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The Number of Distinct Subsums of 
A 

1li 

By M. N. Bleicher and P. Erdos 

Abstract. In this paper we improve the lower bounds for the number, S(N), of distinct 

values obtained as subsums of the first N terms of the harmonic series. We obtain a 

bound of the form 

S() N log 2k+1 ) S(N) > 
el?log oN I log) 

whenever logk+ 1N > k + 1, for k > 3. Slight modifications are needed for k = 1, 2. 

We begin by discussing the number Qk(N) of integers n 6 N, n = P1P2 ... Pk' where 
api-1i 

Pi > e , i = 2,*, k. We prove that 

N k+1 / k \ N k+1 

N n logiN 6 Qk(N) 
? 1 + H 

logi log N 1=1 k() k l~N) log N gN i= 1 1ogk+ 1 ~~~~~~i=-3 
This bound is valid for logk+1 N > k + 1 and for 1 < a 6 2(1 - e2(4)/e3(4)). The 

symbols logix and ei(x) are defined by 

ei(x) 
eO(x) = X, ei+i(x) = e 

logox = x, log +lx = log(logjx), 

where log x denotes the logarithm to the base e. 

In this paper we improve the lower bounds given in [2] and [3] for the number, 
S(N), of distinct values obtained as subsums of the first N terms of the harmonic 
series. The estimates in [1], [2] and [3] were derived because the upper bound was 
needed for lower estimates of the denominators of Egyptian fractions. In this paper 
we concentrate on the lower bounds. We obtain a bound of the form 

log k+ 1) 

S (N) ,e 
loN 

1 
lkgl N) 

whenever logk+ 1N k + 1, for k > 3. Slight modifications are needed for k = 1, 2; 
see Corollaries 1, 2, 3 and 4 for more details. In order to do this we begin by discuss- 
ing the number Qk(N) of integers n AN, n = P1P2 *. Pk where Pi 

> e Pi-l, 
i= 2, * - *, k. We first prove that 
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N k+1 / k____N k+1 

log NN logiN S Qk(N) ? log<j1 N )log N logiN 

This bound is valid for logk+ 1 N > k + 1 and for 1 6 a 6 2(1 - e2(4)/e3(4)). The 
bounds on N and oa are for convenience in evaluating the range of validity and the 
constants in the inequality, not for essential reasons. The symbols logi x and ei(x) 
are defined by 

e(x) = x, ei+i(x) = eel(x), 

logox = x, logj+ lx = log(log1x), 

where log x denotes the logarithm to the base e. 
In fact we prove the following slightly stronger version. 
THEOREM. If 1 6 a 6 2(1 - e2(4)/e3(4)) = 1.999 , then: 
For k = 1, 

lo NN(+ 2 log l)6Q N rN og N ( 2 log N 

where the lower bound holds for N > 59 and the upper bound for N> 2; Q1 (N) = 0 
for N< 2. 

For k = 2, 

l N (log3N + < Q2 (N) N(log3 N + 2) log N\oI 11 logN ?2 

where the lower bound holds for log3 N > 2 and the upper bound for N > e3(- 2) = 

3.1- - (i.e., log3N>-2);Q2(N)=O for N<22. 
For k> 3, 

log N fl log1N ? Qk(N) N(log~ 1N ? k) k gN 3 k N log+N+k fln gN 
3 ~~~~~~~~~~~~~3 

where the lower bound holds for logk+ 1 N > k + 1 and the upper bound holds for 
N > ek+ l(-2); Qk(N) = for N 6 ek+ (- .1l3 ... ) = ek-2(l). 

Proof Case 1. k = 1. In this case Q1 (N) = 7r(N), so that the result is well 
known, see [4, p. 69]. 

Case 2. k = 2. Let Q2(N) be those integers counted by Q2(N); namely 

Q2(N) = {pq: p, q prime, e'P < q, pq 6N}. 

The Upper Bound for Q2(N). Let L be the number which satisfies e L = 

N. It follows that 

(1) Q2(N) = (7r(N/p) - -a(eoP)), 
2<6p<L 
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where p runs through the primes in the indicated interval. We see from the conditions 
on a that 

(2) L < log N. 

