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Some Problems 
in Optimally Stable Lagrangian Differentiation 

By Herbert E. Salzer 

Abstract. In many practical problems in numerical differentiation of a function f(x) that 
is known, observed, measured, or found experimentally to limited accuracy, the computing 

error is often much more significant than the truncating error. In numerical differentiation 
of the n-point Lagrangian interpolation polynomial, i.e., f(k)(x) - n L7()(x)f(xk ) a 

criterion for optimal stability is minimization of E'in Li W I l.Let L L(n, k, x1,.. Xn; 
x or xo) iL IL7(k)(x or xo)I. For xi and fixed x = xo in [-1, 11, one problem is 

to find the n xi's to give Lo Lo(n, k, xo) = min L. When the truncation error is neg- 
ligible for any x0 within [-1, 11 , a second problem is to find x0 x * to obtain L *- 

L*(n, k) = min Lo = min min L. A third much simpler problem, for xi equally spaced, 
x 1= --1, xn = 1, is to find x to give L-L(n, k) min L. For lower values of n, some 
results were obtained on Lo and L* whqn k 1, and on L when k= 1 and 2 by direct 
calculation from available tables of Li (k)(x). The relation of Low L * and L to equally 
spaced points, Chebyshev points, Chebyshev polynomials Tm(x) for m < n - 1, mini- 
max solutions, and central difference formulas, considering also larger values of n, is 
indicated sketchily. 

I. Introduction. One of the main problems in numerical differentiation is the loss 
in accuracy due to the size of the coefficients in the formulas that are used. Here, we 
are concerned with the differentiation of the n-point Lagrangian interpolation polynomial 
of the (n - l)th degree, i.e., 

n 
(1) f(k)(x) = E L7(k)(X)f(x) + R 

where 
n n 

(2) Ln (X) = T (x -xi)/ I| (Xi -xi), I i= ljoi 1/jlijo 

for x and xi, i = 1(1 )n, within [-1, 1] . For a detailed discussion of the remainder 
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Rn(x), see [1, pp. 154-162] or [2]; for optimization of Rn(x) by the proper choice of 

xi, see [3] . Here, Rn(x) is assumed to be negligible, and we are interested in criteria to 

minimize L -L(n, k, x 1, * xn;x or xo) = SiIL7(k)(x or x0)I by proper choice 

of xi, i = I(I)n. This is important when f(x) is known, calculated, observed, measured, 

or found experimentally to a fixed number of decimals (e.g., in experimental physics, 

engineering, data reduction, physical chemistry, space sciences, trajectories, satellites in 

orbit, etc.). An explicit solution is known to the slightly related problem of finding xi 
to minimize the maximum of L for variable x in [- 1, 1], namely xi = 

- cos [(i - 1)7r/(n - 1)], which is independent of k [4], [5], [6]. However, in many 

practical problems, for optimal stability in numerical differentiation at any particular 

point x, we may choose several more suitable locations of points (one of which involves 

a mini-min instead of mini-max), which is the subject of this present note. 

II. Two Criteria for Optimality. One problem, for x fixed at x0, is to determine 

xi i(xo), i = I (l)n, to obtain Lo- L(n, k, x0) = min L.(1) Then another problem is 

to determine the x0 x* that minimizes Lo to L* -L*(n, k) = min min L. Here, min 

min L is, of course, min L considered for the n + 1 variables x0 and xi. Questions 

about the uniqueness of the minimizing sets of xi and x0 will not be stressed here. We 

assume x0 > 0, since for x0 < 0 we change the variable to x' = - x. Since L* is 

preferable to any other LO, to find f(k)(x) by (1) for any particular x =x0, the vari- 

able is shifted to x' = x + x* - x0, so that x = x0 becomes x' = x*, and x =xi -x* + x0 
becomes x' =xi-x,(x*). This variable shift is permissible when Rn(x*) for the new [-1, 1] 

interval is still negligible, which is usually the case, except near the end of the range of x. To ob- 

tain f(k)(x) for a succession of different x's, each of which is shifted to become x*, requires 

f(x) at different sets of points corresponding to xi xi(x*), i = (1 )n, after the shift. This 

amount of computation is a reasonable price for the utmost in accuracy in f(k)(x), when 

f(x) itself is of limited accuracy but readily available through observation, measurement 

or interpolation to that full limited accuracy.(2) When x0 cannot be shifted to x*, such 

as when (a) the entire range of x is too small, (b) x0 is near or at the end of the range, 

or (c) a shift pushes the new interval [-1, 1] to where it either includes or is too near a 

singularity of f(x), then Lo must suffice. 

