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Irregularities in the Distribution 
of Primes and Twin Primes 

By Richard P. Brent 

Abstract. The maxima and minima of (L(x)) - 7r(x), (R(x)) - ir(x), and 

(L2(x))- 7r2(x) in various intervals up to x = 8 X 1010 are tabulated. Here 

7r(x) and ir2(x) are respectively the number of primes and twin primes not 

exceeding x, L(x) is the logarithmic integral, R(x) is Riemann's approxima- 
tion to 7r(x), and L2(x) is the Hardy-Littlewood approximation to 7r2(x). 
The computation of the sum of inverses of twin primes less than 8 X 1010 

gives a probable value 1.9021604 ? 5 X 10-7 for Brun's constant. 

1. Approximations to 7r(x). Let P {2, 3, 5, * - - } be the set of primes, 
and let 7r(x) be the number of primes not exceeding x. Two well-known approxi- 
mations to 7r(x) for x > 1 are the logarithmic integral: 

xdt 
(1.1) L(x)= 

dt 

0 log t ~ og)' 

(1.2) 7 +log(log x) + E k(k1 

and Riemann's approximation: 

(1.3) R(x) = L(x 1lk) 
k=1 k 

(1.4) 
00 

(log X)k 

(kl k !k(k + 1) 

Note that (1.1) differs by L(2) = 1.04516378... from the frequently used approxi- 
mation f xdt/log t. 

We are interested in the errors 

(1.5) rl(X) = (L(X)) - 7T(X) 

and 

(1.6) r2(x) = (R(X)) - 7(X)' 

where (y) denotes the integer closest to y (i.e., the integer part of (y + ?2)). 
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Since ri(x) is usually (though not always: see below) of order x1 /2/log x, it is 
useful to consider the "normalized" errors 

(1.7) s.(x) = r(x)(logx)/x2 for i = 1, 2. 

Littlewood showed that, for sufficiently large x, si(x)/log log log x attains 
arbitrarily large positive and negative values [9], [10], [13]. On the other hand, 
Vinogradov [22] has shown that 

(1.8) s.(x) = O(x 1 2exp(- a(log x)315)) 

for a positive constant a. Assuming the Riemann hypothesis, the stronger result 

(1.9) si(x) = O(log2x) 

is known [10]. Explicit bounds are given by Rosser and Schoenfeld [16]. 

Since 7r(x) has been computed, both directly and indirectly [3], [12], [14], 
and tabulated for various values of x up to 1013, the error functions ri(x) and 

si(x) are easily computed for these values of x. However, Shanks [19] observed 

that this gives little information about the behaviour of the error functions between 
the tabulated values. Let 

(1.10) Ri(a, b) = max r1(p) 
PEPnl[a, bJ 

and 

(1.11) p,(a, b) = min r1(P). 
p-Pnf[a, bJ 

In Section 4 we describe how Ri(a, b) and pi(a, b) may be computed fairly ef- 
ficiently for a given interval [a, b]. Table 1 gives the results of such computations 
for various intervals up to 8 x 1010, and more detailed tables have been deposited 
in the UMT file of this journal. Although the maximum and minimum in (1.10) and 

(1.11) are taken only over primes in [a, b] , it is easy to see that 

(1.12) min r.(x)= min(p.(a, b), r(a)) 
xE=-[a, b Il 

I 

and, except in the unlikely event that ri(x) does not have a jump at each prime 
in [a, b], 

(1.13) max r.(x) = max(R.(a + 1, b) + 1, r.(b)). 
xEF[a,b I 

si(x) oscillates so rapidly that it is difficult to plot it over any large domain 

of x values. However, upper and lower bounds on si(p) for primes p E [a, b] 
are easily found from (1.7), (1.10) and (1.11) once Ri(a, b) and pi(a, b) are known. 

