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Abstract. It is known that if X is a real residue character modulo k with X(P) -1 
k n 

for the first five primes p, then the corresponding Fekete polynomial Yn=l X(n)x 

changes sign on (0, 1). In this paper it is shown that the condition that X(P) be - 1 

for the first four primes p is not sufficient to guarantee such a sign change. More spe- 

cifically, if X is the real nonprincipal character modulo either 1277 or 1973, it is 

shown that the corresponding Fekete polynomial is positive throughout (0, 1) even 

though X(2) - X(3) = X(5) = x(7) = - 1. 

1. Introduction. Let X be a real nonprincipal residue character to the modulus 

k. In this paper we consider the corresponding Fekete polynomial 

k 

f(x, x) = i )X n 
n= 1 

and the related infinite series 
00 

F(x, X) = E X(n)Xn = (1 - Xk)-lf(X, X) (Ixl < 1). 
n= 1 

Let L(s, X) be the Dirichlet L-function defined by 
00 

L(s, x) E x(n)n-s (Re s > 0). 
n= 1 

In view of the relation 

r(s)L(s, x) =jo us-lF(e-u, X)du 

=f J us-l(l - e-ku)-lf(e-u, X)du (Re s > 0), 

it is immediate that if f(x, x) or F(x, X) is positive for all x in (0, 1), then L(s, X) 
is positive for all positive s. 

Unfortunately, it very often happens that f(x x) changes sign in (0, 1). The 

purpose of this paper is to shed a little light on the extent to which this is true. 

Heilbronn [5] proved that there is a prime number P such that if X(P) = - 1 

for all primes p not exceeding P, then f(x, x) takes some negative values on (0, 1). 
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It may be of some interest to determine the smallest value of P for which Heilbronn's 

assertion is correct. 
On the one hand we cannot take P = 5. For if x(n) = (n/53), then f(x, X) is 

positive throughout (0, 1), since in this case (1 - x)-3f(x, X) has a power series 

around the origin with all coefficients positive (cf. [9] ). 
On the other hand we have the following three quantitative forms of Heilbronn's 

theorem: 
I. (Cf. p. 37 of [7] or Problem 46 of Part V of [8].) If X(P) = - 1 for all 

primes p not exceeding 11, then 

f(x, x) X-x2 - x3 + x4 - x5 + x6 -X7 - X8 + X9 + X1O -X -X 

00 

+ E, xn 
n= 13 

and the right-hand side is negative when x = 0.7 (actually throughout the closed in- 

terval [0.69, 0.80] ). 
II. (Cf. p. 31 of [3].) If X(P) = - 1 for all primes p not exceeding 7 and 

if in addition X(P) = - 1 for at least one of the primes p = 11, 13, 17, 19, then 

f(x, X) < x -x - x3 + x4 - x5 + x6 -X7 - x8 + x9 + xO + x11 -X12 

+ X13 + x14 + x15 + x16 + x17 -x18 -x19 -x20 + E xn 
n=21 

and the right-hand side is negative when x = 0.74 (actually throughout the closed in- 

terval [0.738, 0.749] ). 
III. (Cf. [4].) If X(P) = - 1 for all primes p not exceeding 7 and if in addi- 

tion X(P) < 1 for at least one of the primes p = 11, 13, 17, 19, 23, then 

f(0.745, X) <0. 
Since Hahn's result III is a little more complicated than I or II, we give a detailed 

proof in Section 2 for completeness. 
The results I, II, and III show that we can take P = 11 in Heilbronn's theorem 

and hint that perhaps it might even be possible to take P = 7. However, in this paper 

we shall show, by considering the real nonprincipal characters with moduli 1277 and 

1973, that we cannot take P = 7 in Heilbronn's theorem. Specifically we obtain the 

following numerical result. 
THEOREM. There are 141 real primitive characters X with modulus less than 

10080 for which x(2) = X(3) = X(5) = X(7) = - 1. Of these 141 characters (a) 138 

satisfy the hypotheses of assertion III and so the corresponding Fekete polynomials 
change sign in (0, 1), (b) the character X(n) = (n/9907) does not satisfy the hypo- 
theses of III but nevertheless the corresponding Fekete polynomial does change sign in 

(0, 1), (c) the Fekete polynomials corresponding to the two characters (n/1277), 

(n/1973) are positive throughout (0, 1). 
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COROLLARY. The Dirichlet L-functions formed from the two characters men- 
tioned in (c) and the Dedekind zeta functions for the quadratic fields with discriminants 
1277 and 1973 have no positive real zeros. 

We remark that there are 135 imprimitive real characters X with moduli less 
than 10080 for which x(2) = X(3) = x(5) = X(7) = - 1. These characters are 
obtained by multiplying the real primitive characters with moduli 43, 67, 163, 173, 
293, 403, 437, 547, 667, 677, 773, 797, 883, 907 by various principal characters. 
These 135 imprimitive real characters all satisfy the hypotheses of assertion III and 
so the corresponding Fekete polynomials all change sign in (0, 1). 

