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A Generating Function for Triangular Partitions 

By L. Carlitz* and Richard Scoville 

To D. H. Lehmer on his seventieth birthday 

Abstract. Let Tk(n) denote the number of solutions in nonnegative integers at, of 

the equation 

k k-i+1 
n = z aii 

i=l j=1 

where the aij satisfy the inequalities ai1 > ai+,1, aij> ai+1 -_. We show that 

00 

I Tk(n)xn = (1 - x)-k(l - x3)-k+l(l - x5)-k+2 ... (1 - x2k-1)1. 
n=l 

1. Introduction. We consider the triangular array of nonnegative integers (aij) 

all a12 a a3 

a2 1 a22 2,k-1 

(1 .1l) Tk: a31 a32 

ak 1 

satisfying the following system of inequalities: 

(1.2) aii > ai+ 1,1, a i1 ai+1,1 1 

If in addition, the aij satisfy 

(1.3) E aij = n 
i+j?n+ 1 

we call Tk a triangular partition of n of order k. 
Let Tk(n) denote the number of arrays Tk satisfying (1.2) and (1.3). Clearly 

(1.4) Tk(0)= I (k= 1,2,3,***). 

Since 

(1.5) T1(n)= 1 (n = 0, 1, 2, * ), 
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it follows at once that 
001 

(1.6) Tl(n)Xn 
_ 1-x 

For k=2 we have 

E T2(n)xn = Xn1 
n=O n=O a+b+c=n;a>c, b>c 

00 

- ,2 xa+b+c = X xa+b+3c, 

a>b, c)b a,b,c=O 

so that 
00 1 

( 1 .7) E T2 (n)Xn = (1.7) ~ ~ ~ ~ ~ ~ ( X)2( -x3) 

Since (1 - xy-2(1 - X3)1 = I 
oo 

0 (r + 1)xr s= x3 , it follows that 

T2(n) = 3<n(n - 3s + 1). Hence, if m = [n/3], we get 

(1.8) T.2(n) = ?(m + 1)(2n -3m + 2). 

For k = 3 we find that 

(1.9) ET3 (n)Xn =(I -X)-3 (,I-X3)-l(1 XS)- 
I 

n=0 

For k =4 we have 
00 

(1 .10) E T4(n)xn= (1-x)-4 (1 X7(i-x52(1-x7)-' 
n=O 

The formulas (1.6), (1.7), (1.9), (1.10) suggest the general result 
-00 

(1. 1) E Tk(n)xn = (1 -X)-k(l -X3)-k+ 1_( x5)-k+2 .. (1 x2k-1)-1. 
n=0 

The direct proof of (1.10) is rather tedious; the corresponding proof in the case 
k = 5 has not been completely carried out. We shall accordingly prove the general 
result (1.11) by an entirely different method which makes use of known results con- 
cerning MacMahon's theorem on k-line partitions [4, p. 243] . 

Put 

1 00 

1 ~~~E qk(n)Xnt 
(1 -x)(l -X3) k (1 -x2*1) n=o 

so that qk(n) is the number of partitions of n into the parts 1, 3, 5, ***, 2k - 1, 

repetitions allowed. Then (1.1 1) yields the recurrence 

n 
(1.12) Tk(n) = q*(j) Tk-1 (n -j). 

j=o 
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This evidently implies 

(1.13) Tk(n) = E qkl)qkQ- 1 2) ... q2yk- 1) 

where the summation is over all nonnegative il ,i2 I ... Ik-1 satisfying il +i2 + 

? 4ik 1 < n. 
Formulas (1.12) and (1.13) are indeed equivalent to (1.11). Thus a combinatorial 

proof of either (1.12) or (1.13) would yield a combinatorial proof of (1.1 1). 
Another result equivalent to (1 .1 1) is the following: 

(1.14) Tk(n) = E (k( n -)' 

where the outer summation is over all nonnegative n I n2, * Ink satisfying n' + 
3n2+5n3?+ +(2k-l)nk=n. 

