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On the Prime Factors of (tn) 

By P. Erdos, R. L. Graham, I. Z. Ruzsa and E. G. Straus 

Abstract. Several quantitative results are given expressing the fact that (2n ) is 

usually divisible by a high power of the small primes. On the other hand, it is 

shown that for any two primes p and q, there exist infinitely many n for which 

((n ), pq) =1 2n 

1. Introduction. In the present paper we study the prime factors of (2fn). It is 
a well-known phenomenon that (2n) is divisible by a high power of the small primes. 
We shall try to put this observation into a quantitative form. First of all, note that it 
is not known whether the smallest odd prime factor g(n) of (2nn) is bounded. A 
computer check shows that g(k) < 11 for k < 3160, g(3160) = 13 and g(k) < 

13 for k < 107. Of course, it is clear that 2 always divides (2nf). We shall show 
that for any two primes p and q there are infinitely many integers n such that 
((2nf), pq} = 1. (In fact, we shall prove a considerably sharper result.) 

Set 

P 2n P 
n t( E < 

where p denotes a prime. The most striking fact is that we cannot decide if f (n) is 
unbounded. 

We are going to prove 

lim l f(n)= ogk C 
xo n= 1 k=2 2 

Also, we shall show that 
1 x 

lim - f 
t2(n) = C2. 

n=1 

From these two results we immediately obtain that for all but o(n) integers m < n, 
f (m) = co + o(l), and it is not hard to deduce that for all but o(n) integers m < n 
the number of t < m with t { (2m), is c1m + o(m) for a certain absolute constant 
cl. Finally, we shall study some special questions about the divisors and prime factors 
of (2n) 

2. The Main Results. An elementary fact which we shall frequently use is the 
following: 
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Fact. For a prime p, 

(1) #(2n) 0 O (mod p) if and only if every coefficient (or "digit") ak in the 
base p expansion n = Xk>O akp,k 0 ak <p, satisfies ak <p/2. 

Thus the result that for any two primes p, q there are infinitely many integers 

n with ((2n ), pq) = 1 is a special case of the following: 
THEOREM 1. Let A and B be positive integers satisfying A/(p - 1) + 

B/(q - 1) > 1 where p and q are integers exceeding 1. Then there exist infinitely 

many integers whose base p expansion has all digits A A and whose base q expan- 

sion has all digits < B. 
Proof. If log p and log q are commensurable, then p and q are powers of 

the same integer r, say, p = rk, q = r1. Hence, any sum Xi r nikl has all digits either 
0 or 1 to both bases p and q. 

If log p and log q are incommensurable, then there are infinitely many expo- 

nents oa and : so that 

(2) |~~~~P 2 q- 1 2 q- 1' 

i.e., so that the base q expansion of p? either has all digits <B or has a digit <B 

preceding any digit > B. For brevity we call a number (p, A)-good and (q, B)-good 
if their base p digits are all A A, respectively, if their base q digits are all < B. 
We consider the following assertion. 

LEMMA. Given a number N which is (p, A)-good, say N =an pn+l + 

am pm, n> ... >m>O, ai<A,with N=brqr + biql + + bjq + 

where j is the largest index so that b1 > B, i is the least index > i so that bi < B 

(and so bk = B for i > k > j), then there exists a number N* which is (p, A)-good 

satisfying N* > brqr ? * + biqi and so that 

N* brq r + ***+ b.jr j q'+ 1 + bi*qi +** 

where 

either b* = b and N* < N, or B > b* b,or B= bi and 

the first digit with index less than i which is not equal to B is < B. 

It is clear that Theorem 1 follows from this lemma, since after a finite number of 

modifications we must obtain an N* which is also (q, B)-good. 
Proof of Lemma. Let T = bi_ lq-1 +? * + bo be the "tail" of N. If we 

can subtract any number < T from N and get a (p, A)-good number, we have a 

modification of the first kind to an N * <N. The smallest number which has to be 

subtracted from N in order to obtain a smaller (p, A)-good number is 

Pm A(p ) l (P 2 1) ( m 1) + 1 =S. 

So, if T> S, we set N* = N - S. Thus, from now on we may assume T< S. Since 
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T > B((qi - )(q- 1)) + 1, then we have 

(3) qi ) < (p A 1)(pm_). 