Two different methods of proof are used for part (c) of the theorem. One method 
is based on a direct calculation of the values of the polynomial g(x, X) = x-1f(x, X) 
and the use of the bound (1 - x)-2 for its derivative. In addition we require an arith- 
metical lemma showing that f(x, X) is positive on a small open interval with 1 as its 
right-hand endpoint. 

The other method is based on finding a positive integer m such that the power 
series for (1 - x)-mF(x, X) has all coefficients positive. In the case X(n)= (n/1973), 
we find that m = 567 is the smallest value of m which will work. In the case X(n) 
= (n/1277), we find that m = 766 is the smallest value of m which will work. 
This second method is often attributed to Chowla [1], but in fact goes back to Fekete 
(cf. [2]). While the Fekete-Chowla method is sometimes useful for characters of small 
moduli, in the cases at hand it takes over 100 times as much computer time as the 
first method. 

It should be emphasized that the positivity of the Fekete polynomial f(x, X) 
throughout (0, 1) is merely a crude sufficient condition for the positivity of L(s, X) 
for all positive s. When X(- 1) = - 1 a much more subtle way of obtaining the posi- 
tivity of L(s, X) for all positive s is presented in [6] and in a forthcoming paper by 
Purdy. 

2. Proof of III. Let X denote the Liouville function and let * indicate summa- 
tion over those values of n having no prime factors greater than 7. Then under the 
hypotheses of III we have 

39 00 

f (x, X) < ,: X(n)x n + E x n 
n=1 n=40 

< Z" X(n)xn + X29 + x31 + x37 + X40/(l -x) 
n <40 

? X(l1){X1 1 -X 22 -x33} + X(13){x1 3 -x26-x 39} 

? x(17){x17 - x 34} + X(19){X19 - X 38} + X(23)X23. 

For 0 < x < 0.8 we have 

x11 x 22 -x33> x13 -X26 -x39 >x17 -x34 >x19 -x38 >x23. 
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In view of these inequalities the extremal case of the above majorant for f(x, X) con- 

sistent with the hypotheses of III is that in which 

X(11) = x(13) = X(17) = x(19) = 1, x(23) = 0. 

Thus for 0 < x < 0.8 we have 

39 

f(x, X) < Z p(n)xn + x40/(1 - X) = P(x), 
n=l 

where p is a completely multiplicative arithmetic function such that 

p(2) = p(3) = p(5) = p(7) = - 1, p(11) = p(13) = p(17) = p(19) = 1, 

p(23) = 0, p(29) - p(31) = p(37)= 1. 

The rational function P(x) is negative when x = 0.745 and in fact throughout the 

entire closed interval [0.742, 0.749]. However, the single calculation P(0.745) < 
- 0.0001488 is all that is logically required. Thus III is proved. 

We remark that if X(2) = X(3) = X(5) = X(7) = -1 but X(I1) = x(13) 

X(17) = X(l9) = x(23) = 1, then 

f(x, X) > x - - X3 + x4 - x5 + x6 -X7 - x8 + x9 +X10 +xll x x12 

+ X13 + x14 + x15 + x16 + x17 -x18 + x19 -X20 + x2 -x22 

?X23 + x24 + X25 - Ej x n 

n= 26 

which can be shown to be positive on the interval (0, 0.9217) by the method of Sec- 
tion 5. Thus the condition in III that at least one of the numbers x(l 1), x(13), x(I7), 

x(19), x(23) be less than one is absolutely essential. Of course this is shown more 
forcefully by part (c) of the theorem. 

3. Proof of Part (a) of the Theorem. Consider a real primitive character X with 

X(2) = X(3) = X(5) = X(7) = - 1. Since X(2) # 0, the modulus of X must be odd. 
Thus X is given by the Jacobi symbol 

(*) X(n) = (n/q) 

for some odd squarefree positive integer q (not necessarily a prime). By using the 

quadratic reciprocity law and its two supplements we find that 

q-3, 5 (mod 8), q-5, 7 (mod 12), q-2, 3 (mod 5), 

q 5, 11, 13, 15, 17, 23 (mod 28). 
Thus 

q 43, 67, 163, 173, 293, 403, 437, 547, 667, 677, 773, 797 (mod 840). 
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When we confine ourselves to values of q less than 10080 = 12 - 840, we obtain 
twelve possible q in each of the twelve listed residue classes modulo 840. However 
the three numbers 

5203 = 43 112, 7267 = 43 * 132, 8107 = 67 * 112 

are not squarefree and therefore do not give rise to primitive characters. 
By considering X(1 1), X(13), X(17), x(19), and X(23) we find that the remain- 

ing 141 values of q fall into four classifications according to whether or not the 
hypotheses of I, II, and III are satisfied. For the following 66 values of q the cor- 
responding character X given by (*) satisfies the hypotheses of I: 

67, 163, 173, 293, 437, 677, 883, 907, 1387, 1517, 1613, 1747, 2083, 2227, 2347, 
2477, 2813, 3067, 3197, 3317, 3403, 3523, 3533, 3763, 3797, 4027, 4133, 4157, 
4373, 4603, 4637, 4867, 5083, 5107, 5213, 5443, 5477, 5707, 5717, 5837, 5923, 
6043, 6173, 6427, 6763, 6893, 7013, 7157, 7493, 7627, 7723, 7853, 8333, 8357, 
8563, 8803, 8947, 9067, 9077, 9173, 9307, 9403, 9413, 9533, 9677, 9917. 