(1) T. J. Rivlin discovered a fundamental error in a paper of D. L. Berman [ 7 ] that gave, rather 

cryptically, a purportedly complete solution based upon the work of W. Markoff l 8]. In several private 

communications, Rivlin verified the first of five parts of Berman's crucial Theorem 2 on pp. 13-14, 

discredited the other parts (giving also a counterexample), and subsequently stated that he was pre- 

paring for publication his own complete solution in which the xi's cannot always be given explicitly. 

(2) In connection with interpolation for f(x), the number of points needed (which might 

lie in an interval different from [ . 1, 1 l ) may differ from n. Thus, in the extreme case where f(x) 

is a critical table where no interpolation is necessary (in other words, n = 1 for interpolation), we 

still need n > 1 for numerical differentiation. 
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A somewhat simpler looking, but entirely equivalent, formulation of the L * prob- 
lem is to solve for x* and xi, i= 1(1)n, in [-1, 1], where 

n 

EA.xl = O. j = 0(1 )k - 1, 
(3 ) 

= j(o - 1 ) *.**.. k + 1I)xi* j = k(l )n - 1, 

and 
n 

(3') Z IAI minimum. 

In (3) and (3'), and also in (3a) and (3'a) below, A1 =Li(k)(x*).(3) Since the 
translation xI = x - x*, x = xi- x*, leaves L7 (k)(X) unchanged, (3) and (3') may 
be reformulated so that we always have x'* = 0, and we must find xl and X, 
where xl is in the variable interval [X, X + 2] where X is in [-2, 0], so that 

12 

,A.x7=k!, j=k, 
(3a) jl / = 0(l)n - 1, 

=0, j k, 
and 

n 

(3'a) Z Al minimum. 

III. Some Scattered Results. For Lo, at the endpoint x0 = 1, for every 
n and k, xi= - cos[(i - 1)7r/(n - 1)], i = 1(1)n, which is independent of k, and 

Lo = 7fnk) (1) = n - 12 (n _2 - 12) * n- 2 - k - 12)/ - 3 ... (2k - 1). 

Proof. Applying (1) to I / l(1), since ITn_ (x)I S 1, 7in'f21(1 is a lower 
bound for L at x0 = 1, for any xi, i.e., I /n)(1) <Low But T$/ )1(1) is also 
an upper bound for L when xi=-cos[(i-1)7rl(n - 1)], i = 1(i)n, for any x0 in 
[-1, 1], by the minimax property [4], [5], [6], i.e., Lo ?L for xi = 

-cos[(i-1)7r/(n-1)], at x0 =1, ?Jn- (1). The last two statements together 
imply Lo = 1 )1(1), xi= - cos[- 1)r/(n- 1)], i = 1(1)n. Q. E. D. That xi= 
- cos [(i - 1)ir/(n - 1)] are also the points for optimally stable extrapolatory dif- 
ferentiation, as well as extrapolation, when k > 0, x0 > 1, follows from 

n n 

E 1 ( )(X) =)iiLn(k)(XO) = 7(k)1 (x_) =Lo 

the last because 4/) -1(xO) is a lower bound for every L. 
The preceding results for x within [1, oo] are special cases of Berman's 

Theorem 2, part 1, [7] which states that for xi = - cos[(i - 1)7r/(n - 1)] and x0 

(3) Elsewhere A denotes L7(k)(xO) for whatever xO is under discussion. 
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within any of the intervals (- o?, 41), (77j, Ij+1) i = I(I)n - 2 - k, (Oln-- k ??), 

where Ln(k)(7,i) = 0, Ln(k)(ti) = 0, i = l(l)n - 1 - k, we have L = Lo= 

IT '21(xo)l. From the interlacing of the tj with the rj,, tj < i1j, it can be shown 
that for n - k odd, the interval (77(n-1- k)21 t(n+1-k)/2) includes 0, so that 

at xo =0, L = Lo= IT(k)l (0)1. In particular, xi = - cos[(i - 1)7r/(n - 1)] gives 

