
MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 128 

OCTOBER 1974, PAGES 1117-1132 

On the Distribution of Pseudo-Random Numbers 
Generated by the Linear Congruential Method. II 

By Harald Niederreiter* 

Abstract. The discrepancy of a sequence of pseudo-random numbers generated by the 

linear congruential method is estimated for parts of the period which are somewhat larger 

than the square root of the modulus. Applications to numerical integration are mentioned. 

1. Introduction. Let m > 2 be an integer, let yo be an integer in the least 
residue system modulo m with (yo, m) = 1, and let X be an integer with (X, m) 

1. We generate a sequence YO, y1, -.. of integers in the least residue system modulo 
m by the recursion yn =Xy,, (mod m), n = 0, 1, * . The sequence x0, x1, o, 
defined by xn = yn/m for n > 0, is then a frequently employed sequence of pseudo- 
random numbers in the unit interval [0, 1]. Its elements may also be described ex- 
plicitly by xn = {Xnyo/m } for n > 0, where {t } denotes the fractional part of 
the real number t. If X belongs to the exponent T r(m) modulo m, then the 
sequence x0, xl, has period T. We note that always T < p(m), where up is 
Euler's totient function. 

In the first paper [7] of this series, the author has studied the distribution in 
[0, 1] of the full period x0, xl, , x 1 in the case that X is a primitive root 
modulo m, i.e., that 7- = ep(m). It turned out that the full period provides an ex- 
tremely good approximation to the uniform distribution in [0, 11. However, in many 
practical situations, one will only use an initial segment of the full period, simply 

because the period T is too large in most of the interesting cases. In the present 
paper, we therefore consider the question of the distribution of the sequence x0, 
X1, * ? ,XN1 with 1 N < ? in the interval [0,1]. We also abandon the re- 
quirement that X has to be a primitive root modulo m. In a sense to be made 

precise below, we estimate the deviation of the distribution of such a segment from 

the uniform distribution. We distinguish between m being a prime, a prime power, 
or a general modulus, since, in the special cases, somewhat better results can be 
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1118 HARALD NIEDERREITER 

shown. There will be an emphasis on prime power moduli, since this is the case 
occurring most frequently in practice. The estimates that we establish are only of 
interest when N is at least of the order of magnitude ml/2+6 for some e > 0. In 
the proofs, we make use of the work of N. M. Korobov [1], [2] on special trigono- 
metric sums and of an effective version of the Erdos-Turan inequality which was re- 
cently given by the author and W. Philipp [10]. In the last section of the paper, we 
mention applications of the results to numerical integrations using the points x0, 

X1X* X N-1 as nodes. 

For 1 A N < T, consider the points xO, x1, , XNli described above. Given 
real numbers u and v with 0 < u <v < 1, let A(u, v; N) be the number of n, 
0 < n < N - 1, with xn E [u, v). Then we define the so-called discrepancy DN of 
the points xO, x1, , XN_1 by 

DN =DN(Xo, XN- 1) sup ((u, v;N)/N-(v-u) 

This is the quantity which we shall estimate. For the general theory of discrepancy, 
see the book of L. Kuipers and the author [3, Chapter 2]. 

2. Lemmas on Trigonometric Sums. For real t, we write e(t) = e2X7it. We 
consider trigonometric sums of the type 

N-1 N-1 

E e(rxn) 
= e(ry0Xn/m) 

n=O n= O 

with a nonzero integer r and 1 < N < r. The estimates given in Lemmas 2 and 3 
are due to N. M. Korobov [2]. For the convenience of the reader, we include the 
short proofs. 

