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Abstract. One of the chief difficulties associated with the so-called backtracking tech- 

nique for combinatorial problems has been our inability to predict the effilciency of a 

given algorithm, or to compare the efficiencies of different approaches, without actu- 

ally writing and running the programs. This paper presents a simple method which pro- 

duces reasonable estimates for most applications, requiring only a modest amount of 

hand calculation. The method should prove to be of considerable utility in connection 

with D. H. Lehmer's branch-and-bound approach to combinatorial optimization. 

The majority of all combinatorial computing applications can apparently be han- 
dled only by what amounts to an exhaustive search through all possibilities. Such 
searches can readily be performed by using a well-known "depth-first" procedure which 
R. J. Walker [21] has aptly called backtracking. (See Lehmer [16], Golomb and 
Baumert [6], and Wells [22] for general discussions of this technique, together with 
numerous interesting examples.) 

Sometimes a backtrack program will run to completion in less than a second, 
while other applications seem to go on forever. The author once waited all night for 

the output from such a program, only to discover that the answers would not be forth- 
coming for about 106 centuries. A "slight increase" in one of the parameters of a 
backtrack routine might slow down the total running time by a factor of a thousand; 
conversely, a "minor improvement" to the algorithm might cause a hundredfold im- 
provement in speed; and a sophisticated "major improvement" might actually make 

the program ten times slower. These great discrepancies in execution time are charac- 
teristic of backtrack programs, yet it is usually not obvious what will happen until the 

algorithm has been coded and run on a machine. 
Faced with these uncertainties, the author worked out a simple estimation pro- 

cedure in 1962, designed to predict backtrack behavior in any given situation. This 
procedure was mentioned briefly in a survey article a few years later [8]; and during 

subsequent years, extensive computer experimentation has confirmed its utility. Several 
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improvements on the original idea have also been developed during the last decade. 
The estimation procedure we shall discuss is completely unsophisticated, and it 

probably has been used without fanfare by many people. Yet the idea works surpris- 
ingly well in practice, and some of its properties are not immediately obvious, hence 
the present paper might prove to be useful. 

Section 1 presents a simple example problem, and Section 2 formulates back- 
tracking in general, developing a convenient notational framework; this treatment is 
essentially self-contained, assuming no prior knowledge of the backtrack literature. Sec- 
tion 3 presents the estimation procedure in its simplest form, together with some theo- 
rems that describe the virtues of the method. Section 4 takes the opposite approach, 
by pointing out a number of flaws and things that can go wrong. Refinements of the 
original method, intended to counteract these difficulties, are presented in Section 5. 
Some computational experiments are recorded in Section 6, and Section 7 summarizes 
the practical experience obtained with the method to date. 

1. Introduction to Backtrack. It is convenient to introduce thre ideas of this pa- 
per by looking first at a small example. The problem we shall study is actually a rath- 
er frivolous puzzle, so it does not display the economic benefits of backtracking; but 
it does have the virtue of simplicity, sirice the complete solution can be displayed in a 
small diagram. Furthermore the puzzle itself seems to have been tantalizing people for 
at least sixty years (see [191); it became extremely popular in the U.S.A. about 1967 
under the name Instant Insanity. 

Figure 1 shows four cubes whose faces are colored red (R), white (W), green (G), 
or blue (B); colors on the hidden faces are shown at the sides. The problem is to ar- 
range the cubes in such a way that each of the four colors appears exactly once on 
the four back faces, once on the top, once in the front, and once on the bottom. 
Thus Figure 1 is not a solution, since there is no blue on the top nor white on the 
bottom; but a solution is obtained by rotating each cube 90?. 