For the following 65 values of q the corresponding character X given by (*) sat- 
isfies the hypotheses of II but not the hypotheses of I: 

43, 403, 547, 773, 797, 1003, 1013, 1133, 1243, 1507, 1637, 1723, 1843, 1853, 
2117, 2357, 2453, 2563, 2587, 2683, 2693, 2923, 2957, 3187, 3293, 3427, 3907, 
4037, 4243, 4267, 4363, 4493, 4747, 4877, 4973, 4997, 5333, 5587, 5813, 5947, 
6053, 6283, 6317, 6547, 6557, 6653, 6677, 6787, 6883, 7123, 7517, 7603, 7733, 
7963, 7997, 8227, 8237, 8443, 8573, 8693, 8837, 9197, 9283, 9787, 10037. 

For the following 7 values of q the corresponding character X given by (*) satis- 
fies the hypotheses of III but not the hypotheses of II: 

667, 3653, 7387, 7397, 8467, 9643, 10013. 

Finally for the following 3 values of q the corresponding character X given by (*) 
does not satisfy the hypotheses of III: 1277, 1973, 9907. A table of some of the 
values of the ten primitive characters falling into the last two classifications is given in 
Table 1. 

Altogether there are 66 + 65 + 7 = 138 values of q such that the correspond- 
ing primitive character X satisfies the hypotheses of III, and accordingly f(x, X) < 0 
when x = 0.745 in all these cases. 

4. Proof of Part (b) of the Theorem. While the character X(n) = (n/9907) is 
not covered by III, a straightforward calculation and a rough error analysis reveals that 
in this case f(0.983, X) < - 0.37. We shall indicate in Section 5 how we arrived at 
the value 0.983. However, the relatively large absolute value of f(0.983, X) indicates 
that the calculation required here is not a very delicate one. For example, if we merely 
wished to prove the negativity of f(0.983, X), we could take only the first 400 terms 
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TABLE 1 

Real primitive characters X with x(2) = X(3) = X(5) = X(7) =-1 and 

X(11) > -1, X(13) > - 1, x(17) > -1, x(19) > - 1. 

{n \ n n n n n n n n n 
n _- i_ . X 

k667 1i- 277 1973 36 53 7i3 87J 7'3 9 7 467 9643 9907 10 

1 1 + + + + + + + + + + 

13 + + + 0 + 0 + + + + 

17 + + + + + + + + + 0 

19 + + + + + + + + + 0 

23 0 + + - - - - - + + 

29 0 + + + - - + - - - 

31 - - + - - + - - - 0 
37 + - + + + + 

41 - - + + + + + 

43 + _ + + + + + 

47 - + - + + + 

5 3 - + + + + 

59 + - + - - + + _ + _ 

61 + + - - - + + + + + 

67 - + - + - _ _ _ + _ 

71 + _ _ + _ + 
73 - + + + - + + - - + 

79 + + - + - + + _ - _ 

83 - - + + 0 + - + - - 

89 + - - + 0 + - - - + 

of f(x, X), say, since 

983 
E (0.983)n 817 (0 983)400 < 0.061. 

n=401 

This shows that f(0.983, X) < - 0.3 for any X of the form 

x(n) = (n/q), q 9907 (mod 4M), 

where M is the product of all primes less than 400. 

5. Proof of Part (c) of the Theorem by Direct Calculation. We require some 
lemmas. 

LEMMA 1 (Cf. p. 17 of [3]). Suppose X is a primitive residue character modulo 
k with k > 1 and X(- 1) = 1. Let f(x) = f(x, X) and p = e21i/k. Then for 
jz <K we have 

f(e-27rz/k) f(p) 
1e - )2 = 0z (- 1)nz2n+'L(2n + 2, X)* 

Proof. Since f(pm) = 3(m)f(p) for any positive integer m, we have 
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f(x) k f(pm) 1 k f(p) X(m) 
-xk __ k l-pmX - k 1-pmX 

Thus for IzI <1 we have 

f(e-2irizlk) f(p) k (m)1 / 
( -27riz k Z - e-2iri(z+m)/k 2 l-e M1e 

f() k + m 

2ki E x(m)cotg k(Z + m) 

_f(p) k1 

=2 E x(m) lim = ir(z + m)/k - Trj 

_ 1ri f(p) 1+O J k +(m - kj) 

f(p) M X(m) 
2iri Mj-> +oo m--M 
f (P) 1 x (m) ? \ 

27ri Murn z + m 

21r1 r=O I?M rO I 
r0O M--*+- O<IrnI? 