Now, we can add any number U to N with 

qi_- T 6<U <_q' - T + B((qi_- 1)1(q -1)), 

so that N * N + U satisfies b* =b + and, if N* is not (q, B)-good, then 
there is an index i* < i with bi** <B while the first digit bi >B satisfies j* <i* 

It therefore suffices to prove that there is a (p, A)-good number U in this range with 
U < ptm. This will follow from the following result. 

Fact. For every positive integer x, the half-open interval [x, (p - 1)x/A) con- 
tains a (p, A)-good integer. 

Proof of Fact. The ratio between a (p, A)-good number M and the predecessor 
of the next (p, A)-good number N is maximal when M = Apr- + - - * + Ap + A 

= A((pr - 1)/(p - 1)) and N = pr. In this case the ratio is (p - 1)/A and the fact 

follows. O 
Now, for x = qi - T, we have 

x-< qi _ 1-B ) ( )(qi - 1) 

<A (qi - l)/(p - 1), 

so that 

qiT?B( ) > 1+ A l)(qQ-T) 

P-1/ A q 

=1A; 1(A 1 + q - (q' - T) 

A 'q q -)x 

Hence, there exists a (p, A)-good number U in this interval. Finally, by (3) we have 

/p-1\ q /- 1 \I A 

(-A )x q - 1 (< B ) (1 _ l>pm - 1) 

<(q 
- 1) 

( B 
) 

(pm 
- 1)= pm - 1, 
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so that the interval [x, ((p - 1)IA)x) lies below p'm. This proves the Lemma and 
Theorem 1 follows. C 

One could ask whether the hypotheses of Theorem 1 can be weakened and whether 
similar results can be obtained for three or more bases instead of just two. At the 
moment we cannot decide either of these questions and perhaps a new idea will be 
needed. 

THEOREM 2. 

1 x 
lim x- Ef(n O 

n=1 

ProofJ We have by definition 

- f(n)= E 1 A(p;x) 

n=1 n=1 2n P P< x P 
P 
p ( 

n);p<n 

where A(p; x) denotes {k: p ? k <x, p t (2k)}1. Let n = lls> 0 be small. We 
first show that the contribution from the primes p < x'7 is negligible. (The reason for 
this is that (2n) almost surely is a multiple of a small prime.) Choose r and t so 
that 1 < t < p and tpr ? x < (t + I)pr. By (1) it is clear that 

A(p;x) <A(p; (t + 1)pr) 

S (t + 1 ) < x S 2 (3)X. 

Thus, 
E A(p;x) A(p;x) 

pX 77 P x r>-s 11/(r+l)<p<Xllr P 

S x 2 (3)x log (l +- = O(C3_5) 

for some c3 > 1, which is negligible for s sufficiently large. 
Therefore, it suffices to consider only those p exceeding xlls. Note that for 

any O<e<a< 1-e, 

A (p; X)1< X 

fx4) ;t +e 6 Pf a t+6 
P 

where c4 =C 4(0(). But for each p with xll(r+l)+e <p <xl/r-E 

A(p; x) = X/2r + O(x). 

Thus, 
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1 f(n) A(p;x) 

n=1 X p px 

X( E A (p; x) A (P;x) 

1 1 A(p;x) 

r= 1 lI(r+l)<p_<llr " 

s-i / 

+ 
r=l 1 1l(r+ 1)< P<x 1lr+ c llr+e<pxl- 

+ + o(l) 

s-i1 

=~- E log (i + -)+ e + o(l) 

where es 0 as s oo. Hence 

lim 4 ? (n) = log(1 +) = 2 logr r c0 

THEOREM 3. 

lim x Z f2(n) =co 
xoo n=1 

Proof. We can write 

__ 2 
n n= 1 

n=1l n=1 p, q+(2n) 
pq q6 

x 
p, q6<x pq 

where pqpxq<q 

A(p, q; x) ={k: p,qS k S x((k)Pq)=1} 

As before we first choose a large s and then a small c depending on s. The 
exact dependence will be clear shortly. We partition the pairs of primes (p, q) into 
three classes: 