Lo, when k = 1, for xo within [?, 1] when n = 3, within [0, 0.1076] or 
[0.7743, 1] when n = 4, and within [0.3223, 0.4446] or [0.8723, 1] when 
n = 5, and when k = 2, for xo within [1/3, 1] when n = 4, and within 

[0, 0.1319] or [0.6319, 1] when n = 5. 
For Lo, at xo = 0, k = 1, a lower bound is n - 2 (n - 1) for odd (even) n, 

since IT(O)I = m when m is odd. As will be shown further on, this bound (seen 
above to be assumed for every even n) is assumed also for n = 3 and 5, is approached 
closely for small odd n > 5, and to within a factor of 21? for odd n 101. For 
general k, Lo > (=)k!. I coefficient of xkl in Tn_ 2(x) (Tn 1(x)) for n and k of 
the same (opposite) parity. 

For k = 1, n = 3, 4 and 5, we may note also the following: 
For L*,k=1,n=2: x*= anypointin [-1,1],x1=-Ix2==1, Al= 

-1/2,A2=?Y2,L*=1. For L*,k=1,n=3: x*=0,x =-I,X2= any #-1 or 
1, x3= 1, A 1 =- 1h, A2 = 0, A3= 1h, L* = 1. That we cannot improve L* =1, for 
n = 2 or 3, is seen from f(x) = x, where for any choice of xo, xi within [-1, 1], 

n n 
1=lf'(x0)= =LE (0x(x__L Li (x jLi ). 

This inequality is an illustration of the following general property that gives lower 
bounds to L*, namely, L* > maxlP$k)(x*)I of all polynomials Pm(x) of degree 
m An - 1, where [Pm(x)l < 1 for x in [-1, 1]. Thus far we have used only the 
Chebyshev polynomials Tm (x) for Pm (x). 

For n = 3, any xo, (X1, X2,x3) =(-1,0, 1), A1= o /2, A2 2 ,A3 

1/2 +xo. Men xo > 1h, L = 4xo >Lo must be Lo, since for T2(x) =2x2- 1, T2(xo)= 
4xo < Lo.(4) When xo < 1?, L = 1 + 2xo > 4xo, which tells us no more than the 

already known Lo > 1 for xo in [0, 1/4] and Lo > 4xo for xo in [1/4, 1/2]. 

For n = 4, x0 =0, Lo =3, the xi being the Chebyshev points 
- cos[(i - 1)7r/3], i = 1(1)4, or (- 1, - ?, 1?, 1) for which the corresponding A, 
are (1/6, -4/3, 4/3, -1/6). That 3 is best is seen from T3(x) = 4x3 - 3x, and 

IT3(0)l = 3.(5) This is an illustration of where, for xo = 0, Chebyshev spacing for 

xi is better than equal spacing(6) for which L = 3.5. However, L* for n = 4 is 

(4) Cf. same result in 4th preceding paragraph. 
(5) Cf. same result in 5th preceding paragraph. 

(6) In "equal spacing" it is always understood that x =- 1 and xn 
= 1. 
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less than 3, because for equal spacing of xi, L = 2.16... for x0 = 0.48 (see Schedule I). 
That 2.16 is within 12.5% of Lo for x0 = 0.48 follows from Lo > T2(0.48) = 1.92. 

From T2(x) and T3(x) it is also apparent that any improvement over 2.16 for L* 

must take place before T2(xo) = 4x0 = 2.16 and after IT'(xo)l = 13 - 12X21 = 2.16, 

or (approximately) 0.265 < x0 < 0.54. 
For n = 5,x0 =0, Lo = 3, which is attained for equally spaced xi, i.e., 

(-1, - 2, 0, %, 1), and A, = (1/6, -4/3, 0, 4/3, -1/6), and that no improvement 
is possible is seen again from I T3' (0) I = 3. Here Chebyshev spacing, xi = 

- cos[(i - 1)Tr/4], i = 1(1)5, for x0 = 0, gives the appreciably larger L = 3.83; 

trying the other Chebyshev points xi = - cos[(2i - 1)7r/10], i = 1(1)5, which do 

not include the endpoints of [- 1, 1], we get, surprisingly enough, L = 3.40. 