since if we separate out the terms with r = 0, the remaining iterated sum is absolutely 

convergent. The result of the lemma follows upon replacing z by - iz and using 

the assumption X(- 1) = 1. 
LEMMA 2. If X is a primitive real character modulo k with k > 1 and 

X(-l) =l,then f(x,x)>0 when exp(-27/7k)<x<1. 
Proof. Recall that for a real primitive character X modulo k we have 

k 

f(e27ri/k, X) = i: X(m)e27rim/k = {X(- l)k} / 2. 
m=l 

Thus if lzl < 1, we have by Lemma 1 

00 

f(eC27zIk, X) = z(l - e-27z )7r-lkl/2 E (- 1)nz2nL(2n + 2, X). 
n=0 

Now if n is a positive integer, 

L(2n + 2, x) - j 1 - X(P)p-2 n 1 + p2n 
L(2n, X) 1 - 2n-2 X(P)=- 1 + p2n-2 

I + p-2 = t(2)r(8) = T. 
< 1 ? 4 - q4)2 7 
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Thus if 0 < z < V/7fr, the nth term of the above series for f(e-21rz/k, X) decreases 

in absolute value as n increases. Hence f(e-21Tz1k, X) > 0 if 0 < z < /'7br and so 

f(x, X) > O if exp(- 2N/7/k) < x < 1. 
For later reference we note that 

exp (- 27-/1277) < 0.9960, exp (- 2\/71973) < 0.9975. 

LEMMA 3. For a real residue character X let 

k 

g(X) = g(X, X) = Xltf(X, X) Z f 
X(n)x n- 1 

n= 1 

If g(xo, X) > 0 for some xo in [0, 1), then g(x, X) > 0 on the interval (xo, xo + 
6(xo)), where 

6(Xo) = g(X0)(l - XO)2/(l + g(Xo)(I - X0)). 

Proof. We remark that 

k 

g(X0)= X(n)Xxn- < x x-j = (1 -xofl, 
n= n=l 

so that 6(xo) < 1 - xo and xo + 6(xo) is still in [0, 1). Now 

k 

g'(X, X) = 
X 

x(n)(n - l)xn-2 > - 
X 

(n - l)xn2 - - (1 -xf2. 
n-2 n=2 

Thus if 0 < h < 6(xo), we have 

g(xo + h) = g(x0) +? g'(t)dt > g(xo) ( - t)-2 dt 

h 
- g(XO) - (1 - xo)(I - xO - h) 

g(x0)(l - xO)2 - h{l + g(xo)(I - x0)} 

(1 - xo)(1 - xo - h) 

LEMMA 4. If X is a real residue character and if g(xO, X) = x-ltf(xo, X) > 0 
for some xo in [1/2, 1), then g(x, X) > 0 on the interval (xo - rl(xo), xo), where 

7(x0) = g(XO)(l - x0)2 > 6(xo). 

Proof. We remark that r7(xo) < 1 - xo < xo, so that xo - s7(xo) is still in 
[0, 1). If 0 < h < K7(xo), we have 

g(xO - h) = g(xo) - fx h g'(t)dt > g(xo) - h(l - xo)-2 > 0. 

Now we apply these lemmas and some machine computation to prove part (c) of 
our theorem. In view of Lemma 2 it suffices to show that 
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(*) g(x, X) > 0 for 0 < x < 0.9960, when X(n) = (n/1277) 
and 

(**) g(x, x) > 0 for 0 < x < 0.9975, when x(n) = (n/1973). 

To prove (*) and (* *) we used the computer to construct a finite sequence of 
numbers x1, x2, * * XN such that 

(i) X1 =0, 

(ii) xj1+ = xj + 6(xj), 

(iii) g(xj) > O, 

(iv) XN > 0.9960 when X(n) = (n/1277), XN >0.9975 when X(n) = (n/i973) 
The existence of such a sequence is a necessary and sufficient condition for (*) or 
(**), respectively. 

For the real nonprincipal character modulo 1973 we found N = 696. The 
smallest value of g(x1) = g(xj, X) found was 

g(x157, x) = g(0.7440438789) = 0.0012990974, 

while the smallest value of 6(x1) used was 

6(x695) = 6(0.9974918304) - 0.0000243189. 

Fortunately 6 was often much larger than this minimum value, so that the length of 
our sequence remained within reasonable bounds. A skeleton table of values, including 
the relative extrema of the sequence g(x1), is given in Table 2. 

For the real nonprincipal character modulo 1277 we found N = 864. The 

smallest value of g(x1) found was 

g(x188, x) = g(0.7445806130) = 0.0009461806 

and the smallest value of 6(x1) found was 

6(x613) = 6(0.9817924724) = 0.0000268077. 

