 12 Vi-

For smooth f, the whole one-dimensional theory can be generalized to this n-di-
mensional case. The linear systems appearing in the application of Newton’s method
to (8.3) are block-tridiagonal and various techniques can be used in their solution.
Observe that the resulting method is O(h*) and, therefore, deferred corrections will
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provide methods of order O(h*¥). Also, the fact that we deal with second order
systems means that only half the number of equations are used that would be neces-
sary upon reduction to first order systems. This type of problem appears for instance
in the two-body equations of motion (cf. [22]), and in systems arising from the
Schrodinger equation [1].

Acknowledgement. The accurate typing of this paper was produced in minimal
time by Miss Brunilda Cerceau to whom we are very thankful.

Departamento de Computacion
Universidad Central de Venezuela
Apartado 59002

Caracas, Venezuela

Appendix. In the microfiche section of this journal, we present a FORTRAN
(level G) implementation of Subroutine SYSSOL, for solving nonlinear two-point
boundary value problems for first order systems of the form:

y =flt,»)=0, a<t<b,
Ay(@) + By(b) = a,

where y(t) = (,(1), - -, ym(t))T, a € R™ given, and A4, B are given m x m
matrices.

The program contains its own documentation and, we hope, is fairly readable.
We have added the driver program and all the necessary subroutines to produce the
results presented in Table 6.

The subroutine itself contains no input-output instructions and, therefore, it
should be fairly transportable. There is only one instruction (the definition of
EPSMAC), clearly marked, which is machine dependent. In [19, p. 74] can be found
a flow-chart which is sufficiently close to give additional information on the func-
tioning of SYSSOL.

The authors assume no responsibility for any damages that this subroutine may
cause, but they will be happy to answer any comments or complaints.
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WHEN STEP-HALVING WE HAVE TC INITIALIZE SK IF NU oGT.

coo

CALL FF(XyYoNoF)
CALL U2DCGS(NU92929NLsMoAAsF yRESe IERRCRY
00 300 I=1,MPNM

300  SKUI)=HsRES(I)

[
Cooeed>> NEWTON ITERATION STARTS eocsces
c

405 INWT=0

REOLD=1.0020
DIVNEW=.FALSE.



1300
c

IFUNU+L.LE.KNAX)GO TO 410

9
C MAXIMUM NUMBER (F CORRECTIONS CON THIS MESH HAS BEEN
L REACHED. GG TO *STEP HALVING®
<
NUsNU+1
6C TC 2660
Leseedd> LABEL 41J 1S INPUT FUR NEWTGON ITERATICN eecccse
C
4
C RLSIDUAL COMPUTATION
¢ .
4alc RABS=(400
T3 700 I=lem
SUM=ALPHA(I)
D0 6uG J=lok
660 SUMESUM=AL(14J28Y(J)=B1(19J) Y (MPNMEJ)
RESL1)=SUM
TEM=DABSIRES(1))
1F(TEMSGT.RABS JRABS=TEM
700 CCONTINUE
80U CALL FF (XeYsNoF)
0C 9CC I=24N
Ki=(l=1)*n
0C 900 J=l4M
KiJ=K1eJ
KlJM=K1J-M
RES(K1JI==Y(KLJIOY(KLIJMI®H/2#(F(KLJD4F (KLIM) ) #SK(KLIM)
TEM=DABSIRES(K1J))
IF(TEMGT.RABSJRABS=TEM
90C  CONTINUE
[4
4 THE FIRST TIME THROUGH WE DUN®T CHECK ANYTHING
c .
05 IFCINWT oEQe G) GU TO 950
910 IF(RABSoLToRECLD.ORe INNTo£Q.1)G0 TU 920
c
c IF THE RESIDUAL INCREASES AFTER THE FIRST ITERATIUN
[ WE ASSUME DIVERGENCE AND GO TC HALVE THE STEP Sil:c
c
CIVNEW= o TRUE o
NU=NU+¢1
60 1O 260C
923 1F(RABSeLEEPSeUR INWTSGEL5)G0 TO 15C5
<
Cesooe NEWTON EXIT (CONVERGENCE UR TCC MANY ITERATIONS)
[
95C  CALL SYSLIN(MyNyXYoHyJACCBoRES9ALyBlyUUY
REOLO=RABS
[
(4 APPROXIMATE SOLUTION IS CORRECTED
4
1100 DG 13C0 I=1,MPN