LEMMA 1. For any integers A and B with 1 < B < A, the sum 
A B-i 

S- E E e(cy/A) 
c=i y=O 

satisfies S <A(1 +log A). 
Proof. We have 

B-1 

E e(cy/A) B for c=A, 
y0o 

_ le(cB/A)- l1 sin IrllcB/A l for 1 < c A - 1, 
le(c/A) - II sin rIlc/All 

where 11tII denotes the distance from the real number t to the nearest integer. If 
A = 1, the lemma is trivial. For A > 2 we get 

S B + Ai SinniCB/AII =2 
irB B + 2/A 

c=1 sin IIc/All c-1 sin iric/A I 

sin irlIlB/A II [A/21 
< B + 2 sin - ) + 2 t (211c/A I)-', 

sin (ir/A) c=2 
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where the last sum is taken to be zero for A < 4. It follows that 
[A/2J 

S < B + 2AIjB/AII + A 7 c 1 < B + 2AIIB/AII + A log [A/2] 
C-2 

?A(B/A + 211B/AII - log 2 + log A) ?A(l + log A), 
where the last inequality is shown by distinguishing between the cases B/A < 1/2 and 
B/A > 1/2. 

LEMMA 2. Let m > 2 be an integer, let b and X be integers relatively prime 
to m, and suppose X belongs to the exponent r modulo m. Then 

N-1 

Z e(bX'/m)l < \;/- (1 + log r) 
n=G 

holds for all N with 1 ?N T. 

Proof. For integers a and c, write 
r- 1 

u(a, c) = ? e(aXn/m + cniT). 
n=O 

Since XT 1 (mod m), we have 

{aXn + T/m ? c(n + T)/r} = {aXn/m ? cn/r }, 

so that e(aXn/m + cnir), as a function of n, depends only on the residue class of 
n modulo T. Therefore, for any integer y, we have 

T- 1 

u(a, c) = , e(aXn + Yim + c(n + y)/r), 
n=O 

and consequently 
r- 1 

Iu(a, c)I = > e(aXyXn/m + cniT) = ju(aXy, c)I. 
n-O 

Since the integers bX, bX2, ,--, bRJ are pairwise incongruent modulo m, we have 
T m 

TkJ(b, c)12 = > Io(bXY, c)12 < E Io(a, c)12 = Mr, 
y=1 a=1 

hence lo(b, c)l < V-. Now 
N-1 r /N- i\ 1-i 
> e(bXn/m) = - 1 3e( cy/TI) 1 e(bXn/m + cn/T) 

n=O T c-1 i y / \n=0 

and so by Lemma 1 

N-i 1i N-i1 

> e(bXn/m) |V\ U- > >| e(-cy/ 1 ? log r). 
n=O c=1 y=O 

We remark that for the special case m = p, a prime, and X a primitive root 

modulo p, trigonometric sums of the above form have also been considered by 

L. J. Mordell [4], [5] and R. G. Stoneham [ll]. 
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LEMMA 3 . Let m > 2 be an integer, and let X be an integer relatively prime 

to m which belongs to the exponent r modulo m. If b is an integer with (b, m) = 

d > 1 and such that En- _ e(bXn/m) = 0, then for all N with 1 < N ?< r we have 

N-1 mn 
| e(bXn/m) - (1 + log r(m/d)), ) d 

where r(m/d) is the exponent to which X belongs modulo m/d. 
Proof Since e(bXn/m), as a function of n, is periodic with period r(m/d), we 

have 

r-1 7 r(m/d)-1 

Z e(bXn~/m) = (I) E e(bXn/m), n=O -T(mld) nib 

and so 

r(m/d)-1 

I: e(bX'n/m) = 0. 
n=O 

Write N= qr(m/d) + s, 0 < s < r(m/d). Then 

N-1 q-1 r(m/d)-1 s-1 

E e(bXn/m) = E F e(bXji(m/d)+ F,) ? X e(bXq,(m/d)+n/m) 
1=O j0= n=O n=O 

Ir(m/Id)- 1 S-i S-i /b/d) Xn 
= q Z e(bXn/m) + ? e(bX'n/m) = ? e - ) 

n=0 n=O n0= md 

To the last sum we can apply Lemma 2 in order to obtain the desired inequality. 

3. Prime Modulus. Here we consider the case that m is a prime. The notation 

remains the same as in the introduction. 