Cube 1 Cube 2 Cube 3 Cube 4 

G~ ~~~ G W f gBf XR R~~~ 

R R G B 

FIGURE 1. Instant Insanity cubes 

We can assume that these four cubes retain their relative left-to-right order in all 

solutions. Each of the six faces of a given cube can be on the bottom, and there are 

four essentially different positions having a given bottom face, so each cube can be 
placed in 24 different ways; therefore the "brute force" approach to this problem is to 
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try all of the 244 = 331776 possible configurations. If done by hand, the brute force 
procedure might indeed lead to insanity, although not instantly. 

It is not difficult to improve on the brute force approach by considering the ef- 

fects of symmetry. Any solution clearly leads to seven other solutions, by simulta- 

neously rotating the cubes about a horizontal axis parallel to the dotted line in Figure 1, 

and/or by rotating each cube 1800 about a vertical axis. Therefore we can assume with- 

out loss of generality that Cube 1 is in one of three positions, instead of considering all 

24 possibilities. Furthermore it turns out that Cube 2 has only 16 essentially different 

placements, since it has two opposite red faces; see Figure 2, which shows that two of 

its 24 positionings have the same colors on the front, top, back, and bottom faces. The 
same observation applies to Cube 3. Hence the total number of essentially different 

ways to position the four cubes is only 3 - 16- 16- 24 = 18432; this is substantially 

less than 331776, but it might still induce insanity. 

Cube 2 Cube 2 

GG 
w ~~~~~~~~B 

R 3 R1 

FIGURE 2. Rotation by 1800 in this case leaves the relevant colors unchanged 

A natural way to reduce the number of cases still further now suggests itself. 
Given one of the three placements for Cube 1, some of the 16 positionings of Cube 2 

are obviously foolhardy since they cannot possibly lead to a solution. In Figure 1, for 

example, Cubes 1 and 2 both contain red on their bottom face, while a complete solu- 

tion has no repeated colors on the bottom, nor on the front, top, or back; since this 

placement of Cube 2 is incompatible with the given position of Cube 1, we need not 

consider any of the 16- 24 = 384 ways to place Cubes 3 and 4. Similarly, when 

Cubes 1 and 2 have been given a compatible placement, it makes sense to place Cube 
3 so as to avoid duplicate colors on the relevant sides, before we even begin to con- 

sider Cube 4. 
Such a sequential placement can be represented by a tree structure, as shown in 

Figure 3. The three nodes just below the root (top) of this tree stand for the three es- 

sentially different ways to place Cube 1. Below each such node are further nodes rep- 

resenting the possible placements of Cube 2 in a compatible position; and below the 
latter are the compatible placements of Cube 3 (if any), etc. Note that there is only 

one solution to the puzzle, represented by the single node on Level 4. 
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Level 0 

16 16 
6 

Level 1 

16 16 1 16 1 6 16 16 1 16 Level 2 

24 24 24 24 24 24 24 24 24 2 24 4 Level 3 

1 Level 4 

FIGURE 3. The Instant Insanity tree 

This procedure cuts the number of cases examined to 3 + 3 - 16 + 10 - 16 + 

13 - 24 + 1 = 524; for example, each of the 10 nodes on Level 2 of the tree involves 

the consideration of 16 ways to place Cube 3. It is reasonable to assume that a sane 

person can safely remain compos mentis while examining 524 cases; thus, we may con- 

clude that systematic enumeration can cut the work by several orders of magnitude 

even in simple problems like this one. (Actually a further refinement, which may be 

called the technique of "homomorphism and lifting", can be applied to the Instant In- 

sanity problem, reducing the total number of cases examined to about 50, as shown 

originally in [1]; see also [71 for further discussion and for a half-dozen recent refer- 

ences. But such techniques are beyond the scope of the present paper.) 

The tree of Figure 3 can be explored in a systematic manner, requiring compara- 

tively little memory of what has gone before. The idea is to start at the root and con- 

tinually to move downward when possible, taking the leftmost branch whenever a de- 

cision is necessary; but if it is impossible to continue downward, "backtrack" by con- 

sidering the next alternative on the previous level. This is a special case of the classical 

Tre'maux procedure for exploring a maze [17, pp. 47-50], [13, Chapter 31. 