IV. First Derivative at Midpoint, n Large. Around x0 = 1, as n increases, 
L becomes prohibitively large for xi equally spaced. By comparison, when the xi 
are either of the Chebyshev points - cos [(i - 1)7r/(n - 1)] or - cos [(2i - 1)7r/2n], 
L is tremendously reduced. Thus, for n = 100, k = 1, the reduction is from the 
neighborhood of 1028 or more, to around 104. We have just noted, in the pre- 

ceding paragraph, for n = 5, k = 1, x0 = 0, that Chebyshev spacing for xi is not 

quite so good as equal spacing. Then for very large odd n, say. n = 101, for which 

Chebyshev spacing is so vastly better at the endpoint, it is also of interest to make a 

similar comparison for k = 1, at x = 0. We calculate L by finding L!01 '(0) as 

the coefficient of x in LP01 (x), as given in (2). 

(a) Equal spacing, xi =- 1 + (i - 1)/50: Taking into account the oddness of 

I'l 1(x - xj) and L10 '1 
? 

(0) =-LP '(0), we find that L = 2 x 50 x 50!2 x 
540 1/ li(i + 50)!(50 - i)!, which is around 225. (See also VI, 2nd paragraph.) 

(b) Chebyshev spacing, xi=- cos[(i - 1)7r/100]: Here 

1= (x-x1)j = (x2 - 1)U99(x)/299(x-x,)J, 

where Un(x) = sin(n + 1)0/sinG, x = cosO, is the Chebyshev polynomial of the 

second kind [9, p. 156], and I1/HJ21=11l(x1 -xj)l = 299/100 for i / 1, 101, 

=298/100 for i = 1, 101 [9, p. 157]. The coefficient of x in U99(x) is -100, 

so that after division and summation, noting that L ?1 '(0)= 0, we get 

L = 2 * 100 - 1 I > 21/cos[Q - 1)Ir/100] 

(i = 1 term in A' is halved) = 2Z?5?0 sec[(i - 1)2r/1OOJ, which is close to 300. 

(c) Chebyshev spacing, xi = - cos [(2i - 1)iX/202]: The absolute value of the 

coefficient of x in the numerator of (2) is 101/2100 1xJ, and 
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1 
101 

1/fl (xi - x) =2100sin [(2i - 1)7r/202] /101, 

so that L = 2150 tan[(2i - 1)ir/202], which is approximately 260. 

Thus, neither of the Chebyshev spacings is as good as equal spacing, for which 

L 225, if not actually LO, is at worst less than 2? times Lo > 99 = Lo for 

n = 100. Comparison of this L 225 > L* with the Chebyshev point minimax of 

104 shows that min min/min max < 1/44.(7) 

V. Optimality for Equal Spacing, with Schedules. A drastic but practical 

simplification of the L* problem, which reduces the number of variables from 

n + 1 to just one, is to specify the xi, i = 1(1)n, to be equally spaced, and to find 

the point x = x giving min L = L. There is evidence throughout this article, for 

both smaller and larger n, to indicate that L may not be too far from L* (e.g., 

in the preceding discussion for n = 101, k = 1, at x0 = 0, where L cannot be 

reduced by more than 56% even by varying all 101 points xi, but where the shift 

of x0 from endpoint to center reduces L, substantially for Chebyshev spacing, 

but spectacularly for equal spacing of the xi's). Answers to the L problem, for 

k = 1 and 2, for the lower values of n, were found readily with the aid of two 

published tables which give (in a slightly different notation) L7n(k)(x) as functions 

of p = (x - X[(n+l)/21)/h(8) and h = the tabular interval xi+ 1 - xi [10], [11]. 

In Schedule I, we give for k = 1 and n = 3(1)7, x-, L7'(.-) for xi = - 1 + 

2(i - 1)/(n - 1), i = 1(1)n, L, and for comparison, L1 = the largest L, which is 

at x = 1. These values were obtained by a direct calculation from [10] , x- given 

exactly (approximately) for n odd (even). The L7 '(i) (as well as L7n"(y) in 

Schedule II) is given exactly for the argument x, even where that x is an ap- 

proximate value for the true x. 
It is of interest to note in Schedule I that x- is at 0 when n is odd, but 

considerably away from 0 when n is even. In fact, at x = 0, L for n = 4 and 6 

is 3.5 and 6.21, respectively, which is appreciably larger than L. Since n = 4 is the 

least n for which L* is not yet known, an attempt was made (just by hand cal- 

culation) to improve the L = 2.16 by varying the equally spaced locations of the 

xi's, but without any success. For n = 5, if there should happen to be an L* < 

(7) A similar comparison, n = 101, xO = 0, xi equally spaced, but for k = 2, for which 
4 4 4_1/3Bu L is approximately 2.2-10 , may be made with the Chebyshev minimax of 10 (10 - 1)/3. But 