2. Special Cases. We shall now sketch the proof of (1.9). To begin with, it fol- 
lows from the definition that 

00 00 

(2.1) E T3(n)xn = (1 -x6)l 1 T(n)Xn, 
n=O n=O 

where T (n) denotes the number of arrays 

a b c 

d e 

satisfying a > d, b > d, b > e, c > e and a + b + c + d + e =n. It follows that 

00 00 

T3 (n)xn = Xd+e a+b+c 

n=O d,e=O a,b,c;a>d,b>d;b>e,c>e 

00 00 

- E x2d+2e E a+c E xb 
d,e=O a,c=0 b>d,b e 

00 b b ?? /1-2b+2\ 

(2.2) (I )- E Xb E E: x2d+2e =(I -x)- 2 E Xb| 
x 

b=O d=O e=O b=?( 1-x2 

=(I -X)-2(I- X2,2) 1 12?I 2X 
4 

X3l +X3)I 5 
(I - 

Substituting from (2.2) in (2.1), we get (1.9). 
The proof of (1.10) is a good deal more involved and we give only a brief out- 
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line. To begin with, we have 

00 00 

(2.3) E2 T4(n)xn = (1-x10)-1 T4'(nXn 
n=O n=O 

where T4(n) denotes the number of arrays 

a b c d 
(2.4) e f g 

satisfying 

a > e, b > e, b > f, c >f, c >g, d >g, e >h, f >h, f >i, g >i 

and a + b + ? - * + h + i = n. In the next place we remove the corners on the top 
line of (2.4) to get 

00 

(2.5) z T4(n)xn = (1 -x) 2 Xb+c+2e+f+2g+n+i 
n=O 

where the summation on the right is over all arrays 

b c 

ef g 

satisfying 

b > e, b > f , c > f, c > g, e > h, f > h, f > ,g > i. 

Thus we get for the sum on the right of (2.5) 
- 

ix2f -x 3f+3Y2 2x4f+2 1-x3f+3 -xf+l 

f =? (1-X)2 1-X3 / (l-X) (l-X3) 1-X3 1-x 

x6f+4 (-x+1 

This reduces to 

(2.6) (1 + x5)/(l -x)2(l -X3)3(l -x5)(l -x7). 

Hence, combining (2.3), (2.5) and (2.6), we get (1.10). 

3. Restatement of Problem. It will be convenient to modify the original state- 
ment of the problem. Let An denote the set of lattice points in the first quadrant 
defined by 
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(3.1) An= {(i,j)Ii>O, j>O, i?+j<n}. 

An is partially ordered if we put 

(3.2) (i,j)?(i',j')i? i?i1 and j j'. 

A nonnegative integer-valued function f defined on An will be called increas- 
ing if, for every a, b E A, we have 

(3.3) a S b X f(a) ?f(b). 

If f is increasing and takes on onily the values 0 and 1, we may associate with f 
the subset Af of An defined by 

(3.4) a EAf z?f(a)=1. 

The collection of such subsets will be denoted by Ln. Note that Ln is a lattice 
with respect to union and intersection of sets. We show that Ln contains 

(3.5) Cn+ _ 2n?+2 n+2 n + 2 n + I 

sets; Cn is a so-called Catalan number (for references see [11, [3]). 
If f is increasing on An we put 

(3.6) u(f) = I f(a) 
aE,An 

and 

(3.7) Qn(x)=x (), 

where the summation is over all nonnegative integer-valued increasing functions on An. 
Clearly 

00 

(3.8) Qn (X) = E Tn (N)N 
N=O 

where Tn(N) is the partition function defined in the introduction. 
We remark, that if we define 

Qn(x) = ~xa(I)ymaxf 

and replace An by 

13n = {(i,j) IO S i < n, O Sj < n}. 

then we are led to MacMahon's theorem for plane partitions. 

4. The Lattice Ln - For every A E Ln let gA denote the function defined by 

(4.1) gA t) = card {(n-i, j)l(n-i, j) An-A (i = O, 1, n). 
Note that 
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(i) gA is increasing, and 

(ii) ? < gA (i) < i (i = O, 1, * ,n). 
Moreover, if A and B are in Ln then 

(4.2) gAUB = min (gA, gB), gAUB = max (gA, gB)- 

Let Fn consist of all integer-valued functions satisfying (i) and (ii). Then Fn is a 
lattice with respect to min and max. We summarize these observations in the fol- 
lowing theorem. 

