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Existence Questions for the Problem 
of Chebyshev Approximation 

by Interpolating Rationals 

By G. D. Taylor* and J. Williams 

Abstract. This paper considers a problem of Chebyshev approximation by interpolating 

rationals. Examples are given which show that best approximations may not exist. Suf- 

ficient conditions for existence are established, some of which can easily be checked in 

practice. Illustrative examples are also presented. 

1. Introduction. The problem of approximating real valued functions f C 

C[a, b] by rationals has received considerable attention in the literature. The best 
known results for the classical problem of Chebyshev approximation are due to 

Chebyshev and Achieser (see [1]), who dealt with the problems -of characterization and 

uniqueness of best approximations. The delicate problem of existence was successfully 
treated by J. L. Walsh [8]. 

The related problem of Chebyshev approximation by various forms of rational 
functions which also satisfy an interpolatory condition is of fairly recent origin; see 
for example Gilormini [3], Perrie [7] and Williams [9], who discuss various questions 
relating to existence, characterization and uniqueness. However, when dealing with the 
existence of best approximations, an oversight has been made by the authors in [3] 

and [9]. In both cases, they fail to take account of possible common zeros in the nu- 
merator and denominator of the best approximation, the effect of which is to violate 
the interpolation condition. Consequently, for the problems as defined by the authors, 
best approximations may fail to exist. For the case of the problem in [3], this was 
shown by a counterexample in Loeb [5]. The purpose of this paper is to present si- 
milar counterexamples for the problem as defined in [9] and to establish various suf- 
ficient conditions for the existence of best approximations. Some of these conditions 
can easily be checked in practice and may serve as a guide when constructing approxi- 
mating functions in practical problems. The results are illustrated by simple examples. 
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2. Approximation by Interpolating Rationals, Existence and Counterexamples. 
In [9], the practical problem of approximating oscillatory decay-type functions is con- 
sidered and is regarded as a particular case of the following general problem. Let 
D [0, b], 0 < b < 00, denote the class of real continuous functions of the form f(x) = 

B(x)g(x), g E C[O, b], g > 0 Vx E [ 0, b], where the "oscillation" factor B(x) satis- 
fies B(x,) = 0 for distinct xV E [0, b], v- = 1, 2, - *, R (possibly a void set). Given 
f E D [0, b], let V(n, p) denote the class of interpolating rationals of the form, 

F(A, x) = (x x ) [O b 
(L (A, x)j"' 

which satisfy: 

(a) L(A, x) zr= aror(x), 01 Or e C[O, b], r = 2, 3, n, where 

02 O n } forms a Chebyshev set on [0, b]; 
(b) the parameter space P consists of the points A (a,, a2* an) E En for 

which L(A, x) > O. Vx E [0 b]; 

(c) 0 <p < 00. 

Let 11 - 11 denote the Chebyshev norm on [0, b], then F(A*, x) E V(n, p) is a 
best Chebyshev approximation to f if Ilf - F(A*, x)lI < Ilf - F(A, x) II VF(A, x) E 
V(n, p). The crucial question here is the existence of F(A*, x) E V(n, p). Through- 
out this paper, we shall assume that f E V(n, p). 

Two examples will now be given which show that best approximations may fail 
to exist. In both cases we consider the class of approximating functions V(n, 1) for 
which br(x) xr-1, r = 1, 2, n. We let R1 [0, b] denote the class of bounded 
rationals on [0, b] of the form El arxr/2mb rXr. 

Example 1. Let B(x) = x(x + 1), x E [0, 1], and select f so that: 

f-9x, x E[0,5 4]; f =-7x + 4, x e[?V4 Y2]; 

f=9x-4, xe[1/2, 34]; f=-7x+8, x [3, 1]. 