knowing here that for xi = - cos[(i - 1)ir/100], L = Lo = Iti00(O)I = 104 we may infer that 

min min/min max < (1/3) * 103 

(8) Just here, [---l denotes the nearest integer. 
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Schedule I 

n x i xi Li L H Lil 

3 0 1 -1 -1/2 1 4 

2 0 0 

3 1 1/2 

4 0.48 1 -1 0.2137 2.16 10 

2 -1/3 -1.0611 

3 1/3 -0.0189 

4 1 0.8663 

5 0 1 -1 1/6 3 21.33... 

2 -1/2 -4/3 

3 0 0 

4 1/2 4/3 

______ 5 1 -1/6 

6 0.252 1 -1 -3.74792 805/48 4.494 42.66... 

2 -3/5 26.97658 025/48 

3 -1/5 -95.84104 050/48 

4 1/5 -1.25707 950/48 

5 3/5 80.87059 975/48 

6 1 -7.00113 195/48 

7 0 1 -1 -1/20 5.5 83.2 

2 -2/3 9/20 

3 -1/3 -9/4 

4 0 0 

5 1/3 9/4 

6 2/3 -9/20 

7 1 _ 1/20 

L = 3, it would be for xi unequally spaced, and at x* $ 0 because (as shown be- 

fore) Lo) at x0 = 0, is also 3. 

In Schedule II, we give, for k = 2 and n = 4(1)9, x-, L7f"(x-), L and L1, all 

readily calculated from [11] . The results for n = 4 are exact (and infinite in num- 

ber), while x- for n =5(1)9 is given approximately, more roughly for n = 8 and 9, 

where the tabular interval for p in [11] is 0.1 instead of 0.01 for n = 5(1)7. There 

is no problem for n = 3, since for any x0, L3f(xo) = L3"(xo) 1, L3"(xo) =- 2, 

and L=L=4 (=Lo L* from T2(x)4). 
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Schedule II 
n ( | i | x1 | Ll| L L 

4 any xo in 1 -1 9(1-3xo)/8 4.5 27 

[0, 1/91 2 -1/3 9(9xo-1)/8 
3 1/3 9(-9xo-1)/8 

________ 4 1 9(3xQ?1)/8 

5 0.455 1 -1 2(-0.7457)/3 10.9828 106.66 

2 -1/2 2(3.5228)/3 
3 0 2(-0.0942)/3 
4 1/2 2(-7.3972)/3 

5 1 2(4.7143)/3 _ _ o k 

6 0.064 1 -1 -5.8837/12 19.8325 333.33 

2 -3/5 40.2535/12 
3 -1/5 -1.6770/12 

4 1/5 -102.6530/12 
5 3/5 78.7415/12 

6 1 -8.7813/12 

7 0.27 1 -1 0.28201 94537 5 32.296 918.4 

2 -2/3 -2.10932 82225 0 

3 -1/3 6.58379 93062 5 

4 0 -0.17230 40750 0 

5 1/3 -13.12289 31937 5 

6 2/3 9.28202 57775 0 

7 1 -0.74331 90462 5 

8 1/35 1 -1 49(0.04469 2)/9 50.105 2348 

2 -5/7 49(-0.41594 4)/9 
3 -3/7 49(1.79863 2)/9 

4 -1/7 49(-0.72572 0)/9 

5 1/7 49(-2.92878 0)/9 
6 3/7 49(2.70496 8)/9 
7 5/7 49(-0.53105 6)/9 
8 1 49(0.05320 8)/9 

9 1/5 1 -1 -6.88605 44/63 71.33 5721 

2 -3/4 66.40312 32/63 
3 -1/2 -288.63313 92/63 
4 -1/4 710.85629 44/63 
5 0 179.69011 20/63 

6 1/4 -1775.55087 36/63 
7 1/2 1275.79002 88/63 

8 3/4 -175.90394 88/63 
-___-___- 9 1 14.23445 76/63 _- . . 
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We may note, from Schedule II, that for n = 4, L = 41/2 cannot be too far 
from L* > 4. For n = 5, L = 10.9828 is very close to Lo for x0 = = 0.455, 
since Lo > 7!(0.455) = 10.92. Also, for L* ? L, the x* must lie in the interval 
[0.228, 0.458], which is apparent from T"(x) = 24x > 10.9828 when x > 0.458 
and IT4'(x)l = 196x2 - 161 > 10.9828 when x < 0.228. Comparing x for k = 1 
with x- for k = 2, the schedules show the latter close to 0, for n even (not exactly 
at 0 as for k = 1, n odd), and close to x for k= 1 in the (n - 1)-point formula, 
for n odd. 