These bounds are fairly sharp if b is close to a. Figure 1 shows such upper and 

lower bounds on s2(P), plotted against logl0((a + b)/2), for various intervals 

[a, b] which cover [104, 8 x 101 0] and satisfy 1.05 < b/a < 1.10. The graph 
of upper and lower bounds on s1 (p) looks similar since, from (1.3), 
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TABLE 1 

Extrema of approximation errors in [a, b] 

a b P1 Ri P R2 P3 R3 

2 10 0 1 0 1 1 1 
10 102 1 4 -1 0 2 4 
102 103 3 10 -2 1 3 9 

103 104 7 23 -6 5 3 12 
104 105 13 54 -16 13 5 41 

105 2 x 105 29 72 -19 20 13 39 

2 x 105 5 x 105 35 107 -33 33 6 71 

5 x 105 106 50 135 -36 35 37 97 

106 2 x 106 60 174 -51 49 -88 78 

2 x 106 5 x 106 79 261 -84 81 -197 -17 

5 x 106 107 118 346 -98 95 -280 -44 

107 2 x 107 134 435 -145 127 -281 -108 

2 x 107 5 x 107 170 692 -231 260 -248 37 
5 x 107 108 344 895 -242 260 -29 262 

108 2 x 108 239 1149 -514 336 -143 643 
2 x 108 5 x 108 585 1724 -544 565 360 1046 
5 x 108 109 744 2668 -685 965 536 1488 

109 2 x 109 770 3354 -1093 982 566 2669 
2 x 109 5 x 109 1316 4612 -1681 1567 -336 2130 
5 x 109 1010 2129 7048 -2387 2657 -1930 696 

1010 2 x 1010 2159 10334 -2776 3787 -5833 2143 
2 x 1010 5 x 1010 3132 14990 -4923 4950 -7334 4443 

5 x 1010 8 x 1010 5325 17065 -5493 6106 -2692 2846 

(1.14) s1(x) = s2(x) + 1 + O(1/logx) 

as x -c. 

The distribution of 11966 tabulated values of s2(n) for n e [103, 8.3 x 1010] 
is shown in Figure 2. The sample mean and standard deviation are 0.003 and 
0.206 respectively. It is plausible to conjecture that a limiting distribution exists, 
with mean zero and standard deviation about 0.21. 

Some primes p for which 1s2(P)1 is unusually large are given in Table 2. In 
fact, if an "exceptional peak" is a maximal interval [a, b] such that r2(p) has 
constant sign for all primes p in (a, b), and Is2(p)I > 0.6 for at least one primne 
p in (a, b), then Table 2 includes a prime p (with maximal 1r2()I) from each 
exceptional peak in [104, 8 x 1010]1. The entry sl(30909673) = 0.52. . . was 
found by Appel and Rosser [1]. On the basis of Mapes' computations of 

i7(1.1 x 108) and 7r(1.8 x 108), Shanks [19] conjectured that lower values of 
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FIGURE 1 
RIEMRNN'S RPPROXIMRTION 
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S1(p) could be found near 1.1 x 108 and 1.8 x 108, and the first and third 
entries in Table 2 show that this is correct. 

Table 2 and an examination of the primes less than 104 show that 
(1.15) sI(p) > 0.42 

for all prime p E [5, 8 x 10101, and hence 

(1.16) -a(x)<L(x) 

for x < 8 x 1010. This extends the result of Rosser and Schoenfeld [16], who 
proved (1.16) for x < 108. Note that JrI(p)j < Jr2(p)1 for several entries in Table 2. 
The table also shows that 

(1.17) -0.79 < s2(p) < 0.75 

for all prime p in 104, 8 x 10101. and examination of primes less than 104 

then shows that 

(1.18) -0.90 < s2(p) < 0.75 

for all prime p < 8 x 1010. 
Shanks [18] suggested the plausibility of 

(1.19) li 1 N 
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FIGURE 2 
DISTRIBUTION OF VRLUES OF S2(N) 
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or, equivalently in view of (1.14), 

(1.20) 1? n- 

If true, (1.19) and (1.20) would give a sense in which Riemann's approximation (or 
even the simpler approximation L(x) - 2L(x"12) obtained by taking the first two 

terms in (1.3)) is better than the logarithmic intergral approximation. However, 
Table 3 gives some evidence that the limits in (1.19) and (1.20) may not exist. 
If there are large intervals in which s2(n) is uniformly bounded away from zero 
and of constant sign, then (1.20) can hold only if the lengths of such intervals near 
N are o(N) as N ? ?. Table 3 gives some disjoint intervals [a, b] such that 

104 < b < 8 x 1010, b/a > 1.08, and r2(p) has constant sign for all prime p 
in [a, b]. The number of such intervals in each decade seems to be roughly con- 
stant. Intervals in which ls2(x)l > 0.01 (say) are only slightly smaller than the 
intervals given in Table 3. 