We thus deduce that 

(3) Q ) 2plog N P log N/P (1+2 log NIP) 

Since log N/P is almost constant on the interval under consideration, we obtain 

(4) Q( N 1+ 3 Alog N 1 

(24 log(N/log N) ( 2 log(N/log N) J N P 

The value of / lp is well known, for example see [4, p. 70]. Thus we obtain 

(5) Q2(N) < log N(1 + logN ?+ B + 10)2 

which is valid for N> 3 and where B = .26149 . If N> e4, i.e., log3 N> 
log2 4 > .326 then this can be simplified to 

(6) Q2(N) < N(log3 N + 2)/log N 

If 22 < N < e4 < 55, then Q2(N) < Q2(54) = 5 together with log3N > 0 gives 
the upper bound of the theorem for k = 2. 

The Lower Bound for Q2(N). From the definition of Q2(N) we obtain 

(7) Q2(N)= E E 1, 
16p6N 1<q<M 

where p and q run over primes in the indicated intervals and M = mi {N/p, log p/ol. 
Let L be such that 

(8) aN = L log L, 

so that N/log N < L < eN/log N, then 

(9) Q 2 (N- 
= 

E' 
Z + E? 1 

1<p?L 1lq<(logp)/oc L<p?N 1<q<N/P 

Let S1 denote the first double sum and Z2 the second. Since El > 0 we can 
obtain a lower bound for Q2(N) by obtaining a lower bound for E2. 

The Bounds for 12. From the definition of 12 in (9) we obtain 

(10) 2 = E ir(N/P) + Z ir(N/P), 
L<p<L' L'<p<N/2 

where L < L' = N/pl, p1 is the Ith prime with 1 > 7 to be determined later. We 
note that 
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(1 1) E i7r(N/p) = Ei ir(N/p) - l7r(N/p,). 
L <pAN/2 2 ?P ApI 

We shall frequently need to estimate sums of the above type where the index of 
the summation range over an interval of primes. There is a standard technique for con- 
verting the sum to a Stieltjes integral, with respect to d6(x), integrating by parts twice 
with 6(x) approximated by x in between to obtain the following well-known lemma. 

LEMMA. If f(x) > 0 and f'(x) exists and is continuous and 0 < a < b 

Ez f () f(X)(6(X)-X) b +b fAx) 
a< p <b log(x) a~~ logx dx 

f (7(x) - x)d f(X) dx. 

We recall from [4] the estimates 

(12) 1I(x) - xI < x/(2 log x) for x > 563 

and 

(13) 6(x) -x Ax/(2 logx) for x > 1 

and the estimates 

(14) logx(1 21 g ) <7r(x) for x > 59 

(15) ox < 7r(x) for x > 17, 
log x 

and 

(16) 7r(x)<x (1? + for x > 1. logx\ 2 log x 

We use (15) which holds for N > 73 and the lemma to estimate the first sum 
of (10); thus 

z N 
L <P AL p log N/p 

X lo09X1g0x N/x L x log x log N/x 

ILf(0X) X) dx (x log x log N/x)dx 

We next show that 
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(18) OW (aX) dx log N fL(~~) dx(x logxilog N/x 2 og 

To do this we note that 

|dx log xlog Njx| x2 log x log Nix 

and that the estimate of (12), 16g(x) - xl < x/2 log x are both valid for the range 
N/log N S x < N/2 when N>e85. Thus 

(19) -x ( ( ) dx log x log N/x) 
dx < L2x log2 x log N/x 

Since 1/2 log2 x is almost constant on the interval involved it can be brought 
out of the integral and replaced by 1/2 log2 L; what remains is the derivative of 
- log2 Nix, and we get 

IL dx IX) 
(20) SL 2x log2 x log Nix 2 Log (L lg2 N )L 
which yields (18). 