I.p, q S X1/S; 
IL. p xlIs<q or q SXl/S<P; 

III. p, q > x /s 

For class I it can be seen by the same argument as in the proof of Theorem 2 
that 
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1 A(p, q;x) 

p,q< x 1 /s= 
(C5) C> - 

For class II we observe that 

1 E E A(p, q; x) 
X 

lIs xls pq P < x x <qS<s 

1 (p; x) P - < CS log s =o(l) 
px 

P 
Sq 

6 

as s-oo. 
Finally, we consider class III. Suppose xll(r+l) <p xllr,Xll(t+1) <qq < 

xII, 1 ?r, t?<s. Let w1 <W2 < .. <Wr+t be the sequence ofnumbers p1 and 
qj, 1 < i < r, 1 1 j <t, arranged in increasing order. The numbers k which con- 
tribute to A(p, q;x) satisfy the condition 

k zk (mod Wk), < Zk < Wk/2, k =1, 2, r + t. 

Hence, if we now assume 

(5) Wk +1l/Wk > X6, k =1...,r + t - 1,xlWr+t >X', 

then we see by (1) that 

A(p,q;x)= x +o(x). 
2r+t 

Summing this over p and q, we get the main contribution of c2x + o(x). It is 
easily seen that the contributions of the pairs (p, q) not satisfying (5) is negligible. 

For if (5) does not hold,then either 

pr > x i.e., x il I)r<p<x r 

or 

qt > x1-6, i.e., X(1`6)1t < q <x11t 

or 

xE<puqv?<xE forsome 1?u?r, 1?v<t. 

Summing l/pq in these cases,we get o(l) as c -- 0. Strictly speaking, we only 
proved 

f2 f(n)_cCx+O(x). 
nAx 

However, Theorem 3 follows at once by Theorem 2 and the arithmetic-quadratic mean 
inequality. O 
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COROLLARY. For all e > O, 

lim x I {n <x: If(n)-col > e}I = . 
x -oo 

Observe that, in fact, the proofs of Theorems 2 and 3 show that for 0 < a, 3 < 1 
with : - a > r > 0 we have for almost all n, 

2n ~ 1=k (6) PJr(2nn);na< p<n 1 l/0 k 1 /a 2 ( k)ol 

uniformly in r . From this it now follows by the sieve method that: 
THEOREM 4. For a < 1, 

{m: 1 ?m < n , m t ()} = c(a)n" + o(nc), 

where c (a) > 1 as a 0. (In fact, c(a) can be explicitly calculated.) 
A well-known averaging argument gives: If e > 0 and r > r(e), then for any 

p satisfying xl/r <p <Xl/(r-l), then with the exception of at most x/cr n's A x, 
we have pall (2n) with n?lE-' <pc <n/2+6, where ce > 1. This leads to the follow- 

ing: 

THEOREM 5. Suppose for some e > O and m Ax, p Im X p" <x6. Then 

<A Ax +2n)} < x/, {n ?x: n 1/ 

where c7 > 1. 

PROOF. Suppose x 1/r+ 1 <pca <lX /r. By the above remark, it is certainly true 

that at most x/cer n's < x have p llI (2n) with pg < n/2-E. Since at most r dif- 
ferent prime powers dividing m can lie between x1/r+1 and x1 I' then these prime 
powers can knock out at most rx/c r n's less than x. On the other hand, if pii (2nI) 

with p > n/2-6, then the prime p can cause no trouble provided n?E > XE, i.e., 
n > x2e/(1 - 2E). Therefore 

|{nAx: mot(~n)} <r> rx +x2e/(1-2e) 

< x for some c7 >1. 0 

C7 l 

By the preceding methods, we can prove the following result. 
THEOREM. Let p be fixed. Then 

n{ < x: l P ()2n) a (n l n/2-6 4 /2=+o(x). 