Table 3 gives a skeleton table of values, including the relative extrema of the sequence 

g(xj). 
For both cases Lemma 3 shows that f(x, X) > 0 on each interval (Xi, Xj+1) 

for j = 1, 2,5 . , N - 1. Thus f(x, X) > 0 throughout (0, 1) for the nonprincipal 
characters with moduli 1277 and 1973. 

While we have not used Lemma 4 as such, it shows that once we obtain a positive 
value for g(x1+ 1 5 X) we have a second argument for showing the positivity of g(x, X) 
for at least the right-hand part of (xj, x+ 1 ). It could also be used to produce an alter 

native proof of part (c) of the theorem by constructing a sequence going in the oppo- 
site direction, starting from 0.9960 or 0.9975. 

We remark that in a case where g(x, X) = x-1f(x, X) has a zero in [0, 1) the 

sequence constructed by using (i), (ii), and (iii) indefinitely will be infinite and will 
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TABLE 2 

Some values of g(x, X) = En=lI X(n)xn 1, where x(n) = (n/1973) 

j Xi g(xj) S(Xj) 

1 0.0 1.0000000000 0.5000000000 

2 0.5000000000 0.3271283007 0.0702858327 

3 0.5702858327 0.2121684340 0.0359043434 

156 0.7439587333 0.0012992317 0.0000851456 

157 0.7440438789 0.0012990974 0.0000850801 

158 0.7441289590 0.0012991815 0.0000850292 

347 0.9483029621 1.6113573903 0.0039753328 

348 0.9522782949 1.6293312786 0.0034428767 

349 0.9557211716 1.6267671765 0.0029751588 

463 0.9880324013 0.2587139465 0.0000369396 

464 0.9880693409 0.2586946663 0.0000367094 

465 0.9881060503 0.2587203522 0.0000364879 

695 0.9974918304 3.9035744175 0.0000243189 

696 0.9975161493 3.9075094417 0.0000238757 

697 0.9975400250 3.9107595096 0.0000234404 

701 0.9976312533 3.9173067427 0.0000217778 

702 0.9976530311 3.9174293158 0.0000213817 

703 0.9976744128 3.9169854994 0.0000209932 

converge to the smallest positive zero of g(x, X). In fact, in the case of the real non- 
principal character modulo 9907 the present method determined that the first positive 
zero of g(x, X) is about 0.971780446. The function g(x, X) becomes negative after 
this value and reaches a relative minimum of about - 0.3775 when x is about 0.983. 
This explains how we chose the value 0.983 as a suitable point at which to evaluate 
f(x, X) = xg(x, X) for the modulus 9907. 

Needless to say it is not really necessary to begin our sequences x1, x2,.. with 

xi = 0. For example, it is easy to prove (cf. pp. 28-29 of [3]) that for an arbitrary 
real character X we have f(x, X) > 0 on the interval (0, f], where t = 0.6707 ... 

is the smallest positive zero of the power series T,' X(n)xn. Thus we could begin n=1 
our sequence with xi = 0.67, say. In a similar way we could begin our sequences 
with xi = 0.92 by using the result quoted at the end of Section 2, namely that for 
characters satisfying 

X(2) = X(3) = X(5) = X(7) = - 1, X(i1) = X(13) = X(17) = X(19) = x(23) = 1 

we have 

g(x, x) = x-lf(x, x) > 0 for 0 <x <0.9217. 
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TABLE 3 
1276 n-i,weeXn n17) Some values of g(x, X) = Y-n=l X(n)x where x(n) = (n/1277). 

i Xi g(xj) 6(xj) 

1 0.0 1.0000000000 0.5000000000 

2 0.5000000000 0.3271282988 0.0702858323 

3 0.5702858323 0.2121683345 0.0359043280 

187 0.7445188700 0.0009461824 0.0000617430 

188 0.7445806130 0.0009461806 0.0000617130 

189 0.7446423260 0.0009462923 0.0000616905 

409 0.9306691788 0.9233622379 0.0041713443 

410 0.9348405231 0.9286600710 0.0037178921 

411 0.9385584152 0.9242526263 0.0033016256 

582 0.9809481090 0.0774233276 0.0000280613 

583 0.9809761703 0.0774219891 0.0000279783 

584 0.9810041486 0.0774283493 0.0000278984 

863 0.9959763690 3.0991683047 0.0000495564 

864 0.9960259254 3.1060949352 0.0000484572 

865 0.9960743826 3.1120902540 0.0000473800 

871 0.9963432772 3.1301413811 0.0000413814 

872 0.9963846586 3.1304408794 0.0000404592 

873 0.9964251178 3.130045 6513 0.0000395586 

However, the detailed proof of this latter result would require exactly the same method 
we have just been using. 

A word must be said about roundoff error in calculating g(x, X) for the real 
nonprincipal characters with moduli 1277, 1973, and 9907. If the value of a poly- 
nomial ao + a1 x + ? * * + amxm is calculated for a particular value of x by the 
customary method of synthetic division on a machine whose arithmetic operations are 
rounded off to t binary digits, the result obtained is 

am(1 + Em)xm + am-,(I + Em_l)xm-l + ? + a1(I + El)x + ao(I + EO) 

where 

(1 - 2-t)2r+2 < 1 + Er < (1 + 2-t)2r+2 (r = 0, 1, , im). 

