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Algebraic-Numerical Method 
for the Slightly Perturbed Harmonic Oscillator 

By A. Nadead, J. Guyard and M. R. Feix 

Abstract. The solution of slightly perturbed harmonic oscillators can easily be ob- 

tained in the form of a series given by Poisson's method. However, this perturba- 

tion method leads to secular terms unbounded for large time (the time unit being 

the fundamental period of the harmonic oscillator), which prevent the use of fi- 

nite series. The analytical elimination of such terms was first solved by Poincare 

and, more recently, generalized by Krylov and Bogoliubov. Unfortunately, these 

methods are very difficult to handle and are not easily carried out for high orders. 

A numerical reinitialization method is combined here with the Poisson 

perturbation treatment to avoid the growth of secular terms and therefore to get 

the solution at any time. The advantages of such a method is that the analytical 

work can be carried to high orders keeping the step of numerical integration to a 

relatively large value (compared to a purely numerical method). This algorithm 

has been tested on the Mathieu equation. A method for the computation of the 

eigenvalues of this equation is given. By properly selecting the order of the per- 

turbation and the time step of reinitialization, we can recover, at any order, all the 

effects of the slight perturbation (including all the unstable zones). 

Consequently, such a method is a useful intermediate between purely 

analytical and purely numerical algorithms. 

I. Introduction. The evolution of slightly perturbed physical systems is often 

described by an equation of the following form: 

(1) d2x/dt2 + x = ef(x, x, t). 
In Eq. (1), the angular frequency is taken equal to 1 and e is a small param- 

eter. This is the equation of an oscillating system subjected to a small and possibly 
nonlinear force. 

We are interested in finding the solution of Eq. (1) when the deviation from 
the solution of x + x = 0 is large. Such a large deviation will occur after a time T 
of order I/e. 

Using classical numerical methods (a Runge-Kutta algorithm, for example), the 
resolution of Eq. (1), for large time, presents some difficulties. To get the solution 
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correctly, the step of integration At must be very small. Consequently, computation 
time is prohibitively long, and unavoidable numerical difficulties (round-off errors, in- 
stability of the method) can, at the end, completely mask the variation itself. 

While the solution of the differential equation x + x = 0 may be numerically 
difficult, its analytic form is well known. Therefore, this solution can be used, together 
with a perturbation method, to solve Eq. (1). In this new process, the step of integra- 
tion At will only have to be much smaller than e-1 (instead of At < 1 for classical 
methods). The advantage of this method is that for any value of e, the number of 
steps to reach the time l/e is approximately constant and so is the computation time. 

Using a perturbation method, we thus seek a solution of (1) in the form: 

(2) x = X0 + ex1 + e2x2 + e3x3 + - + enX + *. 

We identify terms of the same power in e and first solve xO + xO = 0. 
Then, x1 + x1 = f(x0, x0, t), etc. 

The main point is that the initial conditions (at t = 0, say) are completely ab- 
sorbed by the zero order solution x0, i.e., 

xO(0) = x(0) and xn(0) = 0, n # 0, 

()x0(0) = x(0) and xn(0) =0, n 0. 

If, as is often the case, f(x, x, t) is either a polynomial in x, x or a trigono- 
metric function of t (or a combination of both), the analytical expressions of x1, x2, 
etc. - . - are easily obtained. It can be shown that, in this case, we simply have to 
solve equations of the type 

(4) y +y = JA tm exp(ipt), 
map 

which is easily accomplished. The only practical difficulty is that the algebra quickly 
becomes cumbersome, but, at that point, a formula manipulation language such as 
FORMAC could be used. 

In the general case, the series given by (2) will contain secular terms, i.e., 
terms which are unbounded as t -* oo. These terms come from the resonance between 
the solution of y + y = 0 and the forcing term Amp tm exp (ipt) for p = ?1. Con- 

sequently, in the worst case, the first order term xi will vary like t, x2 like t2, and 
x like tn' and the series in (2) will be convergent (or at least asymptotically conver- 
gent) as soon as et < 1. 

If we want to get the solution for a time t such that et > 1, we have the 
choice between two methods: 

A purely analytical method such as the Krylov-Bogoliubov method [1] which 
eliminates the secular term and gives the solution for any time. This method proceeds 
from the same philosophy as the adiabatic invariant method for the harmonic time 
varying oscillator given by Chandrasekhar [2] or Lewis [3]. However, it must be 
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pointed out that some effects are lost in the adiabatic method [41 and the elimination 
of the secular term in the Krylov-Bogoliubov method is analytically difficult and long, 
practically preventing the calculation of high order effects. 