2. The General Backtrack Procedure. Now that we understand the Instant In- 

sanity example, let us consider backtracking in general. The problem we wish to solve 

can be expressed abstractly as the task of finding all sequences (xl, x2, - - *, xn) which 

satisfy some property Pn(x1, X2, * *, xn). For example, in the case of Instant Insan- 

ity, n = 4; the symbol xk denotes a placement of the kth cube; and Pr(X I,x2,x3,x4) 
is the property that the four cubes exhibit all four colors on all four relevant sides. 

The general backtrack approach consists of inventing intermediate properties 

Pk(xl,* *, Xk) such that 

(1) Pk+1(xl, ,xk, xk+l) implies Pk(x1, ,Xk) for O < k <n. 

In other words, if (X1,- , xk) does not satisfy property Pk, then no extended se- 

quence (xl, . . , Xk, xk+l) can possibly satisfy Pk+ 1; hence by induction, no ex- 

tended sequence (xI, * * *, x , * , xn) can solve the original condition Pn. The back- 
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track procedure systematically enumerates all solutions (xi,.* *, xn) to the original 
problem by considering all partial solutions (xI,. , Xk) that satisfy Pk, using the 
following general algorithm: 

Step Bi. [Initialize.] Set k to 0. 
Step B2. [Compute the successors.] (Now Pk(xl, , xk) holds, and 0 < k 

< n.) Set Sk to the set of all xk+l such that Pk+ l(xl,l *, Xk, Xk+l) is true. 

Step B3. [Have all successors been tried?] If S* is empty, go to Step B6. 
Step B4. [Advance.] Choose any element of Sk, call it Xk+l, and delete it 

from Sk. Increase k by 1. 
Step B5. [Solution found?] (Now Pk(Xl, , xk) holds, and 0 < k I n.) 

If k < n, return to Step B2. Otherwise output the solution (xi, * , xn) and go on to 
Step B6. 

Step B6. [Backtrack.] (All extensions of (xl, * , Xk) have now been ex- 
plored.) Decrease k by 1. If k > 0, return to Step B3; otherwise the algorithm 
terminates. O 

Condition (1) does not uniquely define the intermediate properties Pk, so we 
often have considerable latitude when we choose them. For example, we could simply 
let Pk be true for all (x1,- - *, xk), when k < n; this is the weakest possible prop- 
erty satisfying (1), and it corresponds to the brute force approach, where some 244 
possibilities would be examined in the cube problem. On the other hand the strongest 
property is obtained when Pk(xl, * * *, Xk) is true if and only if there exist xk+ 1' 

* * xn satisfying Pn (x1, * , x, xk+1.. * , x,). In our example this strongest 
property would reduce the search to the examination of a trivial twig of a tree, but the 
decisions at each node would require considerable calculation. In general, stronger 
properties limit the search but require more computation, so we want to find a suit- 
able trade-off. The solution adopted in our example (namely to use symmetry consid- 
erations when placing Cubes 1, 2, and 3, and to let Pk(Xl, * , xk) mean that no 

colors are duplicated on the four relevant sides) is fairly obvious, but in other problems 
the choice of Pk is not always so self-evident. 

3. A Simple Estimate of the Running Time. For each (xl, * I, Xk) satisfying 

Pk with 0 < k < n, the algorithm of Section 2 will execute Steps B2, B4, B5, and B6 
once, and Step B3 twice. (To see this, note that it is true for Steps B2, B5, and B6, 
and apply Kirchhoff's law as in [12].) Let us call the associated running time the cost 

c(x1,... , xk). When k = n, the corresponding cost amounts to one execution of 

Steps B3, B4, B5, and B6. If we also let c( ) be the cost for k = 0 (i.e., one 
execution of Steps Bl, B2, B3, and B6), the total running time of the algorithm comes 
to exactly 

(2) CEi E C(l-Xk)- 
k>O Pk(xl, - xk) 

This formula essentially distributes the total cost among the various nodes of the 
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tree. Since the time to execute Step B2 can vary from node to node, and since the time 

to execute Step B5 depends on whether or not k = n, the running time is not simply 

proportional to the size of the tree except in simple cases. 