(Cf. pp. 49-50 of [10].) For the moduli 1277 and 1973 we have Jail = 1, 
m < 2000, and 0 < x < 1. For the IBM 360 (which was used) we have t > 49. 
Thus 

-49)000 -49 )212 2-37 36<I+1-1 
1 + ErS(1 + 2 4)4 (e ) = e < 1 + 2- <1 ? 10 

and 

2 -48.6)2 
12 

_2-36.6 -366 1 ? Er >, (1 ~2 49)4000 > (e )2 e > 1 -236> -101 
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Thus 

FrE < 10-1 (r = 0, I, m). 

Hence the roundoff error in calculating one of the values of g(x, X) for the real non- 
principal characters with moduli 1277 and 1973 is less than 2(1O)-8. Thus the first 

seven of the ten decimal places printed out for the values of g(x, X) are significant in 
these two cases. Similarly the roundoff error in calculating g(x, X) for the real non- 
principal character modulo 9907 is less than 10-6 and so our assertion that 

f(O.983,X) < - 0.37 in that case is certainly correct. 
For the moduli 1277 and 1973 we can say that, since each value of g(x, X) 

is calculated from scratch and since the values obtained are all greater than 0.0009, the 
correct functional values at the points chosen are certainly positive. The only question 
remaining is whether we can be sure of positivity in (xj, x1+ 1). Once Xj is chosen, 
we certainly know positivity in the interval (Xj, xj + 6(x1)). The only problem is that 
there may be a roundoff error in calculating 

6(Xj) = g(xj)(I - Xj)2/(1 + (1 - X,)g(X,)). 

However, this roundoff error is certainly less than 10-6. But if we apply Lemma 4 to 
the computed value of x1+ 1, we can infer positivity of g(x, X) in an interval to the 
left of x+ 1 of length at least q (xi+1) > 6(x+ 1) > 0.00002 > 10-6. Thus the 
possible roundoff error in 8(xd) does not raise any question about the positivity of 
g(x, X) in (Xj, x,+ 1) since we have the reserve firepower of Lemma 4. 

6. Proof of Part (c) of the Theorem by the Fekete-Chowla Method. The follow- 
ing lemma is due to Fekete. 

LEMMA 5. If f is a polynomial with real coefficients, then f has no zeros in 

(0, 1) if and only if there is a nonnegative integer m such that the power series for 
(1 - x)-mf(x) around the origin has all coefficients of one sign. 

Proof (Cf. p. 99 of [2] and Problems 44 and 187 of Part V of [8].) The proof 
consists in noting that a real polynomial with no zeros in (0, 1) can be factored into 
real factors of the following types: 

dx , where d = 0 and j is a nonnegative integer; 
1 -hx, where 0 <h <1; 
1 + kx, where k > 0; 
ax2 + bx + c, where a > 0, c > 0, 4ac > b2. 

Now 

(1 - x)-1(1 - hx) = 1 + (1 - h)x + (1 - h)x2 +? 

and it can be verified that the power series for (1 - x)-r(ax2 + bx + c) has positive 
coefficients if 
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r > max a c ' 
2(ac)1/2 + b 

The result of the lemma then follows by multiplication. 
If X is a given real nonprincipal character modulo k and if m is a nonnegative 

integer, put 

E Sm(n)Xn = (1 -x)mf(x, X) = (1 - Xm(I - xk)F(x, X) 
n= 1 

and 
00 

E Sm(n)X n = (1 -x)-mF(x, X) = (1 - x)m(I - xk)flf(X, X). 
n=1 

Thus so(n) = x(n) if 1 < n < k, so(n) = 0 for n > k, and SO(n) = x(n) for all 

positive integral n. Also we have the recursion relations 
n n 

Sm(n) E Sm-1(j), Sm(n) = Z Sm-i(i) 
j=l j=l 

valid for positive integral m and n. With this notation we have the following two 
lemmas. 

LEMMA 6. If X is a real nonprincipal character modulo k, the following four 
assertions are equivalent: 

(i) F(x, X) is positive throughout (0, 1), 
(ii) f(x, X) is positive throughout (0, 1), 

(iii) there is a positive integer m such that sm (n) > 0 for all n, 
(iv) there is a positive integer m such that Sm (n) > 0 for all n. 
Proof Since F(x, X) = (1 - xk)-lf(X, X), (i) implies (ii). Since f(x, X) is a 

polynomial, (ii) implies (iii) by Lemma 5. Since 

00 00 

E Sm(n)xn = (1 xk)-1 E sm(n)xn, 
n=1 n=1 

(iii) implies (iv). Since 
00 

F(x, X) = (1 -x)m Z Sm(n)x , 
n= 1 

(iv) implies (i). 
LEMMA 7. If X is a given nonprincipal residue character modulo k, let m1 = 

m1 (X) be the smallest positive integer such that sm 1(n) > 0 for all n and let m2 = 

m2(X) be the smallest positive integer such that Sm (n) > 0 for all n. Then m2 < 

ml <m2 + 1. 