We next evaluate the first integral in (17) by taking the 1/log x outside the 
integral as 1/log L' and integrating the rest exactly to obtain 

log3 N / log2 P 1g2 PI )_FL dx (21) 
~~log N 1og3 N log N /J x log x log N/x' 

We next note that 

(22) 1 9(x)-x L 1 + 1 
\x log x log N/x L / 2 log2 L log N/L 2 log2L' log N/L' 2 logN 

Using (15) and (16), (11) and N/pl > 17, which holds since p1 < log N and 

log3 N > 2, we deduce 

Nlpl<p<NI2 (P 2 <p6p < ) (17 

(23) l N ( P 2 3ogNiP)) 

log N/p1 \2?p?P2log1Nlp 

If il/p <B, then using N> e3(2) > e1 600 and p1 < log N, 

loN I1?B 1 log p1 
(24) El g )>oNNpN/2 log2 p1 p1 log N ) 

Now with the aid of (10), (11) and (24) as well as (17), (21), (22) and (24) we 

obtain for log3 N> 2 and il/p1 B, 
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N log3N/ log2 Pi log pi 1 
> . I - + 

N 2 log N log3 N log N 2 log N log3N 

(25) _ 1 log2 Pi B - I/p/ 
2 log N log3N log3N 

1 logpl 

2 log2 P log3 N log3 N log N 

Taking p, = 1597, 1 = 251 so that all the previous conditions are satisfied and 
using B = .261 - - -, I/p, = .157.- -, 1/2 log2 Pi < .0005 and log3N> 2, we deduce 

(26) 2)Nlog N (1+ 11 log1 N) 

Since Q2(N) > 11 + I2 and by (13), 2] > 0, (26) implies the desired lower 
bound of the theorem for the case k = 2. 

Case 3. k > 3. We now proceed by induction on k. Suppose k > 2 and that 
for 2 6 k' < k the theorem is true for k replaced by k'; we now show it is true 
for k. 

The Lower Bound for Qk(N). Let Qk(N) denote the set of integers counted 

by Qk(N). As before let L = N/log N. We claim that 

(27) Qk(N) U {qp: q E Qk- 1 (N/p)} 
L < p <N 

where the union is disjoint. The disjointness follows from the fact that p > L = 

N/log N> log N> q and thus distinct choices of p and q yield distinct products. 
To see the containment we note that since k > 3, q must have at least two prime 
factors, so that the largest prime factor of q, say p', is at most N/2p < log N/2; 
thus 

(28) log p > log N - log2 N , a (logN) a 

so that qp is one of the integers in Qk(N). 
The containment (27) leads immediately to the inequality 

(29) Qk(N) > Z Q l (NIP), 
L<p <L' 

where L' can have any value satisfying L' > L. We define L' by 

(30) L'= N/e((log2 N)1 /log4N) 

With this choice we can show that 

(31) logkN/p > log*N/L' > (log+ 1 N)(1 - (log5 N)/log4 N). 
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For k > 3, (31) yields 

(32) logk N/p > k; 

while for k = 3 (31) yields 

(33) log3 N/p > 2, 

where we have used logk+ 1 N > k + 1. 
From (32) and (33) we see that the hypothesis of the inductively assumed theo- 

rem is satisfied for estimating the summands Qk- I (N/p) in (29). 
We define Qk(x) by 

1. x k+ 1 
(34) Qk(X) = lo x loge X; 

log X 3 

thus in the range of summation in (29) by the inductive hypothesis Qk- 1 (N/p) < 

Qk- 1 (N/p)- 

From the lemma we get 

Qk(JN) 
Y 

logx Qk-1l(/x) L log X 

(35) 
___ ~Nx (a(X) 

N 
X) dx. 

We first obtain lower estimates for the first and last terms in the RHS of (35) 
and estimate the middle term, which is the main term, last. By (12), the estimate 

16(x) - xl < x/2 log x is valid in the range under consideration. Since x/2 log x is 
increasing in x while Qk- 1(N/x) is decreasing, we see that 

(36) QkX_ 1(N/x) N 
(36) | 1?g ) Qk- 1(NIX)| 2 Qk-1 (logN). log L 2loN 

A straightforward calculation yields 

(37) |d Qk -l (NIX)| 6 Qk - 1 (NIX) 
Jdx logx/ x log x 

Thus the absolute value of the last term of the RHS of (35) is bounded above by 

(38) QL k Q- (NIX) dx 6 L (NlX) dx. 
~L log2 x log2 L Qk1(Nx x 

Similarly for the main term 

(L Qk -(N/X) dx> L Qk-1(N/ d 

fLttinglog x log L'tfh L Qk - a (39) o 

Putting together (35), (36), (38), and (39),we obtain 
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Qk(N)> (o` L' 1 LJ LkL 1(N/x) dx 
(40) 

_ NJ Qk 1 (1og N). 