THEOREM 1. Let m be a prime. Then, for 1 < N < X, the discrepancy DN 

of the points x0, x1 *, XN- 1 satisfies the inequality 

DN < N4/m (1 ?logr) log rN ?+ 5v I I 
DN? 

i7rN N,/m-(I1?logr) ~ (1?lgr 

Proof We use an inequality established by the author and W. Philipp [10, 

Corollary of Theorem 1']: for any points zo , ZN-1 in [0, 1) with discrepancy 

DN(ZO, , ZN_1) we have 

4 L *1 I 
N- l 

~~1) DN(ZO ,,ZN1) <-?+-Z (i ? Y. e~rzn~) L iTr- 1.\ L IVn~ 
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for all positive integers L. In order to apply this to the special sequence x0, Xi, , 
XN 1' we choose 

L4Am (I + log r)j 

If L < 5, then the theorem is trivial since we have always DN < 1. Thus we assume 

L > 5 from now on. For the same reason, the case T= 1 is trivial, so that we may 

assume r > 2. From (1) we obtain 

4 4 L1/I \I N- I 

DN < L + L 
E -WL_ - E e(rxn) 

(2)rl/ n O 

L ? r= i(r L N n=| 

We note that 

< rN 7Ti 7rm 

\m/(1 + log r) <m(1 + log r) \/Ml(1 + log 2)' 

hence \/mz > 5(1 + log 2)/7r. It follows that 

5 91 + log 2 m<. 

Therefore we have (ryo, m) = 1 for all the values of r considered in (2). By applying 
Lemma 2, we deduce from (2) that 

D < 4 + 4m-(1 + log r) I ( 1)< + 4m(I + log T) log L, 

where we use the inequality IL= 1' 1 + log L. From L > 5, the inequality 
[t] > 5t/6 for t > 5, and the special form of L it follows that 

<4 v m'(1 +log) log 7rN 24 N/mz(1 + log r) 
7rN /g (1 + log T) 57rN 

4N/mz(1 ?+ log ) o 7rN + 5/-m(1 + log T) 

7rN V h(1 +logr) 7rN 

This concludes the proof of the theorem. 

We remark that the estimate in Theorem 1 is nontrivial when N is at least of the 

6rder of magnitude m1/2+E for some e > O. In this case, DN is then of the order 

of magnitude Ar / Aim (1 + log r) log m. This gives a considerable improvement on a 

result of R. G. Stoneham [11]. 
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4. Prime Power Modulus. Let m = pa with a prime p and a > 2. Let X 
relatively prime to m with 1X1 > 1. Otherwise, the notation from the introduc- 

on remains operative. We determine a positive integer (3 as follows. First, let 

T(p) be the exponent to which X belongs modulo p. Then, if p is odd, (3 is the 
largest integer such that pI(X(P) -1). If p = 2, set p = 1 if X =1 (mod 4) and 

p = 2 if X 3 (mod 4). Then ,B is taken to be the largest integer such that 
2 I(XN - 1). 

THEOREM 2. Let m = pa with a prime p and a > 2. Let X be relatively 
prime to m with 1X1 > 1 and a > 3, where 3 is defined above. Then, if 1 < 

N? T and 

p3/2(3 1_/2 m3/2(1 + log T) 

p3/2_1 * rN 

the discrepancy DN of the points x0, x1, * * , xN 1 satisfies the inequality 

DN <p3/2 _-p1/2 4Vrn(1 + log r) log qp3/2 
- 1)irN 

p3/21 lrN (p3/2 - p1/2) (1 ? log T) 

(4) 

+ (24 + ~ l logTp Nm I+lg7) 4 \ + 4m(1?+ log T-)2 

? orN p1/2 ) 2N2 

Proof. As in the proof of Theorem 1, we infer from (1) that 

4 4 I I I 
nm 

(5) D N SL +- El(- -L | N e (ry 0 / 

for all positive integers L. We now choose 

L = (p3/2 1)rN 1 
lb1/2 1p/2,M )W(I + log r) 

If L < 5, the theorem is again trivial. So L > 5 from now on. Moreover, 
condition (3) implies that L < papa. From Lemma 2 we get 

1N-1 \/Th(1?Io gTr) 
(6) - N I e(ryo0X'/m) for (r, m) = 1. 