The limit is more likely to exist if the mean of s2(n) is taken with respect 
to log n rather than n. This suggests the conjecture 

(1.21) limN( ) s2(n)/nzO 
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TABLE 2 

Some primes p with Is2,()I > 0.6 

p 7r(p) r1 P) r2(p) S1 (P) S2(p) 

110102617 6308959 239 -446 0.4218 -0.7871 
36917099 2256804 692 260 1.9845 0.7456 

179845447 10022306 331 -514 0.4691 -0.7285 
11467849447 518601767 8594 3352 1.8589 0.7250 

59753 6041 19 -16 0.8548 -0.7199 
30909673 1910834 170 -231 0.5274 -0.7166 

24137 2688 14 -11 0.9094 -0.7145 
355111 30392 35 -33 0.7506 -0.7077 

7712599823 355168013 7048 2657 1.8271 0.6888 
302831 26218 93 30 2.1329 0.6880 

1110072773 56146451 770 -1093 0.4813 -0.6833 
3445943 246651 79 -84 0.6406 -0.6811 

516128797 27159319 2100 766 1.8544 0.6764 
50229461677 2128963733 16289 6106 1.7908 0.6713 

766449311 39507064 2489 905 1.8392 0.6687 
12871811 841519 134 -145 0.6114 -0.6616 

905055691 46254156 2668 965 1.8290 0.6615 
18834002419 832984013 10334 3787 1.7815 0.6529 
10016844407 455784972 2159 -2776 0.4967 -0.6387 

19373 2192 33 9 2.3405 0.6383 
463181 38685 107 33 2.0511 0.6326 

1090697 85021 151 47 2.0101 0.6257 
21728785387 954969014 3132 -3850 0.5057 -0.6217 

3278837 235526 84 -75 0.6960 -0.6214 
42863 4483 19 -12 0.9788 -0.6182 

38177961203 1637252682 4075 -4923 0.5082 -0.6139 
3593311 256264 242 77 1.9270 0.6131 

3745619057 178440671 1504 -1681 0.5417 -0.6055 
11777 1410 27 7 2.3322 0.6046 

1195247 92607 60 -47 0.7680 -0.6016 
10219591 678161 372 119 1.8781 0.6008 

or equivalently, 

/ \N 
(1.22) lrn 1 ] s 1(n)/n=1. 

N-N t og N /nv2 

Note that (1.20) implies (1.21), but not conversely. 
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TABLE 3 

Some intervals [a, b] where r2(p) has constant sign and b/a > 1.08 

a b b/a p2(a, b) R2(a, b) 

9278 11046 1.191 -6 0 

45894 49942 1.088 0 8 

56478 62850 1.113 -16 0 
164912 179748 1.090 0 20 

291570 318916 1.094 0 30 

324090 369790 1.141 -33 0 
638372 689958 1.081 0 28 

4889994 5530998 1.131 -84 0 
6862134 7472358 1.089 -98 0 
9867492 10673698 1.082 0 119 

34225760 38856760 1.135 0 260 
504454344 552984016 1.096 0 766 

3219006864 3507922926 1.090 0 1567 
3637747892 4013111982 1.103 -1681 0 

35699734892 38858023776 1.088 -4923 0 

47048490524 51040905052 1.085 0 6106 

53087472258 58483092228 1.102 -5288 0 

Let us return to the conjecture of a limiting distribution for s2(x). The above 

discussion shows that care must be taken in formalizing the conjecture, for if x 

and y are drawn from [a, b], then s2(x) and S2(y) will certainly be dependent 

if b/a is too close to 1. One possibility is to conjecture that the sequence 

(s2(xi)) has a limiting distribution if (xi) is a random sequence of positive numbers 

such that xi/xi 1 > 0(andhencexxi oo) as i- oo. 