A numerical method which consists in taking a step T such that cT < 1, 
computing x(7) and x(T) by (2), (3) and reinitializing the perturbation series by 
writing 

x (I) = x(T) and x0(T) = x(T). 

The sign - indicates that we build a new set of functions 

Xo0X 1'* n 

The difficult elimination of secular terms is now entirely handled in a numeri- 
cal way, and there is no need to solve x + x = 0 numerically with time step At < 1. 

We must point out that this is really a numerical method based upon the fact 
that x(T) and x(T) can be computed as accurately as we like. The order of pertur- 
bation to which the series (2) must be pushed enters only through the size of the 
time step which we use. We may, if we like, stop at the first order x0 + ex1 and still 
recover all the properties of Eq. (1). But the size of the time step T is connected to 
the order we want to use. This time step can be increased with a compromise to be 
found between the complexity of the algebraic perturbation calculations and its size. 

We will call such a method a "giant step method" or alternatively an "alge- 

braic-numerical method". 

II. Application to Mathieu's Equation. Mathieu's equation 

(5) d2x/dt2 + (A - 2Qcos2t)x = 0, A > 0 
is.an interesting and easy to use example for our method. 

Let us assume that the relative change of frequency is small. The ratio e = 

2Q/A can then be taken as the perturbation parameter. 
In Eq. (5) we introduce a new variable 0 = tv\A, and we slightly generalize 

(5) to incorporate the reintialization process, letting E) = Ty denote the reduced 
"giant step". We obtain 

d2x + x = ex Cos2 ( + E) (6) do 2 

which is a special case of Eq. (1). 

Using (2) and (3), we first look for the zero order approximation 

xL = Ro cos 0 + SO sin 0 
with 

Ro = x(O), SO = (dx/d0)(0). 

Assuming that xn-1 is known and setting a = 2/VA, the quantity xn will 
be calculated by the recurrence formula 

(7) d2xn/d02 + Xn = Xn- cos a(0 + 8). 
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As xO is a linear combination of cosO and sin0, a particular solution of Eq. (7) will 
be a linear combination of cos[(a ? 1)0 + ae] and sin[(a ? 1)0 + aj]. 

Therefore, the first order correction is of the form: 

x1 =Al cos[(ot + 1)0 + ote] + BI sin[(ot + 1)0 + oa] 

+ Al 1 cos[(a - 1)0 + a] + Bl 1 sin[(a - 1)0 + aoE] 

+ Ri cos0+ Sisin0. 

The quantities Al, BI, Al '1, B'1 are found by identifying the right and left 
members of Eq. (7). 

After some algebra, we get 

Al = - Al 
(8) ~~~~2z(oz+ 2)' ' 2a(a -2)' 

(8)SoS 

B1 __ ? B' I 2ot(ot + 2} -1 2ot(ot - 2) 

As x1(O) = 0 and dx1(O)/dO = O, R1 and S1 must satisfy 

R1 =-(Al + Al 1) cos aEJ - (BI + Bl 1) sin aEo, 

Si [B1 (a + 1) + B1 1 (a - 1)] cos cxE 

+ [A 1 (a + 1) + A 1 1 (a - 1)] sin aE. 

Relations (8) show that the various coefficients can be computed only if 
a *2, that is, A # 1. 

We notice that there is no secular term appearing to first order in e. 
It is obvious that the x2 solution will contain terms such as: 

cos[(2a ? 1)0 + 2ae] sin[(2a ? 1)0 + 2ae] 

cos [(a ? 1)0 + ae] sin [(a 1)0 + ae] 

cosO sinO 

Moreover, in the product xi cos[a(0 + E)] terms of the form 3cos 0 and 
-ysin 0 will occur so that the x2 solution will also contains terms like -yO cos 0/2 and 
-i0sinO/2. These secular terms are unbounded when 0 -e oo. Therefore, the expan- 
sion that is obtained for x will be correct only for the time 0 such that 620 < 6, 

i.e., e6 < 1. 

The second order correction is: 
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x2 ==A2 cos[(2o + 1)0 + 2tE] + A2 cos[(a + 1)0 + oE] 

+ B2 sin[(2ot + 1)0 + 2aot] + Bl2sin[(a + 1)0 + &oz] 

+ A22 cos[(2,oL - 1)0 + 2oz()] + A2 1 cos[(@z - 1)0 + oatE] 

+B2 sin[(2a - 1)0 + 2aE] +B2 1sin[(oL - 1)0 +aor] 

+ E2 0 cosO + F2 0 sinG + R2 cosO + S2 sin 0. 1 1 2CS0+S 

The secular terms in x2 will lead to secular terms in X3of the form 
Ocos[(at ? 1)0 + o1i] and 0sin[(ct ? 1)0 + aO]. 

