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What Drives an Aliquot Sequence? 

By Richard K. Guy* and J. L. Selfridge 

To D. H. Lehmer, on his 70th birtnday, in gratitude for much inspiration, 
encouragement and computation 

Abstract. The concept of the "driver" of an aliquot sequence is discussed. It is shown 

that no driver can be expected to persist indefinitely. A definition of driver is given 

which leads to just 5 drivers apart from the even perfect numbers. 

If we examine the sequence 30, 42, 54, 66, 78, 90, ... we notice that each term 
is the sum of the aliquot parts (divisors other than the number itself) of its predecessor. 
Various authors have been struck by the peculiar charm and regularity displayed by 
these aliquot sequences. It is easy to show that every such sequence starting with a 
number less than 138 either contains 1 and terminates, or contains a perfect number 
and repeats. 

Catalan's conjecture [1] was restated by Dickson [3] to the effect that every 
aliquot sequence will either terminate or become periodic; e.g.,the amicable pair 220, 
284 has period 2. Later Poulet [8] found that 12496 starts a sequence with period 
5 and that 14316 has period 28. He and Lehmer struggled with the sequence starting 
with 138. 

More formally, let s(n) = a(n) - n, where a(n) is the sum of the divisors of n, 
and let n: 0= n, n: k + 1 = s(n k). Lehmer showed that the 138 sequence has a 
maximum 

179 931895322 = 138: 117 = 2-61*929*1587569 

and that 138: 177 = 1. 
The next difficulty arose with the 276 sequence. Each term from 2716= 

276: 8 = 227.97 is divisible by 227, and since any multiple of the perfect number 

28 is abundant, the terms increase monotonically. Notice that in our little sequence 
starting with 30 the terms have the same property with respect to 6. Paxson [7] 
computed (p denotes a prime cofactor) 

5641 400009252 = 276: 67 = 227 p 

and Henri Cohen [2] extended the calculation to 
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2133 148752623 068133100 = 276: 118 = 223 527 p. 

Stimulated by this, Lehmer persevered until he reached the term 276 : 169 = 

2272p, where p is a prime congruent to 1, mod 4, so that 

7 421365124 006306789 124764410 = 276: 170 = 2-5-7-13-829-848557-p 
suddenly lost the "driver" 28. The succeeding terms, all being congruent to + 2, 
mod 12, decrease steadily from 276 : 172 to the term 276 : 226 = 2p, where 
again p is a prime congruent to 1, mod 4, and 

351121 244430380= 276 : 227 = 225.131*48539.2760991. 
Lehmer has computed a further 200 terms which show an erratic upward tendency. 
The extent of our present knowledge [5], [61 is 

107100047 962427456 048833497 403019424 = 276 : 433 = 253-199 c 

where c is a 31-digit composite number with no small factors. Lehmer also 
verifiled that, apart from 396 = s(276) = s(306), all sequences starting with numbers 
less than 552 are bounded. 

On the other hand, we have found [4], [5], [6] that of the sequences 
starting with numbers less than 104, there are 751 which contain a term exceeding 
1024; and we have conjectured that an infinite number of aliquot sequences are 
unbounded. Our aim here is to outline some of the characteristics of the "driver" 
phenomenon which support this view. Good examples of driver dominated 

sequences are 

628628 = 552 : 26 = 227-11.13-157 
35149477 396986268 016618686 344127020 = 552: 181 = 22325 72c, 

3985 297814226 = 564 : 83 = 2-3-2113147944561 

2422 499075303 417661059 252663526 = 564 : 265 = 2 3223 89 c, 

11400 = 5250 : 3 = 233-5219 

4 553462993 488753886 439512520 = 5250: 72 = 233 5'c, 

8154 = 8154: 0 = 2-33151 

4615096 670497664 245830510 = 8154: 201 = 2 365 43 c, 

1503680 = 8904 :13 = 265-37.127 

3200141 507007701 992846912 = 8904 :166 = 2689 127-c, 

44144 = 9852:11 = 2431 *89 
5149877 193773848 066488144 = 9852 :146 = 243 11-31 c. 