Let T be the tree of all possibilities explored by the backtrack method; i.e.,let 

(3) T = {(xl, * * , xk)Ik) 0 and Pk(Xl1 , Xk) holds}. 

Then we can rewrite (2) as 

(4) cost(7)= E c(t). 
tET 

Our goal is to find some way of estimating cost(7), without knowing a great deal 

about the properties Pk, since the example of Section 1 indicates that these proper- 

ties might be very complex. 

A natural solution to this estimation problem is to try a Monte Carlo approach, 

based on a random exploration of the tree; for each partial solution (xl, - -, xk) 

for 0 < k < n, we can choose xk+ 1 at random from among the set Sk of all con- 

tinuations, as in the following algorithm. (A related procedure, but which is intrin- 

sically different because it is oriented to different kinds of estimates, has been pub- 

lished by Hammersley and Morton [10], and it has been the subject of numerous pa- 

pers in the literature of mathematical physics; see [5].) 

Step El. [Initialize.] Set k - 0, D < 1, and C < c( ). (Here C will be 

an estimate of (2), and D is an auxiliary variable used in the calculation of C, 

namely the product of all "degrees" encountered in the tree. An arrow " <" de- 

notes the assignment operation equivalent to Algol's " := "; and c( ) denotes the 

cost at the root of the tree, as in (2) when k = 0.) 

Step E2. [Compute the successors.] Set Sk to the set of all xk+ 1 such that 

Pk+ 1 (X1, ... , Xk, Xk+ 1 ) is true, and let dk be the number of elements of Sk. 
(If k = n, then Sk is empty and dk = 0.) 

Step E3. [Terminal position?] If dk = 0, the algorithm terminates, with C 

an estimate of cost (7). 
Step E4. [Advance.] Choose an element Xk+ 1 E Sk at random, each element 

being equally likely. (Thus, each choice occurs with probability l/dk.) Set D < 

dkD, then set C < C + c(xl,* , Xk+ 1)D. Increase k by 1 and return to 

Step E2. 0 

This algorithm makes a random walk in the tree, without any backtracking, and 

computes the estimate 

(5) C = c( ) + doc(xl) + dodlc(xl, x2) + dodld2c(xl, x2, x3) + 

where dk is a function of (x1, - . , Xk), namely the number of Xk+ 1 satisfying 

Pk+ 1(xl, , Xk, Xk+ ). We may define dk = 0 for all large k, thereby regarding 

(5) as an infinite series although only finitely many terms are nonzero. 

The validity of estimate (5) can be proved as follows. 
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THEOREM 1. The expected value of C, as computed by the above algorithm, is 
cost (T), as defined in (4). 

PROOF. We shall consider two proofs, at least one of which should be convinc- 
ing. First we can observe that for every t = (X1, , Xk) E T, the term 

(6) dod, dk* -1C(X 1 **, Xk) 

occurs in (5) with probability l/dod, ... dk-1, since this is the chance that the al- 
gorithm will consider the partial solution (xl, * - Xk). Hence the sum of all the terms 
(6) has the expected value (4). 

The second proof is based on a recursive definition of cost (7), namely 

(7) cost (T) = c( ) + cost(T,) + +.. ?cost(Td), 

where d = do is the degree of the root of the tree and T,* Td are the respec- 
tive subtrees of the root, namely 

T1 = { (X1, * * *, Xk) E T I xI is the jth element of S0}. 