As a consequence, when computing x4, the product x3COS (0 + 0) will con- 
tain terms like 0 cos 0 and 0 sin0, and, therefore, secular terms such as 02 cosV and 
02 sinG will appear in x4. They are the highest order terms of x4 (of course there 
will be also terms in 0 cos0 and 0 sin 0). 

By the preceding discussion it can easily be seen that the highest power of 0 
in xn will be the entire part of n/2. The general form of the solution can thus be 
written in the following way, 

77 n-2j 

(9) Xn iE k An cos[(kcv + 1)0 + kO] +Bn sin[(ka + 1)0 +K0] n 
P-O k=-n+2 k k 

with i7 the entire part of n/2. 
The coefficients An and Bn can be obtained by a recurrence formula, 

An O and Bn being determined by the initial conditions xn(O) = x (O)-0. It can 
be seen, that the An1, and Bn contain expressions of the form 8/2koa(k0 - 2), (k = 

1, 2, n) so that we must assume kcl * 2, or A is not one of the integer squares 
included in the range 1, n. 

Once the analytical expression of xn-1 is known, it is more convenient to 
compute the xn contribution through the recurrence integral relation 

(10) x0(0) =f x )(0 )sin(0 - 0')cosca0'd0'. 

The coefficients An1 and BX can be obtained through an algorithm directly 
derived from Eq. (10). This way of computing xn has been worked out to any order 
n. The convergence of the series given by (9) can easily be checked. We found that 
the e expansion of the solution of the Mathieu equation (which is known to have an 
infinite radius of convergence) is identical to our expansion. Numerical results support 
this statement. 

However, in the general case, only few terms are known and the reinitializa- 
tion becomes essential. That is why we present results only for n I to 4 with a 



1062 A. NADEAU, J. GUYARD AND M. R. FEIX 

variable number of steps and a small eE (for example ee = .1 if we stop at the sec- 
ond order, ee = .25 if we take the third order term, etc.). 

It is in the reinitialization process that our method basically differs from the 

analytical schemes (high order adiabatic invariant Krylov-Bogoliubov * ) which try to 

approximate the solution for any time. These schemes are obtained by time-averaging 

solutions, which, in the Krylov-Bogoliubov method, accomplishes the elimination of the 
secular terms and, in the adiabatic method, allows the substitution of &2 (the slowly 

varying frequency of a time-dependent harmonic oscillator) and all its derivatives at a 

given time to the exact past history of Q2. 
But the exact consequences of these approximations are generally not com- 

pletely understood (we know, for example, that the high order invariants' method in- 

troduces difficult asymptotic convergence problems and wipes out nonadiabatic effects). 
Our method is more modest and resorts to a numerical scheme to get rid of these dif- 
ficulties by putting a time limit on the validity of the series and then reinitializing the 
solution as in a numerical algorithm. The advantage is that, by varying the giant step 
E, we can check the convergence of the results. 

III. Computation of the Eigenvalues of Mathieu's Equation. The numerical test 

of the method will be the determination of the eigenvalues of Mathieu's equation. 
The solution of Eq. (5) is given by Floquet's theorem: 

x = MeiWtF(t) + Ne-i IF(-t) 

F(t) being a periodic function with period T = ir, M and N being arbitrary constants 

and Au the desired eigenvalue. 
To compute these eigenvalues, let us explicitly write down the matrix that gives 

x(T) and dx(T)/dt, starting from x(O) and dx(O)/dt. 
After a little algebra, we get 

x(l) cos iT F( ) sin iT x(0) 
( 1 ) = K .F(O) + igF(0) 

| 
] L(7) F(O)? ( JiL I 

L~~rnl sin) jT cos jiT NCO) 
The dot indicates differentiation with respect to t. 

The eigenvalues X of the matrix given by Eq. (11) are solutions of 

(12) X2 - 2Xcos ,uT+ 1 = 0. 

Denoting the solutions satisfying the special initial conditions by x0(t), xl (t): 

x0(O)= O.,x0(O)= 1; xl(0)= 1,x1(O)= O, 

We have x(t) = x(O)x1 (t) + i(O)x0(t), giving for the matrix in (11) the alternative 

form 
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E1(2 X2( 

XV( X?( 

Comparing the characteristic equation of this matrix with (12) and taking 0 

as new variable, we find 

(13) I1 Arcxcosxl(7rT) 
+ XQxj ( ) 

7r ~~~2 
xI (7rrj) and x 0(r/A ) were computed with the series given by Eq. (9) and 

for different number of steps in the period 7rTi4. The results are compared with those 
obtained by solving Hill's determinant which is very simple for Mathieu's equation 
where the frequency contains only one harmonic. 