YOId=Y(1DeUUCD)



NEXT TWO INSTRUCTION ARE FOR CCNTRCL CF PARAMETER
IN CONTINUATION METHOD

acoo

EPSNU=OMINL (EPSNU#DELEPS,14C0)
IF(EPSNUGGES 1oDUeORDELEPSeLELGeOU) INNT=IANT L
60 TO 410

CORRECTION AND ERROR CONTROL STARTS

a2 Xa)

50C  NU=Nuel
NU2=2eNU+]
AA(NU2)=-DFLOAT(NU)/DFLUAT( (2% (2*NU-1)*NL2))
AA(NU241)=GeD0U
CALL U2DCGSUNU92929NlghmgAAyF oRESe IcRRCK)
IFCIERROR <EQe 1) GO TG 2600
DG 17C0 I=14MPNM
AUXI=RES(1)®H
RES(Id=SK(Id-AUXI
SK(1)=AUXI
170C  CONTINUE
CALL SYSLIN(MgNsX9YoHoJACCBokES ALy B14ULD

4 ESTIMATE FOR MAX. ABSCLUTE ERROR (BY CCMFLNCNTS)

ERRNEW=C o D0
DG 190U J=lok
19CC  ABT(JI=GeDO
DL 2100 I=loN
DG 2100 J=l4k
KI=(I-122Mey
Ul=DABS(UU(KI))
IFIUL «GT. ABT(J)) ABT(J)=UL
2100 CONTINUE
. D0 23C0 J=ly4M )
IFCABT(J) «GT. EKKNEW) ERRNEW=ABT(J)
230C CONTINUE
-1

K=
2500 IF(ERRNEW oLEe TCLIRETURN

c

(243 STPN PRECISIUN ACHIEVEL eccscseccces
c

4 CC(K+1) CONTAINS ESTIMATED ERRCR FLF CCRRECTILN K
[4 ON MESH SIZE H/2 (UNDER THE HYPCTHESIS 3 ERalR TN
c CORRECTICN K{H) = CsHs#(29k+2)).

[

CCINU)=ERKNEW®4.DG%*(-NU)

IF(ERRNENW oLEe «l*ERROLD) GU TG 255C
IF{ERRNEW +GT. CL®ERRCLD) 6C TU 2é0u
Cl=.50C%*C1

EITHER KEEP COKRECTING eee

(4
C
4
C TEABIBAARRET
(4
4

«
THE ERRGR REDUCTION THRESHOLC C1 IS SET CKIGINALLY (ANC *



AKBITRARILY) TC Co8e IF CL*ERRCLL < EKRNth WL HALVE ®
THt STEPe £ACH TIME THAT Cel®ERRLLD < th&NiW <Cla(kRiLO*
WE SET. ClL TC Ue5%*Cly THUS ACTUALLY ALLLWING THIS T: Ka- =
PPEN A MAXIMUM CF ThREL TIMESy BEFORE THr MURE: STKICT *
TEST WITH Qel®ERRCLO TAKES OVER COMPLETcLYe

ERKCLD IS THE ERKOR ESTIMATE FCR THE LAST CURRGCTITN nUl’
ChEy WHILE EKRNEW IS THE CNE CORRESPONCING Ti, WL LAST ~
CCRRECTION. »

L XakaXatataRatata)

Cae a8 R R R
255C ERRCLOD=ERRNEW
EPS=DMAXL(EPSMACy 4L LDL#H®*2%ERROLD)