This is a "saw-tooth" function for which lf(x) -(x + 1)1 -lf - (x + 1)11=1, at x 
0, ?4, 1/2, 3/4 and 1. Also, f(x) - (x + 1) alternates in sign at these points. Thus, x + 1 
is the unique best approximation to f from R2 [0, 1] with error 1. We claim that 
there does not exist a closest element to f in V(2, 1). Indeed, since V(2, 1) C 
R2[0, 1], we must have dist(f, V(2, 1)) > 1. Noting that F(An, x) = 

x(x + 1)/(x + 1/n) E V(2, 1), n = 1, 2, and lime n-lf - F(An, x)II = 1 (easily 
checked), we see that dist(f, V(2, 1)) = 1. This establishes our claim since x + 1 is 
the only element of R2[0, 1] satisfying Ilf - (x + 1)11 = 1 and x + 1 4 V(2, 1). 

Example 2. Let B(x) = (x - 1)2, x E [0, 2], and set h(x) = 11(3 - x). Then, 

similar to the above example, f is the "saw-tooth" function obtained by linking with 
straight lines the points, in order, whose coordinates are: 
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( x h(-) - 2 2h + 1/)3- 

f(x) satisfies If(x) - h(x)l = 1lf - h 11 = 1/2, at x = O. 13, 65, 715, 8/5, 9/5 and 2. Also, fax) - 

h(x) alternates in sign at these points. Consider approximation of f by the class 

V(4, I) and set 

.F(A n, x) = (x-G) V(45 1), for n = 1, 2,*E-. 
((X - 1)2 + I/n2)(3 - x) 

As above, 1/(3 - x) is the best approximation to f from R2t0, 2] with error 1/2 and 
F(A , x) E R2[0, 2], n = 1, 2,* , satisfies lim, OIf -F(A ,x) =Y2. Thus, no 
best approximation to f from V(4, 1) exists. 

It is clear that similar examples of nonexistence can be constructed for the class 
V(n, p) with p > 1. 

In view of the possible failure of existence, it is natural to seek conditions on 
f(x) = B(x)g(x) which guarantee the existence of a best approximation. This will be 
approached in two ways. First, conditions on B(x) will be described and then, condi- 
tions in terms of g(x) will be established. 

3. Existence of Best Approximations, Conditions on B(x). In the following theo- 
rem, we give a sufficient condition for best approximations from V(n, p) to exist; 
that is, a restriction is placed on the "orders" of the zeros of B(x) relative to the 
size of the positive parameter p. Roughly speaking, the sufficient condition for exis- 
tence is that interior zeros of B have "order" less than 2p; and zeros of B at the 
endpoints have "order" less than p (here p need not be an integer). In particular, if 
B has no zeros, then existence is assured. 

THEOREM 3.1. Let B(x) have zeros x, E [0, b], v = 1, 2,* R (possibly a 
void set) which satisfy, 

(i) for each r = 2, * , h r is analytic in open discs with centres at the interi- 
or zeros x E (0, b); 

(ii) lim-_X+ IB(xy(x - x)Pl = + oo if xV = 0 or x = b; 

(iii) limped IB(x)/(x - xv)2P1 = + oo if xV E (0, b). 

Then, for all f(x) = B(x)g(x); g C D [0, b I there exist best approximations in V(n, p). 
Proof. Using an elementary argument presented in [9], it can be shown that for 

f C D[0, b] a best approximation, if one exists, must lie in the parameter set 

PM := {A: ll f - F(A, x) l? < IVII - ri } C P, 
for some 77 > 0. Also, it can be shown that the sequence {Ak } in PM given by 

lim If- F(Ak, x)II = inf lf - F(A, x)lI 
k-aoo A E=PM 
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satisfies IIL(A k x) 11 < K Vk and for some K < oo. Because of compactness, there 
exists a subsequence {L(AP, x)} of {L(Ak, X)} for which L(A1, x) > L(A*, x) uni- 
formly. In order to show that F(A*, x) E V(n, p), it is necessary to examine the 

zeros of L(A*, x). Since IIF(AJ, x) 11 < K1 Vj and some K1 < 00, it follows that, if 

there exists t E [0, b] for which L(A*, t) = 0, then t = XV for some v. Condition 

(ii) further implies that t - 0 (or t / b). 