THEOREM 1. The lattices Ln and Fn are anti-isomorphic and contain 

(4.3) C+2 = 2n 2 
nl+2n2 n? / 

elements. 
PROOF. We show first that if f E Fn, then f = gA for some A E Ln. Let 

fEFn andput 

A ={(i,j)If(n -i)<j} n An' 

Now suppose (io jo) E A and both (io + 1, j) and (io, jo + 1) E An. Then 

f (n -io- 1) f(n -io) < jo, f(n -io) jo < jo + 1, 

so both (io + 1, jo) and (io, jo + 1) E A. Hence A E Ln and 

gA(n- io) = card {j I (io, j) E An - A} 

= card {j I f (n - io) > j, j > O} = f n-io). 

This, together with the previous remarks, shows Ln and Fn are indeed anti-isomor- 
phic. It is well known (see for example [3]) that the number of elements in Fn is 
given by (4.3). 

We note, for later use, that 

n 
(4.4) IA I + F gA(i) = IAnl = 1/2n(n + 1). 

i= 0 

5. Chains in Ln. By a chain in Ln we will mean any finite or infinite se- 
quence of sets Ai C Ln satisfying 

(5.1) Ai C A. (i = O, 1, 2, 

We will say that the chain {A, }kO begins at b and ends at An if Ao=k and A*= 

An. 

There is a 1-1 correspondence between the set of increasing functions bounded 
by r on An and the chains {A, }r+ 1 in Ln which begin at b and end at An. 
This correspondence is given by 

(5.2) Ai ={aIf(a) > r-i i 1} (i = O, 1, r + 1). 
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It is clear that 

(5.3) ((f) = IA1 I + IA2 I + ?+ Ar lA 

where 

(5 .4) ai (f )- E f (a) - 
aEAn 

Transferring the sets Ai to functions in Fn by the anti-automorphism of Theorem 1, 
we obtain 

THEOREM 2. There is a 1-1 correspondence between the set of increasing func- 
tions bounded by r on An and sequences of functions {fi}rO+l from Fn satisfy- 
ing 

(5.5) fto > f1 > f1 > > fr>?; fo(x)= x. 

Moreover 

r n 
(5.6) a(f) = 1/2m(n + 1) - E E2 fit). 

i=1 j=O 

PROOF. Follows from Theorem 1 and (4.4). 
Another relation between increasing functions on An and chains in Ln is 

given as follows. Call a chain {Ai } proper if AO $ 0b and Ai 4 
Ai+, . Suppose 

f is an increasing function on An assuming the distinct nonzero values 

t + * tt + t ?t ? ... t ti > O 

Let 

(5.7) Bi = {alf(a) t + ? * (i=O, 1, , j-1). 

Then we have 

u(f) t1 IB_11 I + t2 IB-21 + + tlBo 1. 

Hence the following theorem is immediate. 
THEOREM 3. The generating function 

Qn(x)= xa(f) (f increasing on An) 
is given by 

(5.8) Qn(x) 1 I xlBoI IxIBil 

~x IB0I x ~~IB i 

where the summation is taken over all proper chains in Ln. 

6. Computation of Qn(x). By Theorem 2 there is a 1-1 correspondence be- 
tween increasing functions on An bounded by r and n X r arrays {fj(i) } satis- 

fying 
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(6.1) ? S f1(1) < fj(2) S * < fj(n) (=1, 2,* *,r) 

and 

(6.2) i()-> f2 0) >-- > fr0)>O (i = 1,2, **,n). 

Let Q(r) (x) denote the partition generating function for such arrays, that is, 

(6.3) Q(r)(x) = EX 

where the outer sum is taken over all {f1(i) } satisfying (6.1) and (6.2). Specializing 
formula (6.12) of [2], we get 

Q (r)(x) x/n (n+1) |x% ) n + r 

(6.4) =~ 12n(n+l) x/2(i-j)(i-j+1) F i 1, 2, n), 
Li 2-i J 

where 

(6.5) Fkl = (x)k (x)k = (1 -x)(1 -x2) ... (1 -Xk). 
Li(X)I(X) k1- 

Replacing x by x-1, it is easily verified that 

[k] X(i-k)[ k] 

Thus we get 

Q(r) (!) = 12rn(n+l) x2(i-i)2 
r 

1, 2+ r, n) 