GL TG 405
c
Coneedd> CR FALVE THE STEP SIZ2E ceccns
<
260C  IF(29N~1+LENNAXIGU TC 2625

JERRCR=2

RETURN
4
(<<<oeee TGU MANY GRID PCINTS
C
2625 N=23N-1

MPN=MEN
c
C IF NEWTOUN DIVERGEC WE START AGAIN WITH Nu=.
4

IF(CIVNEW)GG TC 40
Cassscvansssns sEREResIRARD
c - ®
C NCW WE DECIDE THE LEVEL CF CURRECTION TN Thi NbwW GEIGC »
C WE ASSUME THAT THE LAST ESTIMATCD &RRCR (PRESLNTLY iIN =
C ERKCLD) WilL BE FRLSERVEC AFTER INTERPULATINGy AND ®
C THEREFURE WE LOCATE THE FIRST INDEX I FCR WhIUH ”
C CCUINC=ERROULOy WHERE CC(I1) IS THE PREDICTED ERRKULR FUk #
C  ThE (I1-1) CORRECTION GN THE NEW GRIDe *
c ®
Cassasssens B T

NUINT=NU

1IF(ERRNEWGE« ERRCLDIGC TG 265¢C

ERROLD=ERRNEW
2653 DL 2700 I=l,NU

IF(ERROLD «LTe CCCID) GO TO 270

GG TG 275¢

27CL CUNTINUE

275¢ NU=1-1

EPS=OMAXL(EPSMACY « LUSDUTHE S 2$EKROLD )
c 3382 2avansvaBL At
(4 . N *
C COMPUTATIUN CF FIRST APPRCXIMATICN FOR Y CN NOW Griir
C 8Y MEANS OF U2DCGS WILL GIVE CRDER UF INTERPULATIuwn t
C  (2%*NU®2), WHERE NU 1S THE LAST SUCCESFULL CUXKcCTION =
C PERFURMED UN THE COARSER GR1De <
C .
c il * R R L TR




280G NC2=(N+1)/2
MPC2=M*NC2
00 2900 1=1,KkPO2
290C RES(I)=Y(I)
NG21=NU2-1
CALL U2DCGS(NUINT 240 oNOZLoMoBB oY 9SKe IERRLK)
0C 3100 I=1,MC21
Ki=(l-1)*M
KI2=23K1
DC 31Gu L=1,m
Y(KI2#L)=RES(KI+L)
310C  Y(KI2¢MeL)=SK(KI+L)
OC 320G L=l4M
3200 Y(MPN-MeL)=RES(MPL2-M+L)
GG TG 120
Cevcee START ON NEW GRIL ceccen
ND

(4

SUBKCUTINE SYSLINC(MoN9XoYoHyJACCB K3 9a1481,U0)

IMPLICIT RIAL#8(A~hyC-2)

CIMENSION X€1)oY(1),UUCL1)4RESL])
Cons sessa8ss T L L
c »
c #*33% SCLUTICN GF LINEAR SYSTEM ¥23 ¥
c s
Co P SIBLIBINRETIIISLI A LIRS L

c +
C  FCOLLUWING ARRAYS ARE WORKING AREASe CIMEASIUNS INVCLVEC *
€ ARE 3 MMAX=10C o, MMAX$l = 11 , MMAX#32x1lC o M
[+ NMAXPMMAX=65C, MMAX®(MMAX#1)=11C *
GIMENSION TC110)sUCLC)oSEICI1C)oVMILULL)oRELLLD,y
* V06509110 9AUXCLO9 11D 9ALC10U917)9BLEL pic)
OCUBLE PRECISICN JAB(1C,10)