Let R be the largest integer with pR < L. We note that 0 < R < or -( - 1. For 
an integer r, 1 < r < L, with (r, m) = d > 1 we have d = ps for some s with 
1 < s < R. Furthermore, pa- does not divide r. It follows then from a theorem 
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of N. M. Korobov [1, Theorem 2] that 

e(ryo0X/m) 
= 0, 

n-O 

and so Lemma 3 yields 

(7) -N F e(ryoXnIM Zm~l AN (1 + log T(m/d)) < - - (I + log r). N- n= y0/rL) N d N d 

Combining (5), (6) and (7), we arrive at the inequality 

(8) D < 4 +4.Im (I + log r)REps12 
L 

1_ 
(8) D +Y z (i i 

L 7rN ~s=O r=1;(r,m)=pS L) 

For an integer s with 0 < s < R we have 

L (ii\i [L/pSl 1 1 [L/ps+l1 

r=1 ;(r,m)=psr L ps r=1 r ps+1 r=1 r 

and,using log(K+1) < 'K ??logK forK>,weget 

r1l;rm)=pS(r=L)ps (1 <?log f])r log ([ L 1) 

(9) 

L I~~~ -L 1 /F Li 

-p< I +l~-Jg log +1L r=1; (r ~ ~ + = (i L } L S+ 1 _pS+ I LI + fL 

If R = 0, that is, if L < p, then from (9) with s 0 and (8) we deduce that 

DNA ?4 +4l(1 ? logT ) l L 
L rN 
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Since L > 5 and [t] > 5t/6 for t > 5, we arrive at 

DN ? 24(p3/2 - p 1/2) /Ml (1 + log r) 

5(p3/2 - 1)irN 

+ 4Nf ( I + I og r) log p < (2 + log p) 4Nm-l + I 
og r) 

so that (4) is shown in this case. 

If R = 1, that is, if p <L < p2, then from (9) with s - 0, 1 and from (8) we 

deduce that 

4 4vm (1 + log T) 1log 1 I L 1 DN<? +? N(logL!--log + - + ? logp- +_p1/ N L 7rN P P ~~~p 3/2 P 2 

< 4 + 4N/m- (I + log -r(P1 
I log P 1 log p I 

4\/~z(1?logr) 
log 

? ~ - ? ~ ? ~ 
L irN p p p p3/2 Lp l /2/ 

Using the special form of L, as well as L > p and [t] > (p/(p + 1))t for t > p, 

we get 

p - I 4m (1 + log r) (p3/2 - 1i) > rN 

DN P irN l p3/2 - p1/2)m\/(1 + log T) 

(p + 1) (p3/2 - p1/2) 1 log p log p 
4V\m(1 + log T) 

\ (p 3/2 - 1 P p p3/2/ rN 

?(p + 1) (p3/2 - p1/2) 4m(1 
+ log r)2 

p3/2p3/2 -1) 

Now 

P-i P-i p3/2 p3/2_p1/2 

p p p3/21 p3/2- 

and 

(p + 1) (p3/2 - p1/2) < p +1 4 

p3/2 (p3/2 - 1) p3/2 p1/2 

and furthermore 

(p + 1) (p3/2 - p1/2) 1 Ioglo gog p 
< p 2 2 + log P 

p~32-1) p p p3/2 P 

so that (4) is also shown in this case. 

For R > 2 we proceed as follows. By first simplifying (9) somewhat, we get 
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(10)L 
/1 

1\_1_ -IL 
1 L 1 

(10) 1 - --I <---og- - log +- + 
r-l;(r,m)=ps\r L/ ps ps ps+1 ps+1 L ps+1 

for 0 S s < R - 1 and 

E (I _ ) <-lg+ - for s =R. 
r=l;(rm)=ps L ps pS L 

Using these inequalities, we have 

s=O r= 1; (r,m)=ps 

R-1 - L 1 L pS i 
< E p-3S/2(log L log_ +-p +? 

s=o \pS p pS+1 L p 

+ P R/2(gL + I) 

log L-slog p?+-p-logP+ 
+PR/2( PR 

= (1 logL ? ) I p3s/2 ps/2 

< 11 R1 log ? 1 \i Io og p 

+ (log p) ?1 (s - s)p 3s,2 + ? 