We can evaluate the integral in (40) by parts with u = nk log1(N/x) and v 

-log2(N/x) to obtain 

fLQkl(/)dx ~ 
k L 

LQk I (NIX) dx = -N lg2 N/x JJ log N/x 
3 L 

(41) 

+ Qk- 1 (N/X)2( logi NIx) ) dx. 

Since 

k i \ 
F, t nlog1 Nix) > log Nx 

(41) leads to 

k L 

Qk- 1(N/x) dx >-NfI log; N/x 
2 L 

(42) 
rL' 

+ Qk- 1 (N/101)g3 NIx dx. 

The last integral can be approximated by substituting for Qk_ (Nlx) and simplifying 

to get 

1L 
.k- 1(N/x)llog3 N/x dx Jg NNlx dx L Qk - log. N/x JJ l N dx 

4 

k rL' 

= N f[ log, N/L (- 10g2 N/x IL 
4 

= N - 
log, N/L'( log2 N/x-j N 

4 19 

4 ( log4 N) 

Substituting this for the last term in (42) while evaluating the first and combining 

terms,we get 
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rL 

JQk - (N/x) dx 

= N fI log1 N + (Njk log, N/LI)log3 N log4 N( N 1) N 

Since 1/log L - 1/log2 L' > 1/log N, we get from (40), and (44) that 

N k+1 
Qk(N) >log N II logiN 

N k lg 
(45) + 10Nlog3Nlog4N J log, N/L' 2 N) 

N 1 k+l 

log N log2 N lg 

Since 

lo4 N/L' 105 N + l ( log4 NV ) > lo5 N I ) 

we see that the sum of the last two terms is positive. The desired lower bound follows. 

The Upper Bound for Qk(N). We may suppose N> ek 2(1 1), for otherwise 

Qk(N) = 0. 
We begin by establishing the following inequality: 

Q k(Nf) E Qk - 1(19 P 02 2)+ Q k - l (NIP) 
M'<p?L L<pSL 

(46) 
+ E Qk -(NIP) + 

L '<p<N/N0 

where M = ek2(1 1), a lower bound for the largest prime factor of elements of 

Qk 1, L = N/(log N log2 N) and L' = min {N/log3 N, N/NO}, where No is the smallest 
element in Qk- 1. To see that (46) holds, consider n E Qk(N), factor n = pq 

where p is the largest prime factor, then n is counted by the appropriate sum de- 
pending on the range into which p falls. We see that in the first sum since q = 

P1P2 * *Pk-1 with Pk-I < logp/a and pi < logpi+I/a, 1 < i < k -1, 
q 2 log p log2 p* log_1 P S log p log2 p. The last two sums follow from the 
fact that pq = n < N and thus q < N/p. 

For the remainder of the proof we suppose that L' = N/log3 N, for otherwise 
the last sum in (46) is zero and the range on the middle sum is shortened. In either 
case the inductive assumption applies to each Qk- 1(N/p) of the middle sum. 

To estimate El we note that there are at most rr(L) summands in which each is at 
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most Qk- 1(log L log2 L) using the estimate r(x) < 2x/log x and the inductive esti- 

mate for Qk-i we obtain 

2L k-1 

<ilogL * gL(logk L + k - 1) fJ log, L 

2V 1 k-i 

(47) log N log2 N/log N (logk N + k - 1) I log N 

3__ N k-1 
< J N loN (logkN + k - 1) rl log,N. 