The results obtained with the "giant steps" method are shown in Fig. 1 and 
Fig. 2 where e has been taken equal to .1. 
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FIGURE 1. /V versus /1/ for the second, third and fourth order approxi- 
mation in the neighborhood of the discontinuity A = 9; the number of steps per peri- 
od has been taken equal to 4. The solid line represents the exact value of ru/d/a, ob- 
tained by solving the Hill determinant. The stopping points of the two branches are 
obtained with great accuracy in the fourth order calculation. 



1064 A. NADEAU, J. GUYARD AND M. R. FEIX 

1.015 

1.010 _ 

~~~~~~~~'I L 

1.005 

1.00 

.995 

.990. 
.26 .30 .35 .40 .45 

.1/VA 

FIGURE 2. jIVIA/ versus 1/Vs for the first order approximation. The dashed 
line is the exact curve. N is the number of steps in one period arrki. 

Fig. 1 shows the different order (2nd, 3rd, 4th) approximation of the norma- 
lized eigenvalues ,uA/7 of Mathieu's equation versus I/VA (A being roughly in the 
range 8 to 10), and for 4 steps in one period Hirr. The first order, being completely 
out of scale, has not been represented. 

The 4th order is strictly on Hill's curve. The stopping points of the two 
branches are obtained with great accuracy. When, in the -adiabatic case, the solution 
crosses over the discontinuity (around A = 9) [4], we must notice that in our method 
the unstable zone is entirely recovered. 
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Fig. 2 shows the convergence of the first order approximation to the exact 

curve for A going from 5 to 15. The parameter N is the number of steps in one 

period 7rV-/. 
In that case, we notice that no secular term is present. Although the unstable 

zone around A = 9 has a growth rate of order e3, we numerically recover this growth 

rate if we take N sufficiently large although our method uses only first order term ex- 

pansion at each step. In the same way, we can use a first, second or higher order al- 

gorithm to numerically solve a differential equation and recover the exact solutions for 

all these algorithms provided we choose the time steps correctly (which for the first 

order algorithm will probably have to be very small). 

N 

40 - 

30 

20- 

10 

5 

.1 * 2 *3 *4 .5 

FIGURE 3. The number of steps N is clearly a linear function (at a given order) 

of the perturbation parameter e. The small dashes on both sides of the obtained value 

represent the AN error (obviously equal to ?1). 

We can see, in Fig. 3, that the number of steps which permits for the value A = 

7 to obtain the eigenvalues with a given precision (here 10-6) is a linear function of e. 
As E0 = 7rs I/N, this result shows that eE is constant for a given order and that it is 
the only quantity which has to be considered for reinitialization. 

For e = .1 and using a fourth order formula, we can take a step as large as the 

period 7rsjA and, consequently, we do not have to reinitialize to compute x I(7rV?I), 
and xO(7rV/Ai) and the eigenvalue. 

Conclusion. We tested our method in the case of Mathieu's equation. Such an 
equation with its narrow unstable bands provides a severe numerical test. We found 
that: 
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Although no secular term arises in the first perturbation expansion, we neverthe- 
less recover the unstable zones of Mathieu's equations (and not only around A = 1 
but also A = 4 and A = 9 etc.) as shown in Fig. 2. But, to obtain good agreement, 
we must use a rather small (N - 30 per period) step; at least for this problem, a first 
order perturbation has no practical advantage over a purely numerical method. 

On the other hand, an expansion up to the 4th power in e allows for e = .1 to 
proceed with a step as big as one period while giving good accuracy. For larger e (up 
to e = .5), we need less than 6 steps per period. Since such a formula is of the 4th 
power in e, it plays a similar role for the "giant step" method as a 4th order in At in 
Runge-Kutta development-an algorithm widely used in numerical analysis. 

The key of the problem is the determination of a sufficiently high order formula 
for the e expansion. For Mathieu's equation, the 4th order can be obtained without 
great difficulty. For more complex equations, we probably have to resort to formula 
manipulation languages. It is, of course, fundamental that the chain of equations can 
be solved and this implies that f(x, x, t) either has a simple expression or can be ex- 
panded into a simple series. 

A problem for which this method seems especially promising is the motion of a 
particle in a time-independent, slowly varying (in space) magnetic field given by a 
Taylor expansion around the position of the center guide. The algebra corresponding 
to third order effects is easily obtainable. Such a problem is currently under investiga- 
tion. 
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