-= _ p1/ 

<;P log L + -)(p3/3 
1 

(p3/2_ 1)3R/2) L p1/2 - 

logp logp 
+ + _ 

p p3R/2 

p3/2 _ pl/2 1 pl/2 pl/2 logp 
< - - log L +gL+- + + 

p3/2 -1 L pl/2._1 p3/2 - o1 p 

+ p-3R /2 (og p p-i log L 
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Since L > p2, we get therefore 

R1E -s/2 EL 1 1\p3/2 - p1/2 

Zps/ ( --< log L 
(11) ~~s0 r-1; (r,m)=ps r L 32-I 

?1 p/2 p1/2 log p 

L pl/2i p3/2 - P 

Using (8), (1 1), the special form of L, and [t] > (p2/(p2 + 1))t for t > p2, we 

arrive at 

DN <p3/2 
- p1/2 4NM'(I + log 7) log (p3/2 - 1) rN 

N 
p3/2 -r 1 gf3/2 - pl1/2) NM-(I + l 7-) 

+ 
2 + 1) (3/2 p1/2) p1/2 +log p\ 4/m/ (1 + log r) 

p23/2 - 1) p3/21 p I rN 

? 
(p2 + 1) (p3/2 

- pl/2)pl/2 4m(1 + log T)2 

2P3/2- i)(pl/2 - 1)2N2 

Now 

(p2 + )(p3/2 -p1/2) p1/2 log p p3 +P - 1 log p 

? ? - < ?2?+log p 
p2(p3/21) p3/21 P p3 _ p3/2 P 

and 

qp2 + 1) (p3/2 - p1/2)p1/2 (p2 +1) (p1/2 + 1) 

P2(p3/2 - ) (p1/2 - 1) (p3/2 -1) 

p2 +p +pl/2 +1 4 

p5/2 _p Ppl1/2 

This concludes the proof of the theorem. 

A condition which implies (3), and which is easier to check, is the following 

one: 

(12) p< ?(0.24)m1/2 (1 +log r). 

For if (12) holds, then 

______ m /2 (I1 l g 
p< (0.24)m1/2 (1 +log T)< ? ogT) 

p3/2 -pl/2 m3/2(1 +log T) 

p3/2 _1 rm 



ON THE DISTRIBUTION OF PSEUDO-RANDOM NUMBERS 1127 

since the function f(t) = (t3/2 - t1/2)/(t3/2 - 1) is increasing for t > 2. But m > 
r > N implies then (3). In practical cases, m and r are large, so that (12) can be 
satisfied by choosing a X with j3 < a/2. We remark also that if ,3 is large, then r 

is rather small, since the two numbers are related by the identity r= T(pa) 

pa-OT(p) = p'-Or(p) (see [ 1, Lemma 1] ). 
If (3) does not hold, then DN can still be estimated, although in a weaker form 

only. 
THEOREM 3. Let the conditions of Theorem 2 hold, with (3) being replaced by 

(13) p3/2 - p1/2, m3/2 (1 +log T) 

p3/2 1 rN 

Then the discrepancy DN of the points xo, x, , XN-l satisfies the inequality 

DN /P P1 . 4 Vm(1 +log T) l(o ? 1)m D ? 
p3/21 - rN log 

(p3/2 (m +PO) ? log p\ 4mz(l +logT) 