We next consider 13' There are at most ir(N/22) summands each of size at 

most Qk 1 (N/L) = Qk- 1(log3 N). Hence we conclude 

__ __ __ log3 N k+2 

3 22 log N/22 (logk + 3 N + k - 1) J log, N 

(48) 
1 N ~~~~~~~~k 

< 
I N 

(?k N+k-1) 11 log, N. 
4Oo~ 3 

We now turn our attention to E2 which yields the main term. By use of the 
inductive hypothesis, the choice L = N/log N, the estimate log1(log x log2 x) < 

(log,+ 1 x)(1 + 2/log2 x), for j > 3, and the lemma we deduce 

log N/p (logk N/p + k -1) II log1 N/p 

2N(log 1 Nokg - 1)(1NpN) JJ l E 1 

(49) 6 N(logk+ 1 N + k - 1)(1 + log2 N ) f log, N 

< L X log x logN/xk - X) d ( l N 

+ dxx)-x IL 

xlog x log N/XlL 

The last terms in the braces have been evaluated earlier in formulae (18) and (22), 
where in those formulae slightly different values of L and L' were used. The 1/log x 
can be taken outside the integral as 1/log L and the rest integrated exactly to yield 
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S2 I N(logk+lN+k l)(1 +l N) Ji log,N 

: 