Despite the tenacity of these drivers, none is expected to live for ever. 
We notice that any prime divisor p of n will appear in s(n) just if p 

divides u(n) and will appear to the same power in s(n) if a higher power 

divides a(n). If p divides both n and a(n) to the same power, p will divide 
s(n) to at least that power and to a higher power with probability 1/(p - 1), i.e., 
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always when p = 2. In fact,the prime 2 will continue to be present unless n is a 
square or twice a square, and continue to be absent unless n is a square. This fact, 
more than any other, seems to dominate the discussion of the behavior of aliquot 
sequences. 

A very rough argument in favor of our conjecture goes like this: on the average the 
value of u(n) - n is greater than n if n is even, and less than n if n is odd. If 
in the long run other effects are small compared to the persistence of parity, one 
would expect that most large even sequences are unbounded and that most odd se- 
quences are bounded. 

More precisely, since the average order, a, of s(n)/n, taken over even values of n, 
is greater than one so long as the terms remain even, we expect n r to be nar. 
The probability that this is a square, or twice a square, is cl/N/nar, so that the 
probability that any future term is odd is c2/v4n, which tends to 0 as n- oo. 

One might ask if a sequence could be shown to be unbounded by displaying a 
driver which persisted indefinitely. This would only occur if certain prime factors of 
n would always continue to appear to the same or higher powers in s(n). The prime 
2 in fact should keep the same power throughout, since the nature of the driver 
changes radically when the power of 2 changes. If each of a set of primes divides 
u(n) to a higher power than it divides n, then we would have achieved the goal. We 
prove that this cannot happen. 

THEOREM 1. For any divisor v, v > 1, of n, there is some prime divisor of v 
which does not divide u(v)/v. 

Proof. Let v = 2apa pra. with a,5-, ar > 0, so that 1 
r~~a + 

p -1+1 ar+ I1 

u(v) = (2 1)ai Pr 

Pi- p-i 

If Pi Pr l O(v)/v, then 

Pi~~Pr?' Pi<P Ple ePr 
V Pi1I Pr-1 

i.e. (p1 - 1) . r - 1) < 2 and v has no odd prime divisors. Moreover, since 
U(2a) is odd, 2 {v. 

Note that we can prove this without the requirement that the power of 2 
be higher in u(v) than in v. 

A precise definition of driver is desired at this point, but we would like our 
definition to avoid fragile structures, such as 

27365 17*23 137*547 1093 

which crumples when the power of 3 changes. In addition to the even perfect numbers 
one would normally include in a list of drivers, any products of prime powers which 
have a reasonable expectation of persistence, such as 233a5, 253 7 and 293 11 31. 
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Each of these divides the sum of its divisors and hence divides the sum of its 
aliquot parts. 

For example, if n = 293-11 31m, where (m, 211 - 2) = 1, then u(n) = 

293211P31 u(m), where u(m) is even when m is not a square. Then s(n) = 
293-11*31*m' where (m', 6) = 1 and the chance of m' being divisible by 11 or 

31 is small, and of its being a square is negligible. For similar reasons 233-5 and 
253*7 are persistent. 

A further remarkable driver is the number 2. When n = 2m and (m, 6) = 1, 

u(n) = 3a(m) and s(n) = 2m', where (m', 6) = 1 provided that 4 1 a(m). Neglecting 
squares, 4 1 u(m) unless m is a prime congruent to 1, mod 4. Similar considerations 
hold for 233. 

If n = 233-5im, we find it convenient to regard 233-5 as the driver even when 
(m, 15) # 1 (and similarly for other drivers) so that the only crucial exponent is that 
of 2. That is, we draw the line to exclude some possibilities which tempt us on account 
of their stability, but which rely for this on considerations secondary to the factor- 
ization of u(2a) = 2a 1 - 1. Some further examples which are thus excluded are 
23325.13, 25327-13, 25335, and 25335-7. 