Proof. The first inequality follows from the above proof that (iii) implies (iv). 
The second follows from the identity 
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E Sm+1(n)x' = (1 ?x + x2 +** + xk1) E Sm (n)Xn. 
n=1 n=11 

By the Fekete-Chowla method we mean the use of either (iii) or (iv) to test for 

the positivity of f or F throughout (0, 1). Properly speaking, Fekete considered 
the use of (iii) and in this he was followed by Grimm [3], while Chowla [1] discussed 
the use of (iv) and this was the procedure used by Rosser [9]. However, there is very 
little distinction between the two versions of the method. 

In the case of the real nonprincipal characters modulo 1973 and 1277 the cal- 
culations discussed in the preceding section show that f(x, X) comes close to having a 

real zero around 0.744. In fact,in both cases f has a pair of complex conjugate zeros 
in this vicinity, which we tried to approximate. We found that for the real nonprincipal 
character modulo 1973 the polynomial f(x, X) has the following approximate qua- 

dratic factor 

x2 - 1.488551225204145x + 0.5540322398114067, 

while for the real nonprincipal character modulo 1277 the polynomial f(x, X) has 

the following approximate quadratic factor 

X2 - 1.489417749940728x + 0.5546548204910508. 

(We do not claim that all the digits quoted here are significant.) If we use the inequality 
for r quoted in the proof of Lemma 5 which guarantees that (1 - x)r(ax2 + bx + c) 
has positive coefficients, we find that the factor (1 - x)-568 will convert the quadratic 
factor for 1973 into a power series with positive coefficients and that the factor 

(1 - x)-766 will convert the quadratic factor for 1277 into a power series with posi- 
tive coefficients. 

We went through these efforts in order to get some idea of what power of (1 -x)-l 
we must multiply by in order to convert f(x, X) into a power series with positive coef- 

ficients. Actually the values obtained for the quadratic factors turned out to give a very 
good indication. For the real nonprincipal character modulo 1973 we found ml (x) = 

m2(x) = 567 instead of the suggested 568. For the real nonprincipal character modulo 
1277 we found m2(X) = 766, exactly equal to the suggested value, but were unable 
to determine whether ml (x) is 766 or 767 without a further extensive calculation. 

We proceed to give a discussion of how these values of m2(X) were obtained. 
First let x(n) = (n/1973). Since X(- 1) = 1, we know that So, S,, and S2 

have period 1973 and vanish at 1973. Calculation shows that S3(1973) = 6096570, 

so that S3(1973m) = 6096570m for every positive integer m. The minimum value 
of S2(n) for 1 < n < 1973 is - 261, attained at n = 157 and 158. Since 

6096570 + 1973(- 261) > 0, it follows that S3(n) > 0 for n > 1973. The com- 

puter found that S3(n) 6 0 for 6 < n < 17 and for 156 < n < 429 but that 

S3(n) > 0 for all other values of n between 1 and 1973. Hence S3(n) > 0 for 

n > 430. 
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Suppose now that Sml(n) takes a block of nonpositive values when n runs from a to b 
inclusive, where 1 < a < b. In other words suppose Sm_-(a - 1) > 0, Sm-l(n) < 0 for a < n 
< b, and Sm_1(b + 1) > 0. Then either (1) Sm(n) > 0 for a < n < b (if Sm(a - 1) is very 
large), or (2) there is a c such that a < c < b, Sm(C - 1) > 0, and Sm(c) < 0 (if 
Sm(a - 1) is positive but not very large), or (3) Sm(n) < 0 for a - 1 < n < b (if Sm(a - 1) 
6 0). Ni.te that in cases (2) and (3) we must have Sm(b) ? 0. Thus when we go from Sml 

to Sm a block of nonpositive values of Sm-l can undergo one of the following transforma- 

tions: (1) it can disappear, (2) its starting point can remain stationary or shift to the 
right but not go past the old ending point (while the length may change but must extend 

at least to the old ending point), (3) it can merge with a previous nonpositive block. 
Certainly a block of consecutive integers on which Sm_1 is nonpositive cannot split 
into two or more nonpositive blocks of Sm' In fact,these arguments show that the 
number of variations in sign among the values of Sm-, can only decrease by an even 

number when we go over to SM 
We know that S3 has only two nonpositive blocks. For 1 < n < 1973 com- 

puter calculations show that S9(n) is nonpositive only when 18 < n < 37 or when 
697 < n < 844. Hence these blocks must have descended from the two nonpositive 
blocks of S3. Since S3 is always positive after its second nonpositive block, S9 
enjoys the same property, i.e., S9(n) > 0 for n > 845. In another calculation we 

found that S1o(n) < 0 for 22 < n < 42 but S10(n) > 0 for all other positive 
integers n < 1973. Hence, while the second nonpositive block [156, 429] of S3 
has descendants in S4, *, 9S, it does not have one in SlO' since S1o(n) > 0 for 

697 < n < 844, so that no inheritance from the nonpositive block [697, 844] in S9 

is possible. Hence S o(n) > 0 for n > 43. 