Cassnnras 2B ssRcOB IR LRI IR AR seensssee
[

Cas38820008 3208322 *» EERTIBIET LS
c -
C IV SULVES THE 292 BLCCK SYSTEM 1
[+ tates |l Ixe I8l *
[ ===l l====] = |--=-] *
4 tctol 1 x | 1ol *
C WHERE A IS M#M ANG L IS (N$N)#*(MSK) AND ALL Thi (THLR
C  BLCCKS HAVE THE APPROPIATE DIMENSIONSe 0 IS BLGCR LCWEk +
C BICIAGGNAL, WITH MAIN DIAGONAL BLGCKS RUI) ANC *
C  SUB-DIAGONAL S(I)y ALL OF SIZES M¥*M. .
L C HAS ONLY TH¢ FIRST BLGCK DIFFERENT FRUM ZiRUs ANS 8 *
C ONLY THE LAST BLOCK DIFFERENT FRGM ZERC. .



C
Cesssssssssss

CONT INUE

*s# QUTLINE OF THE METHOD *»#

FIRST WE FORM C*'=(CIB1l) AND THEN WE SOLVE THE MATRIX
SYSTEM DV*=C* (V'=(VIW))

BY THE RECURSION: V' {(0)=0.

REJIVE (I =(Co (I)=SLIIVe (J=1))y J=1,.

THESE LINEAR SYSTEMS ARE SOLVED BY A S'ANDARD GAUSSIAN
ELIMINATION CODE (SUBROUTINE DGELG).

FINALLY XO IS THE SOLUTION OF THE LINEAR SYSTEM
(A~ B V) XO=80~8W AND

X =M~V X0

LR R R RN RN RN

CONTINUE

*4e CAUTION ®o+

THIS SUBROUTINE MANIPULATES SOME MATRICES AS ONE
DIMENSIONAL ARRAYS.

SUBROUTINES DGELG AND DARRAY ARE FROM THE 1IBM/360
SCIENTIFIC SUBROUTINE PACKAGE.

THE SUBROUTINE DARRAY TRANSFORMS BETWEEN TYPES OF
STORAGE.

IR RERR P

VOANOLNNNNONOD OROAOONOAOO0NAN

50 CALL JACOB(X(1)sYsJAB)
M2=MM
MPN=M*N
Mi=Mel

*3% SOLUTION OF D.V* = C* s

LaXaRo

DO 1000 I=14M
1000 TU(M2+I)=RES(N+I)

DO 1800 L=24N

Kl=(L-1)*n

00 1100 J=1,M
1100 UGJ)I=Y(K1+J)

*s% GENERATION OF JACOBIAN *sx

[aXaXal

H2=.5D0%H

DO S0 J=1l4M

Kl=(J-1)*n

DO 50 I=1,M

StIeJd)=H28JABLI,J)

IF(L .EQe J) S(IeJ)=S(IsJ)*1.00
50 CONTINUE

e



60

Pakakal

300

1400
1500

1600

1700
1750

1800

con

LaXoXat

1900
2000
[

2100
2200

faXaXa¥aYol

CALL JACOB(X(L) Uy JAB)

00 60 I=1.

DO 60 J=14M
Kis(J=1)eMe]
ROKI)=-H2¢JAB(1+J
IF(I.EQ.IIRIKI)=R(KI)+1.D0

CONTINUE

IF(L.NE.2)GO TO 1300

D0 1200 J=1,M

Ki=(J-1)M

D0 1200 I=1,M

TIK1+I)==S(1,J)

GO 70 1700

COMPUTATION OF (C* - S.V*)

DO 1500 Kl=1,M1

D0 1500 I=14M

SUM=0.00

DO 1400 J=1,M
SUM=SUM+S (1 ¢J)*VN(JsK1)
TOIK1I-1)sMe 1) =SUM

DO 1600 I=1,M
TIM2+E)=T(M241)+RES((L-1)sM+])
CALL DGELG (ToRyMoMl41.D-7,IER)
CALL DARRAY (1oMyMly109119ToVM)
DO 1800 J=l,M1

D0 1800 I=1,M
VUL-1)*Me 14 J)=VH(T,J)