Define a guide to be 2a, together with a subset of the prime factors of O(2a) 
A driver is defined as a number 2av with a > 0, v odd, v I u(2a) and 2a-1 1 U(v). 
This last requirement is included so that the power of the prime 2 will tend to persist at 
least as well as it does for the driver 2 itself, for which the condition is trivially 
satisfied. 

THEOREM 2. The only drivers are 2, 233, 233-5, 253-7, 293-11-31, and 
the even perfect numbers. 

Proof Let 2av be a driver, so that v 1 2a +1 - 1, 2a-1 1 U(v). If 2a+l -I1 = v 
is a Mersenne prime, the driver is an even perfect number. If v = 1, 2a-1 I a(v)= 1, 
a = I and we have the "downdriver" 2. Henceforth we assume that v > 1, and that 

2a= 2aP+ 
1 pa Ipar is composite, so that v = pb1 br 0 < b < aS , I r ~~~~~~1 *Pr 

1 < i < r and not all the bi are zero. 
Define the deficiency of the factor p bi of v to be 2dil pai, where 2di is the 

highest power of 2 in any a(pX), 0 < j < bi . The product of the deficiencies of the 
factors of v is greater than 1/4, since otherwise 

2a+1 > 2a+1 1= fpai > 4 2 d1 

i=l i-l 

so that 2a1 > [Ir and 2d a b o .(pi ) =( ) 

The product of the deficiencies of the Mersenne primes, 2q - 1, q E {2, 3, 5, 7, 

13,...} is at most 

4 8 32 128 4 8 32 64 8 
1 12 3 7 3 1 * * < 5 

3 7 31 127 3 7 31 63 5 
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If the prime 7 is missing, this product is less than 7/5; if 3 does not occur, the product 
is less than 6/5. 

The deficiency of P bi is at most 2'i(Pi + )Ipai, where hi = [log2(bi + 1)] - 1, 
and is strictly less than this unless pi is a Mersenne prime. So a, < 4 for each i, 
since otherwise the deficiency of the corresponding factor pi is at most 2(3 + 1)/3 
and the product of all deficiencies would be less than (8/81)(6/5) < 1/4. If ai = 

2 or 3 for any pi > 5, the product of the deficiencies would be less than 

2 8 8 7 1 
max < -' 

(52 5 72 5 4 

so, with the possible exception of 3, we may assume that 2a+ 1 - 1 contains no 
repeated factors. 

If 32 1 2a+1 - 1, 6 1 a + 1, 327 1 2a+ 1 - 1 and then 7 1 v, for otherwise the prod- 
uct of the deficiencies is at most (1/7)(7/5) < 1/4. If 32 11 v or 3 {v, the product is less 
than (1/9)(6/5) < 1/4, while if 33 1 v, 33 1 2a+, - 1, 18 1 a + 1, 337-19-73 1 2a+l - 1 
and the product is much less that 1/4. So 3 11 v, and if a = 5 we have the driver 
25 37. We cannot have a larger, since 2a+1 - 1 would contain, in addition to 327, 

some factor congruent to 1, mod 4, and the product of the deficiencies would be less 
than 

4 2 6 1 
_ ._ -. _< 

_ 

9 5 5 4 

We also notice that 2a+l - 1 contains at most one non-Mersenne prime factor, 
i.e.,factor of the form 2Cu - 1, u odd, u > 3, c > 1, since the deficiency of such 
a factor is 2C/(2cu - 1), which is at most 2/5 (u = 3, c = 1), or otherwise at most 