( p3/2 - I)m P ) rN 

+ 01+ log (1T + 1) + P Ap_ 

Proof We start from (5) and choose 

L (p3/2 
- 

1) (e 
+ 1)mN 

p3/2 - p1/2)m3/2(l + log T) + (p3/2 - 1)p0N 

Condition (13) implies that 

(p3/2 - 1) (Ir + l)mN > (p3/2 - p1/2)m3/2pa-P(l + log r) + (p3/2 - l)mN, 

and so L > pa-:. Using (6) and (7), we have 

4 4\/m (I + log r) Ej 3-I 
s12 

L { 

DN ? + IN S=O F1;(r,m)=pS \r - 

4 Al l l\l% 
I 

+ 4r E I - -1 E2 e(ryo0n/m) 
Tr=1;pa431r r L, N n= 

With (10) and the trivial estimate 

I 1 N-I 
w- e e(gyo 

we get 
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4 4m(I + log T) s2 log - 1 l L ? s+ 1) 

4 L p 
? - 

2: 
IT r=1;paP-Or r L 

Now 

_s112~ L 1 L 1 1\ 
? p-s2 log _ _ log ? + + 

S=O pS pS ps+ 1 ps+ 1 L ps+ 

= 
log L + I E p -3s/2 

I a-g-i a-0ifs ? 1 3/2 .p1/2 

s/2 + (log p) L I 

+ 

3s/2 log 
LSO S=O / p 3/2 

1 p1/2 p1/2 logp 

L pl/2_. p3/2 - p 

and 

L [ \ L/p ] 11 r 

-1;pa-O(r (r L Pa\ r[Lpl r L PI- 

- < 1 + loFL \ L 
a- I p.aI0 

L 
I 

____ ~L 1 Po3 p1 m 
log + - logL ?--- log-, 

p&1p poat L m L m p 

so that 

D N4\ 
/2 p )1/2 -lN +logr) +P ylog L +?(4 +-) 

p logp\4V (1 +logT) 4pO m 
+ + -~ log - 

3/2 1 P 7rN 7-M pog 

From the special form of L it is easily seen that L S (ir + l)pP-O. Therefore 
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D < p3/2 - 1/2 4_ (l (I + +( 

DN g ?logr) (aog + 1)m l 4 

+ + +~~~~~~~ log (r + 1). 

Using again the special form of L, as well as L > p'-9 and [t] >(pa/(p - + 1)) t 

for t > piP, we obtain 

p3/2 p1/2 4m -(1 +log) (rr?l)m 
DN?P 

/ 
log 

a 1 
N p3/21 rN 

? a;- + 1) p3/2 _tp1/2) p1/2 log P 4vm(1 + log r) 

\ pci-PV3/2 - 1) p3/2 - 1 P N 

/ -P& ? 1 4po 
+ ? + log (n + 1)1-, 

\ pa ~~~/ arm 

and the proof of the theorem is complete. 

In the remaining case, namely when (3 > a, the sequence x0, xi, , xN-1 

shows a bad distribution behavior. For then we have r = r(m) = r(p) ? p - 1; also, 

as for any N points in [0, 1), we have DN > 1/N (see [3, Chapter 2]), and so 

DN > 1/(p - 1) for 1 ? N ? r. Another negative result in this case can be derived 

as follows. Let m = p2 with an odd prime p, let g be a primitive root modulo 

p2, and set X =gP. Then we have of course r = r(m) = r(p) = p - 1 and i3 = a. 

As N. M. Korobov [1, p. 643] has shown, there exists a YO relatively prime to m 

such that 

E e(xnj = EeWoXn/m) > 

n=0 n=O 

and so 

|1 Hepe(x > P-1/2 =m-1/4. 
T n=0 

As for any r points in [0, 1), we have 

|-E e(xn) | 4 DI 
Tn0O 



1130 HARALD NIEDERREITER 

by [3, Chapter 2], and so D, >1/m-/4, 

5. General Modulus. Let m = p' 1 ... p's be the canonical factorization of 

m and suppose that s > 2. Let X be relatively prime to m with 1X1 > 1. Other- 

wise, the notation from the introduction remains operative. For. mo P1i Ps, 

let r(mo) be the exponent to which X belongs modulo io. We set p = 2 if 

m 0 (mod 2), r(mo) 1 (mod 2), and X 3 (mod 4), and p = 1 otherwise. Let 

(14) XMT(mO) - 1 = uOpP . pas with (uo, io) = 1. 