The one remaining nonpositive block [22, 42] of Sio has a descendant in each 
generation for some time. In fact a calculation determined that S566(1648) < 
- 10538 is the minimum value of S566 on the interval [1, 1973] and that S566(1972) 
> 0, so that S566 has a single nonpositive block containing 1648 but not 1972. As 
a consequence 5566(n) > 0 for all n > 1972. Finally we found that S567(n) > 0 
for 1 < n < 1973, so that the single nonpositive block appearing in SlO through 

S566 has finally disappeared. Thus S567(n) > 0 for all n > 1 and m2(X) = 567 

in this case. 
If we were to consider sm instead of Sm in this argument for the nonprincipal 

real character modulo 1973, the only difference would be in the first paragraph of the 
argument. We would have so(n) = 0 for n > 1973, s1(n)=0 for n > 1973, 
s2(n) = 0 for n > 1973, and s3(n) = 6096570 for n > 1973. But the nonpositive 
blocks of S3, , S566 all terminate before 1973 and so would be exactly the same 
for s3, * *, S566- Thus ml(X) = 567 in this case. 

Now we discuss the corresponding calculations for the real nonprincipal character 
modulo 1277. As before So, Sl, and S2 have period 1277 and vanish at 1277. 
We found S3(1277) = 2045754 and so S3(1277m) = 2045754m for every positive 
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integer m. The minimum value of S2(n) for 1 < n < 1277 is - 149, attained for 
8 values less than 1277. Since 2045754 + 1277(- 149) > 0, we infer that S3(n)> 0 
for n > 1277. The computer found that S3(n) < 0 for 6 < n < 17 and for 96 < 
n < 282 and that S3(n) > 0 for all other values of n less than 1277. Accordingly 
S3(n)>0 for n>283. 

Just as for the real nonprincipal character modulo 1973, we know that Sm for m > 3 can 

have at most two nonpositive blocks. Two nonpositive blocks do exist for S23, since S23(n) < 0 
for 54 < n < 85 and for 1167 < n < 1236 but S23 is otherwise positive on [1, 
1277]. However, the second nonpositive block disappears when we go from S23 to 

S24, since S24(n) < 0 for 57 < n < 88 but S24 is otherwise positive on [1, 1277]. 
Thus S24(n) > 0 for n > 89 and Sm has at most one nonpositive block for any 
m greater than 23. 

A calculation determined that S765(2232) < 0 while S765(2500) > 0. Thus 

S765 has a nonpositive block which includes 2232 but not 2500, and this is its only 
nonpositive block. Finally we found that S766(n) > 0 for 1 < n < 2500. If there 
were a nonpositive block in S766, it would have to begin before 2500. Thus S766(n) 
> 0 for all positive integral n in the case of the real nonprincipal character modulo 
1277. Note that the nonpositive block of S765 extends well beyond 1277, which 
complicates the precise determination of m1(X). But 766 = m2(X) < m1(x) < 767. 

7. Concluding Remarks. In [4] Hahn has pointed out that a slight modification 
of the arguments in [5] gives the following generalization of Heilbronn's theorem 
quoted in Section 1. Let pi denote the ith prime. Suppose el, * , e, are given, 
where each e is - 1, 0, or 1. Then there is a positive integer r with the following 
property. For any real residue character X such that 

x(pi) = ei for i = 1, 2, * *, h, 

and 

x(pi) =-l for i = h + 1, , h + r, 

the corresponding Fekete polynomial f(x, X) changes sign in (0, 1). 
In this paper we showed that when h = 0 the smallest value of r which would 

work is r = 5. In principle it would be possible to determine the smallest admissible 
value of r in other cases as well. 

Hahn's generalization of Heilbronn's theorem heuristically indicates that if X is a 
real primitive character to a very large modulus, then f(x, X) is very likely to have a 

sign change in (0, 1). For at any stage a sufficiently long string of minus ones among 
the values of X(P) is enough to force the existence of such a sign change. If the mod- 

ulus is large enough, there are plenty of such opportunities to go astray. To put it an- 

other way, assertions I, II, and III show that prescribing the values of X(P) for a 
finite set of primes p can guarantee the existence of a sign change, but Hahn's general- 



SOME NUMERICAL RESULTS ON FEKETE POLYNOMIALS 23 

ization of Heilbronn's theorem shows that no such prescription can guarantee positivity 
throughout (0, 1). Thus it is reasonable to conjecture that in some sense most real 
primitive characters have the property that their Fekete polynomials change signs in 
(0, 1). A rigorous proof of some such result would be of great interest. 
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