We also have C= c( ) + doC, where C'=c(xl)+dlc(x,,X2)+dld2C(Xl,X2,x3) 
+ * has the form of (5) and is an estimate of one of the T,. Since each of the 
d = do values of j is equally likely, the expected value of C is 

E(C) = c() + doE(C) = c( ) + do((E(C1) + * * * + E(Cd))/d), 

where E(C ) = cost (Tj) by induction on the size of the tree. Hence E(C) = 

cost (7). C 
This theorem demonstrates that C is indeed an appropriate statistic to compute, 

based on one random walk down the tree. As an example of the theorem, let us con- 
sider Figure 3 in Section 1, using the costs shown there (since they represent the time 
to perform Step B2, which dominates the calculation). We have cost (1) = 524, and 
if the estimation algorithm is applied to the tree it is not difficult to determine that 
the result will be C= 243, or 291, or 435, or 531, or 543, or 819, or 1107, with 
respective probabilities 1/6, 1/6, 1/6, 1/6, 1/12, 1/6, and 1/12. Thus, a fairly reason- 
able approximation will nearly always be obtained; and we know that the mean of 
repeated estimates will approach 524, by the law of large numbers. 

Since the proof of Theorem 1 applies to all functions c(t) defined over trees, 
we can apply it to other functions in order to obtain further information: 

COROLLARY 1. The expected value of D at the end of the above algorithm is 

the number of terminal nodes in the tree. 
PROOF. Let c(t) = 1 if t is terminal, and c(t) = 0 otherwise; then C 

D at the end of the algorithm, hence E(D) = E(C) = 2c(t) is the number of terminal 
nodes by Theorem 1. El 

COROLLARY 2. The expected value of the product dod1 * dk-I for fixed k, 
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when the d1's are computed by the above algorithm, is the number of nodes on level 

k of the tree. 

PROOF. Let c(t) = 1 for all nodes on level k, and c(t) = 0 otherwise; then 
C = dod1 * dk-1 at the end of the algorithm. (Note that dod1 * dk-1 is zero 

if the algorithm terminates before reaching level k.) [1 

Corollary 2 gives some insight into the "meaning" of the individual terms of our 
estimate (5); the term dod1 dk-1 *c(x1, * * *, Xk) represents the number of 
nodes on level k times the cost associated with a typical one of these nodes. 

4. Some Cautionary Remarks. The algorithm of Section 3 seems too simple to 
work, and there are many intuitive grounds for skepticism, since we are trying to pre- 
dict the characteristics of an entire tree based on the knowledge of only one branch! 
The combinatorial realities of most backtrack applications make it clear that different 
partial solutions can have drastically different behavior patterns. 

Just knowing that an experiment yields the right expected value is not much con- 
solation in practice. For example, consider an experiment which produces a result of 
1 with probability 0.999, while the result is 1,000,001 with probability 0.001; the 
expected value is 1001, but a limited sampling would almost always convince us that 
the true answer is 1. 

There is reason to suspect that the estimation procedure of Section 3 will suffer 
from precisely this defect: It has the potential to produce huge values, but with very 
low probability, so that the expected value might be quite different from typical esti- 
mates. 

Let Nk be the number of nodes on level k of the tree (cf. Corollary 2). In 
most backtrack applications, the vast majority of all nodes in the search tree are con- 
centrated at only a few levels, so that in fact the logarithm of Nk (the number of 
digits in Nk) has a bell-shaped curve when plotted as a function of k: 

(8)l 

log Nk 

k 

On the other hand our estimate (5) is composed of a series of estimates Nk = d d1 
dkl which are never bell-shaped; since the d's are integers, the Nk grow ex- 

ponentially with k, until finally dropping to zero: 

log Nk 

k 

Although these two graphs have cQmpletely different characteristics, we are getting es- 
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timates which in the long run produce (8) as an average of curves like (9). 
Consider also Figure 3, where we have somewhat arbitrarily assigned a cost of 1 

to the lone solution node on Level 4. Perhaps our output routine is so slow that the 
solution node should really have a cost of 106; this now becomes the dominant por- 
tion of the total cost, but it will be considered only 1/12 of the time, and then it will 
be multiplied by 12. 