Suppose, noting condition (i), that, for some t = XV E (0, b), L(A*, x.) = 0 

with multiplicity m>. Rouche's theorem implies that for a given e > 0, sufficiently 
small (and depending on condition (i)), there exists N(e) such that, for j >?N L(AJ, z) 

has exactly mv zeros in the disc Iz - x.I S e. Now, if for some complex-valued 

ae in this disc L(A;, a) = 0, then L(A;, it) = 0 by the Schwartz reflection principle. 
Hence, L(A*, z) has a zero of multiplicity at least two at xL. But this is impossible 

because of condition (iii). Thus, L(A;, z) must have a real zero in the disc so that 
A1 i PM. Therefore, L(A*, x) cannot have a zero at XV C (0, b) so that F(A*, x) e 

V(n, p); F(A *, x) is thus a best approximation and the proof is complete. 

Examples. (See [9].) 
In each case, we consider the class V(n, p) for which or(X) = xr-l, r = 1, 

2,* n, and give, in the form of lower bounds, conditions on p which are sufficient 

for existence. 
1. f(x) = 1 Ox2(1 - x)e-2x, B(x) = x2(1 - x), x C [0, 1 ]. Best approxinmtions to 

f exist in V(n, p) for p > 2. Similarly for the problem of best approximation on 

[0, 20]. 
2. f(x)-- 1/J(x - 3), B(x) = x(1 - x)(2 - x)(3- x), x C [0, 10]. Best approxi- 

mations to f exist in V(n, p) for p > 1. 

4. Existence of Best Approximations, Conditions on g(x). In [9], characteriza- 

tion (in the form of a modified alternation property) and uniqueness of a best approxi- 

mation are established using the results of Meinardus and Schwedt [6]. With the aid 

of these results, an exchange algorithm is also described for computing best approxi- 

mations. This consists of computing the sequence F(Ak, X) e V(n, p), k = 0, 1, 

2, *, where F(Ak, X) is a best approximation to f on the reference X(k):= {x(k), 

* *, x(k) }C [0, b]. F(Ak, X) is obtained by solving the nonlinear equations 

(4.1) B(X(k)) I{g(x(k)) -L(A, X(k))-P } (-)r, r = 1, 2, *., n + 1, 

where IXRkI is the error of the approximation on X(k). 

The next stage of the algorithm consists of selecting a new reference X(k+1) 

from the extrema of the error function f(x) - F(Ak, x). This is always possible. Since 

f g V(n, p), a zero xV of B(x) cannot coincide with a reference point. The uniform 

convergence of {F(A*, X) I to the best approximation F(A *, x) can now be estab- 
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lished [9]. In the proof, it is not necessary to assume the existence of a best approxi- 
mation; all that is required is that for each k there exists a solution of (4.1) which 
satisfies F(Ak, x) E V(n, p). In considering Eqs. (4.1), properties of Chebyshev sets 
are used in [9] to prove 

T HEOREM 4.1. For an arbitrary reference X:= {Xr } C [0, b ], B(xr) X0, r = 

1, 2,* , n + 1, there exists a unique real solution (A, X) of Eqs. (4.1). The resulting 
approximation satisfies L(A, Xr) > 0 for r = 1, 2, * *, n + 1. 

In practice, it is necessary to assume that the solution of (4.1) satisfies F(Ak, x) E 

V(n, p) Vk. If, however, conditions on g(x) can be introduced which ensure that 
F(Ak, x) E V(n, p) Vk, then existence of best approximations is guaranteed for the 
class of functions f(x) = B(x)g(x) E D[O, b ]. 

THEOREM 4.2. Let L(A, x) interpolate h(x) = g(x)-1 'P at the distinct points 
X:= 0 < X1 < x2 < - < xn < b, so that A is uniquely determined by 

L(A, x r)h(x r), r = 1, 2,* ,n. 