Then we have the following result. 

THEOREM 4. Let m = p ... p's be the canonical factorization of m and 

suppose s > 2. Let X be relatively prime to m with 1X1 > 1 and aLv > TV, for 

1 < v < s, where the a> are defined according to (14). Then, if 1 A N A r and 

(15) pi . . . pos . m 3/2(1 + log r) 

the discrepancy DN of the points Xo,X, **, * satisfies 

DN?< 4\/m- (I ? log r) 1log arN ? 5,-4fmz(I ? log r) 
N aN | g m m(I + log r) | aN 

Proof. We use (5) with L = [ (rI/m4 l + log r)]. For the same reason as in 

the proof of Theorem 1, the theorem is trivial if L < 5. Thus L > 5 from now 

on. Furthermore, condition (15) implies that L <p'l-1 ... pY-Ss . In order 

to estimate 

1 e(ryXn/m)i 
N n=0 

for 1 < r < L, we use Lemma 2 in case (r, m) = 1. Now consider (r, m) > 1. 

Since r < p' 1 -0 1 * * *Ps , it follows that there exists v, 1 < v < s, such that 

P'vLlv does not divide r. Then by a result of N. M. Korobov [1, Theorem 2] we 

have 
r- 1 

E e(ryoXn/m) = 0, 
n=O 

so that Lemma 3 is applicable. Altogether, we have then 

(16) iN eN- y0 X/i)| <mF(I + logr) for 1?r?L 
N n0 N 

and thus 
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4A H 4Nm (I + logr) L(1I1I 

The proof is then concluded in the same way as in Theorem 1. 

Replacing (16) by the sharper estimate 

1 N-1 m 1 +log r 
- N e(y0Xn/m) | 

-. N _ 

N n=O ~ d N 

would, in this case, only result in an insignificant improvement of the upper bound 
for DN. If condition (15) is not satisfied, one proceeds as in Theorem 3 to obtain 
an estimate for DN. Since in most practical applications of the linear congruential 
method one works with a prime power modulus, the discussion of this exceptional 

case is not of sufficient interest to be carried out in detail for the general modulus m. 

6. Application to Numerical Integration. The discrepancy estimates established 

in the preceding sections imply error estimates for numerical integrations performed 
by a quasi-Monte Carlo method with nodes x0, xi, , XN-l . For a general 
discussion of the relation between the theory of discrepancy and numerical integration, 
see [3, Chapter 2], [6], and [9]. 

Suppose xo, xi, , XNl is a sequence of pseudo-random numbers generated 

by the linear congruential method with 1 ? N < r, and let K be an upper bound 
for the discrepancy DN of the sequence. By an inequality of Koksma mentioned 
in [7], we arrive at the following result: for any function f with bounded variation 
V(f) on [0, 1] we have 

(17) iN Ef(n-1 (t)dt| < V(f)K 
Nn=0 

For a continuous integrand f which is not of bounded variation, we may employ 

an inequality due to the author which is based on [8, Theorem 1] and shown in 

[6], [7]. We obtain then the following estimate: if f is continuous on [0, 1] 
with modulus of continuity 

z(h) = sup If(u) -f(v)I for h > 0, 
u,vE[1 0,1 ;Iu-vljh 

then 

(18) 1N-i IcoK) 8 Z f(xn)- ff(t)dt < w(K) 
Nn= 

Using the upper bounds K from the theorems of the present paper in (17) and (18), 

we arrive at nontrivial error estimates for the considered type of numerical integration 
problem. 
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Added in Proof. In my forthcoming paper "Some new exponential sums with 

applications to pseudo-random numbers," Colloquium on Number Theory (Debrecen, 
1974), North-Holland Publishing Co., Amsterdam, it will be shown that the estimates 

in Theorems 1 and 2 are best possible apart from the logarithmic factors. The 

methods of that paper also allow the treatment of pseudo-random numbers generated 

by inhomogeneous linear congruences. 
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