1og 

~~~~L |LI 

S loN(log*21 N/x ? log3N + 1 N l L L 2 ) ((1+2 log2 N 2 log2 N 

(50) 
N ~~~~~k 

<1 
log+N (logk+1 N + 2) fl log3 N 

3 

2 log N 2 log N log3N 

Recalling that L' = N/log3 N or, equivalently log3 N > No > 22, we deduce 
that log5 N > 1. Hence we see that the quantity in the braces is less than 1. 

It follows from (50), (48) and (47) that 

Qk(Nf) < 1g N(logk+1 N + k - 1) ni logo N I + - 2 } 
(51) lgN3 ( 

0 
08408og2)N 

N ~~~~~k t log N (logk3I 
N + k) I log, N, 

which is the desired upper bound. 

The Number of Distinct Subsums of fNl/i; a Lower Bound. Let Q = 

U0=lQk(Nf and Q(N) = 12Qk(, where we have taken a = 3/2 in defining 

Qk(N). Since for any N only finitely many Qk(N) are nonzero,there is no difficulty 
with the sum. 

In order to relate the problem of distinct values of subsums of IN1/i to the 
previous problem we first prove the following theorem. 

THEOREM. If S(N) denotes the number of distinct values of XNek/k as the 
e* assume all the 2N possible combinations with Ek=0, 1, then S(N (N) 

Before proving the theorem we point out some immediate consequences of this 
theorem in combination with the previous theorem's lower bounds for Qk(N). 

COROLLARY 1. For N > 2, 

SC(N) > 2ORL(NY) > e Flo 2r log3 N)) 

COROLLARY 2. For 10g3 N > 2, 
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S(N)>e(log 2(log3 N +12logN))I 

COROLLARY 3. For k > 3 and logk+ 1 N > k + 1, 

(N log 2 k+1 
S (N) >e1 log N fl log1 N 

3 / 
It may be noted that these corollaries improve the results on lower bounds for 

S(N) obtained in [2] in two ways. The first is that the constant Ile in the bound in 
[2] is replaced by the larger log 2(10g3 N + 12/11 + 1/2 log N) in Corollary 2 and by 
log 2 in Corollary 3. The second is the validity of the formula for a given k is ex- 
tended to much smaller values of N. 

Combining Corollaries 2 and 3 above with Theorem 3 of [2] we obtain 
COROLLARY 4. For log2,N> 1 and r > 2, choose t such that et(l) > 

2r- t - 1. Let k = 2r - t - 1. Then k > r (equality only for r = 2, 3) and 

log / kltlog, N rilg 
e( lol2g N -Ii log1 N)< SS(I) < e loN f logj N) 

3 ~~~~~~~~~~~3 

Proof of Corollary 4. From the definition of k we see that if log2 r N > 1 
then logk+ 1 N > et(l) > k; hence Corollary 3 gives the lower bound for r > 3. For 

r = k = 2 it is easy to see that 1og4 N > 1 implies log3 N > 2, hence Corollary 2 
gives the lower bound. The upper bound is from Theorem 3 of [2]. The comment 
about equality of k and r is a trivial calculation. In fact,for r = 4, k = 5, while 
for r = 5, k = 7. The corollary is proved. 

Proof of the Theorem. The idea of the proof is simple. We show that for each 
sequence nl, n2, n3, * * *, nk of distinct elements of Q(N) we get a distinct value 
for , 1/nI. Since ni A N and there are 2Q(N) such sequences, the lower bound 
follows, if we can show the values are all distinct. Thus the theorem will be established 
if we prove the following lemma. 

LEMMA. Let n1, n2, * - *, nk and ml, m2,. * , ml be two sequences of 
elements of Q(N); the elements in each of these sequences being distinct from other 
elements of th'at sequence. Then , 1 /ni = z 1 /mi if and only if k = 1 and, after 
possibly renumbering, ni = Mi, i = 1, 2, * * *, k. 

Proof of the Lemma. We prove the "only if". The "if' half is trivial. 
Let P be the largest prime factor of the product of the n, and mi. Let 

n1, n2, - * *, nkJ and m1, Mi2, * * , Min be all those ni and mi in increasing order 
which have P as a factor. The proof is by induction on the size of P. 

If P=2, n , mi E { 1, 2} and clearly the distinctness of different sums is true. 
Similarly for P =3 when n ,mMi E {1, 2, 3}. 

We now suppose that P > 5 and that for sequences which have only prime 
factors less than P, distinct sequences yield distinct values. 
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Define a/b, a reduced fraction, by 

k 
(52) a 1 "1 b ni Emi 

We may assume a/b > 0, since otherwise we may interchange the mi and ni 
and proceed. 

Let n, = Pn' and m =Pm'; thus 

(53) a _1{ 
b PV ni lMt 

We next show that 

(54) k =l' and n=r , i= 1, 2, ,k'. 

If a = 0 then the clainm follows by induction since the n' and m' have largest 
prime factor less than P. 

We thus consider the case a * 0 and derive a contradiction. 
Since the n1 and mi are in Q(N) and P was the largest prime factor if we 

choose Q to be the largest prime such that e30/2 < P, then we know from the def- 
inition of Q(N) that no prime factor of any n' or m' exceeds Q. Since all the nt 
and ml are squarefree,we see that d = QP el(Q) is a common multiple for 
the nt and m'. Thus 

(55) 1 ~~~~~~1 _c 

for some positive integer c. Since the largest prime factor of the n' and m' is at 
most Q and the ni and mi are in Q(N), we see that Q log Q log2 Q.* log. Q > 

ni, mi where r is chosen so that e2 > log,Q > 2. Thus c/d < IQ21i < 2 log Q + 
1. Hence c < 3d log Q. It follows that 

(56) c < 3d log Q < 3e&(Q) log Q<e3a(Q)2 << . 

(Note: For Q = 2, 3 a different argument is needed to show that c <P since 
3 log Q > ea(Q)12. A trivial calculation suffices.) 

Since 0 <c <P it follows that Ptc. Since a/b = -/P c/d and (a, b) 1, 
we see that P-a and Plb. 

But by hypothesis l/ni = I 1/mi, thus 

a k'1 I1 1 1 r a =, v, _ , _ =v__r 
b 1 ni 1 mi i>l' ml i>k' n S 

where we may take s = ed(P- 1) since all the ni, i > k', and all the mi, i > 1' 

have prime factors less than P. We deduce that Pts; but a/b = r/s and (a, b) = I 
and Plb, thus Pis, a contradiction. Thus a/b = 0, and as noted before the equalities 
of (54) follow. But (54) implies ni = mi for i = 1, 2, - *, k' = 1'. Thus 
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k E 

i=k +1 ni i=k'+1 mi 

and all prime factors are less than P. By induction k = 1 and ni = mi for i = k' ? 
l, k' + 2, * k. 

The lemma is established. 
Conclusion of the Proof of the Theorem. From the lemma we see that every 

distinct subset of Q(N) yields a distinct value for I4ek/k by setting ek = 1 for 
members of the subset and Ek = 0 otherwise. Thus S(N) > 2Q(N), as claimed. 

The theorem is established. 
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