*#% END OF RECURSION &2

DO 2000 J=1,M1
D0 2000 I=1,M
SUM=0.D0

PRODUCTS BeV AND BoW

DU 1900 K=1,M
SUM=SUM+BL (I 4K)*VM(KsJ)
AUX (TeJ)=SUN

(A - BoV)

DO 2100 J=14M
Kl=(J-1)*N

DU 2100 I=1.M
RIK1+I)=AL (L) -AUX(LsJ)
DO 2200 I=1eM
UUCT)=RES(I)-AUX(I,N1)

SOLUTION OF LINEAR SYSTEM
(A - B.V) X0 = (BO - B.W)
AND COMPUTATION OF X

LR

“ne



DO 1 I=1,N

Ctr)=88(1)

DG 11 I=1sN

11 ALF(I)=[-NP-0.500

2 NN=N-1
DD 6 [=1,NN
LL=N-1
00 6 J=l.LL
K=N-Jel

6 CUK)=CUK)-ALF(I)*C(K-1)
D0 8 I=1.NN
K=N-1
XKIN=1.D0/K
KML=Kel
DA 8 J=KMl4N
ClJI=CJII*XKIN
JNL=J-1

8 C(JMLI=CLIMLI-CLJ)

RETURN
END

ao

DRIVER PRUGRAM FOR PRUBLEMS 1 TO 5
SEE REFERENCE IN CUMMENTS TU SUBROUTLINE SYSSOL
IMPLICIT REAL®*8(A-H,0-2)
EXTERNAL FF1l,JACOBL
EXTERNAL FF24JAC0OB2
EXTERNAL FF3,JAC083
EXTERNAL FF4yJACOB4
EXTERNAL FF5,JACOBS
CUMMON /PS5/ ALPHAL4BETAl,514C1
DIMENSION A1(10,10)9B1( 1091009 ALPHA(10)Y(650)¢X(326)4A8T(10)
NO=3
DU 20 IN=le5
NO=2%NO -1
TOL=1.00
DO 20 KL=143
TOL=TOL*1.D-3
DU 20 IP=1,e5
N=NO
wR1TE(3,200) 1P
DELEPS=0.00
GO TO (192¢39445),1P
2

A=0.00
B=23.14159265358979300
ALPHA(1)=0.00
ALPHA(2)=0.D0

DU 1000 1=1,2

00 1000 J=ls2



1000

2000

3000

Al(1,4)=0.00

81(14J)=0.00

All1l,1)=1.00

B81(241) =1.00

CALL SYSSOL(MoNsAsByALPHA 1AL +BLsTOLDELEPSsXsYoABToFFloJACUBL,
*JERRUR)

60 TU 10

M=2

A=0.00

8=1.00

ALPHA(1)=0.00

ALPHA(2)=20.00%(1.00-DEXP (-20.00) ) /¢ 1.D0+DEXP(~20.00) )
DO 2000 I=1,2

00 2000 J=1,2

Al(1,J)=0.00

81(1,4)=0.00

Al(1ls1)=1.00

81(2,2)=1.00

CALL SYSSOLUMyNyA¢By ALPHAsALyBLleTOLeDELEPSs Xy YoABTFF2, JACOB2,
*JERROR)

G0 YO 10

M=2

A=0.00

<D0

D0 3000 I=1,2
ALPHA(1)=0.D00
DO 3000 J=1,2
Al(1,42=0.D0
81(1,J)=0.00
Alll,1)=1.00
B81(2,1)=1.00
CALL SYSSOL(MoNyAsByALPHAsALsBLloTOLsDELEPS X Y9 ABTFF3,JAC0B3,
*JERROR)

G0 T0 10

M=

A=0.00
B=1.00

D0 4000 I=1,4
ALPHA(1)=0.D0
DO 4000 J=1,4
Al(1,J)=0.00
Bl(I+J4)=0.00
All1l,1)=1.00
Al(242)=1.00
81(3,1)=1.00
Bl(4,2)=1.00
CALL SYSSOL(MyNyA9ByALPHAGAL+B1 o TOLDELEPS¢XsYoABT ¢ FFay JACOBA,
*JERROR )