4/11 (u = 3, c = 2), and 
2 4 8 1 
5 11 5 4 

It remains to consider 2a+ 1 = (2ql - 1)(2q2 - 1)-(2cu - 1), where 

2 < q1 < q2 < *'. If u > 7, the product of the deficiencies is less than 
(2/13)(8/5) < 1/4, so u = 3 or 5. If c = 1, u = 3 (since 2-5 -1 is not 

prime), 2Cu - 1 = 5, 5 1 2aI+ - 1, 4 1 a + 1, 15 1 2a + - 1. If a = 3 we have the 

drivers 233-5 and 233. If a > 7, there is another prime divisor of 2a+1 - 1 
which is congruent to 1, mod 4, and the product of the deficiencies is at most 

42 2 8 1 8) 
max 1- -'-' - -; <- 

So we have c>2,q1 >2,u=3or5,and,sincewehave dealt with 1 < a < 4, 
a > 5. Considerations modulo 2min(c,qi)+l show that 

-1 =-(2q -1)(- 1) (2cu- 1),mod 2min(c,q1)+I 

So ?1 2q 1 + 2cu - 1, the choice of sign is minus, the number of Mersenne primes 
is even (and not zero) and q1 = c. Now 2ql u q12q2, > 2a+1, so 



106 RICHARD K. GUY AND J. L. SELFRIDGE 

3+2q1+q2+ .>log2U+2q1 +q2?+ >a+ I>q1q2. 

since 2q - 1 divides 2a+1 - 1 just if q I a + 1, and the qi are distinct primes. 
This is clearly a contradiction if the number of qi is 4 or more, so there are just two 

qi: 3 + 2ql +q2 > q1q2, (ql - l)(q2 - 2) < 5, q1 =2 =c and q2 =3 
or 5. Only the latter gives a solution; u = 3 and 293d11-31 is a driver. 
The theorem is proved. 

Table 1 exhibits some drivers, d, and guides, g, and the effect on the power of 
two, 2a, when n = dm or gm, (d, m) or g, m) = 1 and m = s, a square or m= 

ps where p is a prime congruent to 1, mod 4. The odd prime factors of d or g 
always divide s(n); for a driver 2a 11 s(n) with the exceptions noted. If (d, m) > 1, 
the situation is more complicated. 

TABLE 1. Power of 2 dividing s(n) 

Driver or guide a m = s, a square m =Pps=1 (mod 4) 
d 2 1 0 >2t 
d 2 * 3 1 1 1 
g 22 2 04 1; 

d 227 2 2 2 
g 23 3 04, 1; 

d 233 3 24; > 4 t 
g 235 3 I4 24f 

d 233 5 S 3 > 4 t 3 
g 24 4 04, 1; 

d 2431 4 4 4 
g 253 5 24 34, 
g 257 5 34 44 
d 253 7 5 > 6t 5 
d 26127 6 6 6 
d 293 - 11 31 9 > 10t 9 

The signs X, t indicate that the driver or guide changes "downward" or "upward". 
We are examining the statistical and probabilistic evidence concerning bounded- 

ness and unboundedness of aliquot sequences in collaboration with M. C. Wunderlich. 
The probabilistic model is a Markov process. An aliquot sequence is in one of a 
finite number of states; one of a finite set of drivers and guides is in control, or none 
of them is. We can calculate the expected "life" of a sequence in one of these states 
and the expected number of terms in which the driver is retained. "Break probabili- 
ties" between pairs of states can also be calculated; for example, that from the 23335 

driver to the 2 driver is zero since direct transition is impossible. 
We conclude with a table showing the numbers of sequences starting below 103 

and below 104 which surpass various bounds. The number of distinct sequences at 
each bound is also given. 
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TABLE 2 . Numbers of sequences surpassing given bounds 

bound 1012 1015 1018 1021 1024 1027 1030 

starting below 103 19 17 16 13 13 13 13 

distinct 10 8 7 6 6 6 6 

starting below 104 896 820 803 761 751 ? ? 

distinct 113 106 104 100 98 ? ? 

We expect to fill in the missing entries in due course, but much computation is needed. 

As remarked in [5], [6] considerable help from Lehmer's sieve was necessary to push 
all the sequences beyond 1024. 
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