By (5.6), we have 

Qn (x)= lim 1/2rn (n + 1 ) (r)( ) 

and therefore 

(6.6) 0 ( )1=|(-)| (, j = 1, 2,@ @ n). _n 
X = 

__X_2___ (X j)2i- 

It is convenient to put 

(6.7) Dk = |x4i) 2]| (i, j = 1, 2, ,n), 

so that (6.6) becomes 

(6.8) Qn(X) = (x)1(x) .X (2)n Dn 
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We shall now evaluate Dk. Let Ri denote the ith row of Dk. We shall 

replace R k by 

Rk=Rk x[l] Rk-l +X [2] Rk-2 +(-)klak k [k] Rl 

where 

[kI (x k2)k (a)k (1 -a)(1 -x2a) ... (1 -x2k-2a) 

Then the jth element in Rk is equal to 

k-1 k [ - 2s1 

s0 

(- 

i)x X[ 

a](ks-j)2 

(Ik-sk-Fk 
X(S-i2 F2sl 

Since 

21 I 1 t ( iWtX1/2 t(t+l)+t(2s-j)Fl 
E - (X)j t= k L tJ 

we get 

i (X)j L ( )k-sxk-s [x(sj) 
- 

(-l)tX?t2t(t+1)+t(2s-j)[ 

S(x) = (-)0x'2 .1)-tj tsi (-)kSX=2S [] jX2sUt) 
x '' (X t ( 12 t / t (t+ I) 

- [ ] (x-+0-s s 2 t 

= X' 1.FI1. 

Since 

0 (0?S t < k), 
(x)~k I (-)kX-k(k+1)(X2)k (t =k), 

it follows that r, = 0 for 0 < j < k, while 

rk = (X2)1/(x)k = (1 + x)(l + x2) .** (1 + xk) 

Hence 

Dk = (1 + X)(I + x2) . . . (1 + Xk)Dk-1- 

Since 



76 L. CARLITZ AND RICHARD SCOVILLE 

D =2 LI +?X, 

we get 

(6.9) Dk= (1 + x)k (1 + x2)k (1 + xk). 

Substitution from (6.9) in (6.8) yields 
THEOREM 4. We have 

(6.10) 

This completes the proof of (1.1 1). 

7. Number of Maximal Proper Chains in Ln. As an application of Theorem 4 

we have the following. 
THEOREM 5. The number of maximal proper chains in Ln is given by 

(?n(n + 1))! 
f7~ ~~~~~M I8n 3n-1 5n-2 *o(2n -1) 

PROOF. By Theorem 4 we see that 

(7.2) lim (1 -x)/2n(n+lI)Q(x)=(ln 3n-1 sn-2 . (2n-1))-. 
x-I 

On the other hand, by (5.8), 

(7.3) lim (1 -X)2n((n(n+Q1))V= 
X-* 1 (nn+1) 

Comparison of (7.2) and (7.3) yields (7.1). 

8. A Related Partition Problem. Let Tk(n) denote the number of triangular 

arrays (ai) (1 < j<i k) satisfying the inequalities aq > ai+ 1,f' a > ai+ 1,+ I 
and also 

k i 

? E ai1 =n. 
1=1 j=l 

It can be shown that 

(8.1) ~~~00 (X) 1(x2 ... 
(xk (8.1) ?: Tkl (n)xn = )( () k 

n=0 (x2(x)4 W x2k k' 

where 

Dk = x (i, j = 1, 2, * * k). 

The first few values of D7 follow: 
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DI=1+x, DI=(1 +x)(1 +x2)2, 

DI= (1 +x)(1 +x2)(1 +x3)(1 +x2 +x3 +2x4 +x5 +x6 +X8). 

We remark that, when k wo, the generating function (8.1) reduces to the generating 
function for plane partitions. 

Mathematics Department 
Duke University 
Durham, North Carolina 27706 

1. R. ALTER, "Some remarks and results on Catalan numbers," Proceedings of the Second 
Louisiana Conference on Combinatorics, Graph Tzeory and Computing, Baton Rouge, La., 1971, pp. 
109-132. 

2. L. CARLITZ, "Rectangular arrays and plane partitions," Acta Arith., v. 13, 1967/68, pp. 
29-47. MR 36 #2512. 

3. L. CARLITZ, "Sequences, paths, ballot numbers," Fibonacci Quart., v. 10, 1972, no. 5, 
pp. 531-549. MR 47 #6498. 

4. P. A. M. MACMAHON, Combinatory Analysis. Vol. 2, Cambridge, 1916. 