GO Y0 10

M=

ALPHAL=2.500
BETVAL=ALPHAL
S1=10.00
Cl=0.,10-2
A=0.00



8=10.00
00 5000 I=1.4
ALPHA(1)=0.00
DO 5000 J=1,4
Al(1¢J)=0.00
5000 81(1,J)=0.00
Al(1l,1)=1.00
Al(244)=1.00
B8l(342)=1.00
Bl(4y4)=1.00
ALPHA(4)=C1
CALL SYSSUL(MyNoAsByALPHA9AL 9Bl s TOL ¢ DELEPS¢X oY+ ABT o FF5,JACOBS,
*JERROR)
10 WRITE(3416)MyNoAsBy (ALPHA(L )y I=1oM)
WRITE(3418)((AL(L4J) oJd=loMIol=1,yM)
WRITE(3418) ((BLUIsd)od=1oMIsi=1,M)
WRITE(3,19)TOL
WRITE(3413)(ABT(J)eJ=1oM)
WRITE(3,15)
20 CONT INUE
55555 STOP
12 FORMAT(® *  ERROR ESTIMADO=®+D12.3+* EN CORRECCION®*y13,* **)
13 FORMAT (' ERROR ESTIMADO PUR COMPONENTES®/® *,10012.3)
15 FORMAT(1HO,* /)
16 FURMAT (1HO ¢ * NUMERO DE ECUACIONES®,12/° NUMERO DE
* PUNTOS DE LA RED®*,13/°* v,
**EXTREMU 1ZQUIERDO DEL INTERVALO=®Fl0.642Xs *EXTREMO DERECHO DEL I
*NTERVALO=*4F10.6//° CONDICION DE CONTORNO'/® *¢5(F10.692X))
18 FORMAT (* MATRIZ DE CONDICION DE CONTORNO®/® *35(F10.642X))
19 FORMAT(® TOLERANCIA®,D12.2)
100  FORMAT(312,2F23.15/3F23.15)
200 FORMAT (1H1,* PROBLEMA'y 14//)
300 FORMAT (1HO+* CONDICIONES DE CONTORNO®/5023.15)
500 FORMAT(1H0¢D1042,6020.12)
END

SUBROUTINE FRL(XeYoNoFF)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION X(1)osY(1)oFF(1)
D0 10 I=1,N

Ki=(I-1)%2+1

FF(KI)=Y(KI+1)

0 FF(KI+1)=(1.D0-Y(KI)**2)sY(KI+1)+4.D0*Y(KI)~5.D0%DSIN(X(]))~

*(DCOS(X(I)))ss3

RETURN

ENO

SUBROUTINE JACUBL (X, YXe JAB)
IMPLICIT REAL*8 (A-H,0-2)
OOUBLE PRECISION JAB(10,10)



10

DIMENSION YX(1)
JAB(141)=0.00

JAB(2,1)=-2.D0*YX(1)*YX(2)*4.00

JAB(1y2)=1.00
JAB(242)=1.00-YX(1)**2
RETURN

SUBROUT INE FR2(XyYoNoFF)
IMPLICIT REAL*8 (A-H,0-2)

- DIMENSION X(1)4Y(1)4FF(1)

PI=3.14159265358979300
~DO*PI#s2
DP1=2.D0*P1

DU 10 I=1sN
Ki=(I-1)%2¢1
FR(KI)=Y(KI*1)

FF(KI+1)=400400%(Y(KI)+DCOS(PI*X (1)) *+2) +DPI2%0COS(DP E*X (1))

RETURN

END

SUBROUTINE JACOB2 (XeYX ¢ JAB)
IMPLICIT REAL*8 (A-H,0-2)
OIMENS ION YX(1)