VI. More Points, Higher Derivatives. To find an approximate x and L for k 
or n outside the range of Schedules I and II, we may refer to the tables in [12] which 
give the exact values of L7(k)(x1) (i.e., only at tabular points), for k = I(1)n - 1, 
n = 3(1)7, and k = 1(1)4, n = 9, 11. The smallest L L is not at the most central 
value of xi for these values of k and n in [12] which are not included in Schedules 
I and II: k = 4, n = 7, x- x5 = 1/3; k = 4, n = 9, x- I x6 = 1/4; k = 2,n= 11, 

x - x8 = 2/5; k = 4, n = 11, x-X7 = 1/5. 
It is interesting to note from [12] that for k = 1, n = 9 and 11, x00 , we 

obtain L = 8.33 and 11.42, which are within 20% and 27% of Lo > IT7(0)I = 7 and 

'9(0) = 9 respectively. For odd n = 2m + 1, k = 1, x0 = 0, it may also be shown 

from (5) below and [13] that L= mY2 1 l/i, so that 

L/(n - 2) = (m/(2m - 1)) E 1/i > L/Lo. 

From [12], for n = 11, k = 2(4), L is around 171 (2.48.104) at 0= 0, and down 
to around 156 (1.85-104) at x0 = 1/5, considerably better than the minimax L = 

3300 (8.24- 105) for xi = - Cos [(i - 1)Xr/10], i = 1(1)1 1; but since at x0 = 0 it is 
known that Lo = IL0o(O)l = 100 (IL(40)i = 0.96.104), minmin/min max may be 
expected to be < 1/33(85). 

VII. Central Difference Formulas for Large n. Even though in some preceding 
examples, for various n, and the xi equally spaced, the L would not have been 
improved appreciably, even if we had obtained L = at the same point x0 by 
changing all the xi, still the drop from L to L*, by varying x0 with the xi, 
could be considerably greater. However, at present, pending further specific informa- 
tion on Lo and L*, and the accompanying xi and Li (k)(X0), especially for large 
n, for many practical problems we might choose xD = 0, xi equally spaced, and find 
that the limits to the tolerance in L would not be exceeded. In employing x0 = 0, 

xi equally spaced, for n > 11, computing or using the L (k)(0) becomes cumber- 
some, and it is more convenient to choose an odd n = 2m + 1 and employ numerical 
differentiation formulas in terms of central differences 6 2r for k even, and mean 0 
central differences /u16r-1, for k odd, as far as the term r = m [13]. These formu- 
las have the advantages of consisting of terms with small factors and varying with n 
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only in their end terms. They are given by 

f~k)(x ~L Y A' 2r- 
2r 1 k odd, 

O) hk r(k+1)/2 2r-1 0 

1- E Ak 2r 0 k even, 

where h =xi+1 - xi. In our notation, after adjusting the range of xi to [-1, 1], 

x0 in (4) is the central argument xm + 1 = 0, and the right member of (4) is identical 
with the right member of (1) without Rn(x), for x = 0. From (4), we find 

1 m 
L=-' w k I C k od 

hk r=(k+1)/2 2r- l 2r-1 r' odd, 
(5) 

- 1 L4k 2rI 22r k even. 
hk _~l22 

To prove (5), we obtain the coefficients of f(xi) on the right side of (4), using the 
coefficients of f(xi) in p62r-1 and 2r , and taking into account the alternation 
with r in the signs of A rk and A kr 

In (4) and (5), the formulas for odd k may be expected to give an L that is 
closer to L* than for even k (cf. Schedules I and II, and [12]). For even k, it 
appears that a better L than that from (4) and (5) is had by differentiating Stirling's 
interpolation formula [1, pp. 67-68] and setting x = 1.8/(n - 1) instead of 0, to 
obtain a formula for f(k)(1.81(n - 1)) in terms of both p8tr-1 and 52r. 
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