If the conjecture is true, and if the limiting distribution is approximately nor- 

mal, with mean 0 and standard deviation about 0.21, we would expect s2(x) < 
- 1 (or sl(x) < 0) for about one in every 106 independent random samples. 
Similarly, we would expect s2(x) < - 0.6 for about one in 450 independent 
samples. Since Table 2 covers the range 4.0 < log1 ox < 10.9, and includes 17 

entries with s2(x) < - 0.6, we would expect an entry with s2(x) < - 1 if the 

table could be extended to about 

logx 
=(10.9 

4 )( 
\) 

900. lO\17 / 450' 

Although this argument is very crude, it suggests that (1.16) probably holds for 

loglox up to about 100 (well beyond the range of feasible computation). It is 
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known that (1.16) is violated long before the legendary Skewes' number [211; 
specifically, Lehman proved [11] that certain integers x between 1.53 x 101165 

and 1.65 x 10 1 6 5 suffice. 

2. Approximations to 7r2(X). We say that q is a "twin prime" if both q 
and q + 2 are prime. Let Q= {3, 5, 11, 17, . . .} be the set of twin primes, and 
let r72(x) be the number of twin primes not exceeding x. The Hardy-Littlewood 
approximation to 7r2(x) is 

(2.1) L2(x) = 2c2 
X dt 

223~~2 10og2t' 

where 

(2.2) c2= 1- = 0.66016181... 
2<PE: P (1 - 1/p)2 

is the "twin-prime" constant [24]. 
Properties of 7r(x) may be proved using the well-known relationship between 

the distribution of primes and the location of the zeros of the Riemann zeta func- 
tion [10, Chapter 4]. Unfortunately, no similar relationship is known for twin 
primes, so very little is known about ir2(x). It is not known whether there are in- 
finitely many twin primes, and much less whether 

(2.3) 7r2(X)-L2(X) 

as x > oo. However, empirical evidence suggests that (2.3) is true. In Table 4 we 
give 7r2(n) and 

(2.4) r3(n) = (L2(n)) - 7T2(n) 

for various n 6 8 x 1010. The values of 7r2 (n) were computed by enumerating 
the primes up to n and counting the number of twins, for no more subtle method 
is known. Our counts agree with those of Weintraub [23] (for n 6 2 x 108) and 
Bohman [4] (for n S 2 x 109). 

Let 

(2.5) R3 (a, b) max r3(q) 
qECQl[a,bI 

and 

(2.6) p3(a, b)= min r3(q). 
q EQn [ a,b I 

The functions R3(a, b) and p3(a, b) were computed for various intervals [a, b] 
up to 8 x 101 0, and some results are given in Table 1. More detailed tables have 
been deposited in the UMT file of this journal. 
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TABLE 4 

Counts of twin primes and estimates of Brun's constant 

n 72(n) r3(n) B(n) B*(n) 

103 35 11 1.518032463560 1.90030531 
104 205 9 1.616893557432 1.90359819 
105 1224 25 1.672799584828 1.90216329 
106 8169 79 1.710776930804 1.90191335 
107 58980 -226 1.738357043917 1.90218826 
108 440312 56 1.758815621068 1.90216794 
l09 3424506 802 1.774735957639 1.90216024 

2 x 109 6388041 984 1.778859404547 1.90215957 
3 x 109 9210144 461 1.781150604842 1.90215977 
4 x 109 11944438 1032 1.782724861607 1.90215950 
5 x 109 14618166 291 1.783918570267 1.90215984 
6 x 109 17244409 -770 1.784876490721 1.90216027 
7 x 109 19830161 -119 1.785673823717 1.90216007 
8 x 109 22384176 -248 1.786355995279 1.90216011 
9 x 109 24911210 -1324 1.786951346213 1.90216037 

1010 27412679 -1262 1.787478502719 1.90216036 
2 x 1010 51509099 -4667 1.790830284135 1.90216076 
3 x 1010 74555618 -3348 1.792701319111 1.90216064 
4 x 1010 96956707 1869 1.793990899123 1.90216031 
5 x 1010 118903682 1630 1.794970693076 1.90216031 
6 x 1010 140494397 1555 1.795758170053 1.90216033 
7 x 1010 161795029 2031 1.796414982022 1.90216032 
8 x 1010 182855913 -985 1.796977508288 1.90216040 