OUUBLE PRECISION JAB(10,10)
JAB(141)=0.D0
JAB(241)=400.00
JAB(1,2)=1.00
JAB(242)=0.00

RETURN

ENI

SUBROUTINE FE3(XeYeNoFF)
IMPLICIT REAL®8 (A-H,0~2)
DIMENSION X(2)oY(L)eFF(1)
DO 10 I=1,N

Ki=(i-1)%2¢1
FEIKI)=Y(KI+1)
FE(KI+1)=DEXP(Y(KI))
RETURN

END

SUBRUUTINE JACOB3I (X YX9JAB)
IMPLICIT REAL®8 (A-H,0-1)
DIMENSION YX(1)

DOUBLE PRECISION JAB(10,10)
JAB(141)=0.00
JAB(241)=DEXP(YX(1))
JAB(142)=1.00
JAB(242)=0.00

RETURN

SUBROUTINE FF4(XeYeNoFF)
IMPLICIT REAL*8 (A-H,0-1)
DIMENSION X(1)eY(1)oFF(1)
D0 10 i=1,N

Ki=(I-1)%4e¢l
FE(KI)=Y(KI*1)
FE(KI*l)=Y(Kie2)



10 FF(KI+3)=DEXPEX(I))*(({(X(1)+14.00)¢X(1)+49.00)*X(1)+32.00)®xX(1)

10

2

FF(KI+2)=Y(KI+3)

~12.00)
RETURN
END
SUBROUT INE JACDB4(Xy YXy JAB)
IMPLICIT REAL*8 (A-H,0-2)
DOUBLE PRECISION JAB(10,10)
DIMENSION YX(1)
DU 5 I=1ly4
D0 5 Jule4
JAB(14J)=0.00
JAB(142)=1.D0
JAB(243)=1.00
JAB(3,4)=1.00
RETURN
END
SUBROUTINE FFS5(XsYeNoFF)
IMPLICIT REAL*B (A-Hy0-2)
COMMON /P5/ ALPHAL+BETALl¢S1+Cl1
DIMENSION X(1)eY(1)sFFL1)
D0 10 I=14N
Ki=(i-1)%4¢1
FE(KI)=Y(KI+l)
FE(KI+1)=BETAL*(Y(KI)-Y(K1+2))
FF(KI+2)=Y(KI+3)
FE(K143)=ALPHAL*(Y(KI+2)-Y(KI)})
RETURI
END
SUBROUTINE JACOBS (X, YXy JAB)
IMPLICIT REAL*#8 (A-H,0-1)
COMMON /P5/ ALPHALBETAl¢S1,C1
DOUBLE PRECISION JAB(10410)
DU 10 I=ls4
DU 10 J=1.4
JAB(14J)=0.00
JAB(241)=BETAL
JAB(1+2)=1.00
JAB(293)=-BETAL
JAB(344)=1.00
JAB(4y1)=—ALPHAL
JAB(4,43)=ALPHAL
RETURN
END




2210  CALL DGELG(UUgRsMgly1.00-T4 IER)
2250 DO 2400 I=Ml1,MPN

2300
2400

SUM=V( IeM1)

DO 2300 J=1,M
SUM=SUM=V(14J) «UU(J)
UUI(1)=SUM

RETURN

END

o N o N LA R R R N N N N X aXaXa ks

20

srreran

L R R R e R

SUBROUTEINE U2DCGS (KePyQoNeMeAg Yy Sy IERKOR)
IMPLICIT REAL*8(A-H,0-2)

INTEGER P,0Q

DIMENSION A(50),Y(650),5(650),C(50)