In fact, as we have already observed, this result holds for p = o(xv). 
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We would like to be able to turn this result around, i.e., to show that for fixed n, 

{P nn: paIl (n), p0 1 (nl/2 - 6n/2 +)} 

is in some sense small. For example, put f,(n) = '1/p, where the dash in the sum- 
mation indicates that the sum is extended over all primes p < n for which 

P 2 n ) and pc ? (n /2-, n/2+E). It seems possible that for every E >0, f,(n) < 

c(e). By the methods of Theorems 2 and 3, we can prove that the limits 

lim x f,(n) = c, and lim E (n) = 2 
xoo xnx Xoo n x 

exist. 
By methods similar to those we have employed earlier, it is not difficult to prove 

the following 

(7) > >c log log n. 
2|n );p-<nP 

There is no doubt that (7) holds for any c > 1 - e, and this would follow, of course, 
from the boundedness of 1 2n l/p. In this connection we would like to 

state the following conjecture: n 

1= (? + o(l))log log n 
p?n 

where the * indicates that the summation is extended over all primes p such that 
n = kp + r, where p/2 < r < p and k is integral. 

Before closing the paper, we make a few random remarks about divisibility prop- 
erties of binomial coefficients. It is well known that (2n )/(n + 1) is always an integer. 
Balakran [1] proved that (n + 1)21(2n) for infinitely many n and by his method 

one can prove that for every k there are infinitely many n, so that (n + 1 n)k 
and also for every k there are infinitely many n for which (2n)!/(n + 1)! (n + k)! 
is an integer. (In fact, this even holds if k < c log n if c is a sufficiently small 
absolute constant.) It seems certain that for every k there are infinitely many in- 

tegers n for which (2n)!/(n + k)!(n + k)! is an integer, but we cannot prove this 
even for k = 2. 

An old result of P. Erdos (see [3] ) states that there is an absolvte constant c 
so that if n!/a!b! is an integer then a + b < n + c log n, but for infinitely many 
values of n and some c > 0, n!/a!b! is an integer with a + b = n + c log n. In 
fact, it is not hard to show that for all n with the exception of a sequence of density 
0, (2n)!/n! [n + c log n] ! is an integer. We do not give the details of any of these 
results (the proofs are fairly simple). 

There is one curious problem here. As stated before, n!/a!b! cannot be an in- 

teger for a + b > n + c log n. It is possible that this is due only to the small primes. 
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More precisely, is the following result true: To every c there is a k so that for in- 
finitely many n (all n > no(k, c)?) there are suitable a and b such that 
a + b > n + c log n and n!/a!b! has no prime factor > k in its de- 
nominator? Also, suppose a > en, b > en, and a + b > n + c log n. Can it happen 

that n!(a + b - n)!/a!b! is an integer? 
Finally, while there is no doubt that there exist infinitely many pairs (m), (n) 

which have the same set of prime divisors, e.g. (174), (176) or (162g4) (162016), 

we are not at present able to prove this. 
Let us denote by A(n) the least integer which does not divide (2n). Of course, 

A(n) is always a prime power. It is not hard to show that except for a set of density 0, 

(8) exp((log n)/2E-) < A(n) < exp((log n)l/2+E). 

It would not be difficult to obtain sharper results than (8), but an asymptotic formula 

seems hard. Below we tabulate the first 100 values of A(n). 

TABLE 1 

n A(n) n A(n) n A(n) n A(n) n A(n) 

1 3 21 7 41 13 61 5 81 3 

2 22 2 7 2 13 2 5 2 3 
3 3 3 7 3 13- 3 7 3 32 

4 3 4 7 4 11 4 22 4 3 

5 5 5 5 5 11 5 7 5 3 
6 5 6 5 6 11 6 7 6 17 
7 5 7 3 7 11 7 32 7 32 

8 22 8 3 8 23 8 23 8 32 

9 3 9 32 9 7 9 13 9 17 

10 3 30 3 50 5 70 7 90 3 

1 5 1 3 1 5 1 7 1 3 

2 3 2 22 2 5 2 7 2 32 

3 3 3 23 3 13 3 7 3 3 

4 7 4 23 4 32 4 24 4 3 

5 7 5 5 5 5 5 17 5 19 

6 22 6 3 6 5 6 24 6 23 

7 7 7 3 7 5 7 19 7 24 

8 23 8 32 8 7 8 13 8 7 

9 32 9 3 9 7 9 13 9 7 
20 23 40 3 60 5 80 23 100 7 

We wish to thank N. J. A. Sloane for obtaining the numerical evidence we cite 

at the beginning of the paper. 
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