If for all such sets of interpolating points X C [0, b], there exist 71 > 0 such that 

L(A,x)>r7 Vxe[0,b], 

then, for all f(x) = B(x)g(x) C D [0, b] there exist best approximations in V(n, p). 
Proof. We shall show that for such functions f(x) = B(x)g(x) each step of the 

exchange algorithm yields a unique approximation F(Ak, x) e V(n, p); existence of 
F(A*, x) e V(n, p) thus follows. 

For an arbitrary reference X:= {xr }, B(xr) k 0, Theorem 4.1 shows that Eqs. 
(4.1) have a unique solution (A, X) which satisfies: 

L(Ax~' 1 _(- 1)rXL(A, xr)P _ L(A. Xrx )p 
I 
x If(x)I , r = 1, 2, 5 , n + 1. 

Hence, by continuity, there exist n points xi < z1 < z2 < ... < Zn < xn+i for 
which 

L(A, Zr) = h(Zr)5 r = 1, 2, ,n 

so that, by hypothesis, L(A, x) > rZ Vx C [0, b]; thus F(A, x) C V(n, p). 
The following two corollaries and examples apply to the class V(n, p) where 

Or = xr-1, r = 1, 2, * *,, n- 

COROLLARY 1. Let h C C?[0, b] with lIh(r) ll < Mr Vr > 1 and some M > 

0. Then there exists N such that, for all f(x) = B(x)g(x) C D [0, b], best approxima- 
tions exist in V(n, p) for n > N. 

Proof. Let L(A, x) interpolate h(x) at the arbitrary distinct points x1 C 

[0, b], i = 1, 2, , n; then, from the error in Lagrangian interpolation, 

IIh - L(A, x)I 1 (Mb)n/n!. 

Since h > 0 Vx C [0, b], the result follows from Theorem 4.2. 
COROLLARY 2. Let h be analytic on the closed region of the complex plane 
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consisting of all points within distance b of the interval [0, b]. Then there exists N 
such that, for f = B(x)g(x) E D [0, b I best approximations exist in V(n, p) for 
n >N. 

Proof. The proof follows as in Corollary 1 where now we use the contour inte- 
gral form of the interpolation error [4, p. 23]. 

Examples. The following examples follow easily from the proof of Corollary 1. 

1. f(x) = 1Ox2(1 -x)e-2x, p = 1,g(x) = 1Oe-2x, x E [0, 1]. Here h(x) =e2x/lO 
and, for positive interpolating polynomials L(A, x), it is sufficient to have 

(1)~ ~ ~ ~~~~~t l- L(A, x) 11 <1 10 
But from the error in Lagrangian interpolation, 

Ilh-L(A,x)II?+jl 2ne2, 

and so (1) will be satisfied for all n > 5. Thus, best approximations to f exist in 
V(n, 1) for n > 5. This result provides an extension to Example 1 of Section 3. 

2. f(x) = x(x - /2)3 (X - 1)2/sin(x + 7r/6), p = 1, g(x) = 1/sin(x + 7r/6), x E [0, 1]. 

Best approximations to f exist in V(n, 1) for n > 1. We note here that B(x) does 
not satisfy conditions (ii) and (iii) of Theorem 3.1. 

5. Concluding Remarks. Finally, it is of some practical interest to consider the 
above approximation problems on [0, oo). Here we wish to add a word of caution 
about expecting to be able to use the exchange algorithm to compute best approxima- 
tions. This technique can fail since the characterization theorem (see [9]) may fail to 
hold in this setting. That this is so follows from the work of Brink [2] who considered 
the special case of approximating f(x) = g(x) E D[O, oo), f G C"[0, oo), limno x) = 0, 
by elements in V(n, 1), b r=xr- 1, r= 1, 2, - - *, n. In this study, it is shown 
that best approximations are completely characterized by one of two possible alterna- 
tion conditions holding (one of which is the standard alternation condition). 
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