.
THIS IS A TWO POINT BOUNDARY VALUE DEFERRED CORRECTION GENERA- *
TOR FOR SYSTEMS OF M EQUATIONS. GIVEN THE ASYMPTOTIC EXPANSIOUN &
T(K) = SUM(A(J)*(D*#(J-1))Y/(J=1) * He*(J4~1)) .
J = Qtlee.cQePeK .
AND VECTUR FUNCTION VALUES Y(l)yeeasY(Ne¢l), CURRESPONDING TO #
AN UNIFURMLY H-SPACED MESH : X(I) = X(1) ¢ (1-1)%H , I=lye.oNel®
U20CGS WILL PRODUCE S(1), S(N-1)2 AN H®%(QeP*K) ORDER *
APPROXIMATION TO T(K) AT MIDWAY BETWEEN FACH PAIR OF CONSECU-*
TIVE GRID POINTS .
FOR FIXED INTEGERS NoPyQy A RESTRICTION ON K IS
sressssans K <LE. (N+1-Q)/P
ALSU P .Gke 1 4 K oGE. 1 *
IEKROR = 1 MEANS THAT ONE OF THESE CONDITIONS HAVE BEEN VIOLA-#
TED "AND ND CORRECTION HAS BEEN CUMPUTED. All)yeccyAlQ) ARE SET *
TU ZERO BY U20C6S. *
BUTH Y AND S ARE STORED AS VECTORS: Y(19X/1))e¥(2¢X(1))geue

.
R et

*
*
FOR MORE DETAILS SEE CHAPTER III OF *HIGH ORDER FINITE DIFFE- *
RENCE SOLUTION OF DIFFERENTIAL EQUATIONS® BY V. PEREYRA. TECHN *
REP. STAN-CS-73-348 , STANFORD UNIVERSITY (1973). .
*
*
*

APRIL 1973 #sssssses M, LENTINI & V. PEREYRA $S8ssssssssness

1

IF (K <GTe (N#1-Q)/P LOR. P .LT. 1 LOR. K «LT. 1)
60 10 100

1IF (Q.€Q.0) GO TO 10

00 20 I=1,Q

AlI)=0.

KK1=Q+P*K

KK=KK1=1

KMID=KK1/2

TERROR=0

KMIO1=KMID-1



XX

coe

forcnon

v~

25

38

39
40

48

49
50

100

UNSYMMETRIC APPRUXIMATION LEFT BUUNDARY

IF(KMIOL o.LT. 1) GO TU 25
D0 5 I=1,KMID1

CALL COEGEN(XK]1,1,CoA)

DO 7 L=1,M

ACUN=0,

DO 4 J=1,KK1
ACUM=ACUMSCLJ)*Y ((J=1)eMeL)
IT=(I-1)*MeL

SUIT)=ACUM

CONT INVE

CENTER RANGE

CALL COEGEN(KK1oKMIDyCyA)
NF =N+ 1-KK1+KHID

DO 40 1=KMIDoNF

11=1-KMID

DO 39 L=1,M

ACUM=0.

D0 38 J=1,KKl
ACUM=ACUMAC(J)eY((TT+J-1)*NeL)
IT=(1-1)*Me

SUIT)=ACUM

CONTINUE

RIGHT  BUUNDARY

KMIDP1=KMID+1

DO 50 I=KMIDPL,KK
CALL COEGEN(KK19IeCyA)
II=N-KK

DO 48 J=1,KK1
ACUM=ACUM+C(J)*Y((T1+J-1)Mel)
IT= (el i-1)%Met

SULT)=ACUN

CONT INVE

RETURN

1ERROR=1

RETURN

SUBROUTINE COEGEN(NyNP,C,88)
IMPLICIT REAL*B(A-H,0-2)
DIMENSION C(50)+88(50)ALF(50)

THIS IS A SLIGHTLY MODIFIED VERSION IN FORVTRAN IV OF THE ALGOL *
PROCEDURE PVAND o P. 901 OF ®SOLUTION OF VANDERMONDE SYSTEMS #

OF EQUATIUNS™ BY A. BJORCK AND V. PEREYRA.

MATH.

COoMP.

VOL. 24%

PP. 893-903 (1970), WHERE A COMPLETE DESCRIPTION OF THE METHOD *
.

USED CAN BE FOUND.