Let s3(x) be defined by (1.7) with i = 3. Upper and lower bounds on S3 in 
various intervals were computed in the same way as for s2, and are shown in Fig- 
ure 3. Comparison of Figures 1 and 3 shows that the behaviour of S3 is quite dif- 
ferent from that of s2 (or sl). Although s3(q) changes sign, there are large inter- 
vals in which it is of constant sign. For example, s3(q) is positive for all twin 
primes q in [3, 1.36 x 106], negative in [1.52 x 106, 3.52 x 107], positive in 
[1.50 x 108, 3.06 x 109], negative in [1.19 x 1010, 2.71 x 10101 , etc. Hence, 
it seems unlikely that the limit corresponding to (1.19) exists, although it is possible 
that the limit corresponding to (1.22) (with sl replaced by s3) exists. 

Suppose that the integers 4, 5, * * *, N are randomly and independently 

selected or rejected, with the probability of selection of n being 2c2 /log2n. If 
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FI GURE 3 
TWIN PRI ME RPPROXIIMRTI@N 
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P(N) is the number of integers selected, then P(N) is distributed with mean p(N) 
- L2(N) and variance G2(N) L2(N), and the distribution is asymptotically normal 

as N A oo. Thus S(N) = (L2(N) - P(N))(log N)/NI /2 is asymptotically normal 

with mean zero and standard deviation (2c2)1/2 1.15. It is interesting to note 

that 7r2(N) and s3(N) appear to behave like P(N) and S(N) respectively. (The 

analogy for primes is apparently false, for it predicts that sl (N) should have mean 

0 and standard deviation O((log N)' /2), and does not predict the frequent fluc- 

tuations in sl(N) (compare Figures 1 and 3). For some rigorous results connecting 

primes with random walks, see [2].) 

We shall briefly mention some other approximations to 7r2(x). The simplest 

is 2c2x/log2x, which differs from L2(x) by terms of order x/log3x. The empirical 

results discussed above show that 

(2.7) Is3(q) < 2.3 

for all twin primes q < 8 x 1010, so IL2(x) - 7r2(x)l is of order xl/2/log x for 

x < 8 x 101 0. Hence, L2 (x) is a more accurate approximation, at least in the 

range considered. 

Other approximations are obtained by replacing 1/log2t in (2.1) by (R'(t))2 

or by (2R'(t)/log t - 1/log2t), as suggested by Froberg [8] and Shanks and Wrench 

[20], respectively. Since these approximations differ from L2(x) by terms of order 
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x I/2/log2x they are not appreciably better or worse than L2(x) over most of the 
range x < 8 x 1010. The advantage of L2(x) is that it is easy to compute, e.g., 

from 

(2.8) L2 (x) = 2c2 (L(x) + K - x/log x), 

where K = 2/log 2 - L(2) = 1.84022630 - -- 

3. Brun's Constant. Let 

(3.1) B(x)= ( q + 2) 

Brun [7] showed that "Brun's constant" B(oo) = limx_*.,OB(x) is finite (although the 
sum of reciprocals of primes has been known to be infinite since Euler's time). We 
have followed the definition of Shanks and Wrench [20], although Brun [7] and 
Selmer [17] consider B(oo) - (1/3 + 1/5), and Bohman [4] considers B(??) - 1/5. 

Assuming that twin primes are distributed randomly with density L'(x) = 

2c2/log2x (see Section 2), we can estimate 

(3.2) B(oo)-B(x) 4c2f d 4c/logx, 2 t log2t =42g 

which suggests the definition 

(3.3) B*(x) = B(x) + 4c2 /log x. 

Although limx_,OOB*(x) = limx_,OOB(x) = B(oo), it is probable that the rate of con- 

vergence of B*(x) is much faster than that of B(x). In fact, in contrast to (3.2), 
we expect that B*(x) - B(oo) is asymptotically normally distributed with mean 
o(1/(xI12log x)) and standard deviation (8c2)112/(x1 /2log x). 

Selmer [17] estimated B(oo) = 1.901 ? 0.014 by extrapolation from 
B(200000). Fr6berg [8] computed B(n) for several n < 220 and estimated B(??) 
= 1.90195 ? 3 x 10-5. Shanks and Wrench [20] found B(32452843) and esti- 
mated B(oo)= 1.90218 ? 2 x 10-5. Finally, Bohman [4] computed B(2 x 109) 
and estimated B(oo) = 1.90216 ? 5 x 10-6. During the computation of 7T2(n) as 
described above, we computed B(n) and B*(n) for various n < 8 x 1010. Some 
values are given in Table 4, and more are given in a table deposited in the UMT file 
of this journal. From our computation of B*(8 x 1010) we estimate that B(??) 
probably lies in the range 

(3.4) B(oo) = 1.9021604 ? 5 x 10-7. 

In the computation of B(n) we used floating-point arithmetic with a 60-bit 
fraction, and accumulated the sum using Moller's "quasi double-precision" device [15]. 
Hence, rounding errors should not affect the entries in Table 4. (Our values of B(n) 
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differ from Bohman's (corrected) values in the 9th decimal place, possibly because of 
the effect of rounding errors in his calculations.) 

Although we do not know how to bound the error in our estimate (3.4), the 
discussion above suggests that x1 12log x(B*(x) - B(oo)) is asymptotically normally 
distributed, and we certainly have 

(3.5) Ix l 12log x(B*(x) - 1.9021604)1 < 3.5 

for all tabulated values in the range [1 04, 8 x 10101. (The maximum value of 
3.4927 is at x = 860000, in the region of the sharp drop in Figure 3.) Hence, it 
is probable that 

(3.6) 1B*(8 x IO110) - B(oo)j < 3.5x11 
(8 x 1o10)1/2log(8 x 1010) < 

which explains the error estimate in (3.4). If the constant (&2)8/2 above is correct, 
the probability that B(oo) is in the range given by (3.4) is about 0.88. 

Different methods of extrapolating B(x) to the limit have been suggested by 
Fr6berg [8] and Shanks and Wrench [20], but their extrapolations differ from 
B*(x) by O(1/X'12log2x), so are probably not much better or worse than B*(x). 
It seems difficult to obtain an appreciably better extrapolation than B*(x) without 
being able to predict the large-scale oscillations of s3(x) (see Figure 3). 

4. Computation of Ri(a, b) and pi(a, b). If Ri and pi are defined by 
(1.10) and (1.11), the most time-consuming part of their computation is not the 
generation of the primes in [a, b], which may be done efficiently by a sieve method 
(as in [5], [6]), but the frequent evaluation of L(x) and R(x) to a precision suf- 
ficient to determine (L(x)) and (R(x)). (Similarly for R3 and p3 defined by 
(2.5) and (2.6), although the situation is not so clear here, because it takes longer, 
on the average, to generate a twin prime than a prime.) 

To avoid evaluating (L(p)) and (R(p)) for every prime p in [a, b], we can 
use simple upper and lower bounds for LOp) and R(p), and onlyevaluate (LO)p and 
(R(p)) if the upper and lower bounds fail to show that r1(p) lies within the maxi- 
ma and minima already found. The following lemmas indicate how suitable upper 
and lower bounds may be found. 

LEMMA 1. Suppose f'(x) < O on [a, bl, and a < a'< x < x' < b' < b. 
Then 

f(a') -f(a) f(x') -f(x) f(b') - f(b) 
a -a x'- x b' -b 

The proof is immediate from a mean value theorem. 
LEMMA 2. L"(x), R"(x) and L"(x) are negative for x> 1. 
Proof. From (1.1), (2.f1) and (1.4) we have L"(x)=- 1/(xlog2x) < 0, L'I(x)= 

- 4c2/(xlog3x) < 0, and 
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(4.1) R"(X)=X-2 (2k+1- k ) (log x)k-I 

k=lkt(k+ l) t(k+2)j (k l)! - 

Now t(k+ 1) < 1 + 1/k for k > 1, so (k + 1)/&(k + 1) > k/l(k + 2), and the result 
follows from (4.1). 
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