There is clearly a danger that our estimates will almost always be low, except for 
rare occasions when they will be much too high. 

5. Refinements. Our estimation procedure can be modified in order to circum- 
vent the difficulties sketched in Section 4. One idea is to introduce systematic bias 
into Step E4, so that the choice of xk+ 1 is not completely random; we can try to 
investigate the more interesting or more difficult parts of the tree. 

The algorithm can be generalized by using the following selection procedure in 
place of Step E4. 

Step E4'. [Generalized advance.] Determine, in any arbitrary fashion, a sequence 
of dk positive numbers Pk(l), Pk(2), ... I Pk(dk) whose sum is unity. Then choose 
a random integer Jk in the range 1 < Jk < dk in such a way that Jk i with 
probability PkM. Let Xk+ 1 be the Jkth element of Sk' and set D - D/pk(Jk), 

C < C + C(X1 I *, 'IXk+ D. Increase k by 1 and return to Step E2. O 
(Step E4 is the special case PkJ) = 1 Idk for all j.) Again we can prove that 

the expected value of C will be cost (1), no matter how strangely the probabilities 

PkJ) are biased in Step E4'; in fact, both proofs of Theorem 1 are readily extended 
to yield this result. It is interesting to note that the calculation of D involves a pos- 
teriori probabilities, so that it grows only slightly after a highly probable choice has 
been made. The technique embodied in Step E4' is generally known as importance 

sampling [9, pp. 57-59]. 

Some choices of the PkQ) are much better than others, of course, and the most 
interesting fact is that one of the possible choices is actually perfect: 

THEOREM 2. If the probabilities Pk(y) in Step E4' are chosen appropriately, the 

estimate C will always be exactly equal to cost (0. 
PROOF. For 1 Ij < dk, let PkJ) be 

(I 0) P*W = ~~Cost (T(X1, I... I Xk, Xk+lQ))) 
(10) p*Q') =;)-( ***x) k cost (T(x 1, -. , 

xd)) 
- C(X 1, , 

Xd) 

where T(x1, , xk) is the set of all t E T having specified values (xl, , xk) 

for the first k components, and where xk+ 1() is the jth element of Sk. Now we 
can prove that the relation 

C + (cost(T(x ,1 X , Xk)) - c(x, Xk))D = cost(T) 

is invariant, in the sense that it always holds at the beginning and end of Step E4'. 
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Since cost(T(x, **, Xk)) = c(x1, . , Xk) when dk = 0, the algorithm terminates 

with C = cost (1). 

Alternatively, using the notation in the second proof of Theorem 1, we have 

C = c( ) + ((cost (T) - c( ))/cost (Tj))Ci 

for some j, and C1 = cost(Tj) by induction, hence C = cost(). O 
Of course we generally need to know the cost of the tree before we know the 

exact values of these ideal probabilities p*q), so we cannot achieve zero variance in 
practice. But the form of the pk(7) shows what kind of bias is likely to reduce the 
variance; any information or hunches that we have about relative subtree costs will be 
helpful. (In the case of Instant Insanity there is no simple a priori reason to prefer one 
cube position over another, so this idea does not apply; perhaps Instant Insanity is a 
mind-boggling puzzle for precisely this reason, since intuition is usually much more 
valuable.) 

Theorem 2 can be extended considerably, in fact we can derive a general formula 
for the variance. The generating function for C satisfies 

(11) C(z) = zc( ) EI p1C1(zlpj) 
1 j6d 

and from this equation it follows by differentiation that 

var (C) = C'(1) + C'(l) - ((1)2 

(12) - E var(C1)/P1 ? j ~~~~cost (d cost (Tp) 

1 jd 1 i<j<d i / 

Iterating this recurrence shows that the variance can be expressed as 

(13) var (C) = 2 1: ptQi)p y 
(T(t, i)) cost (T(t,ji)) ~2 teT P(t) 1?i<j<d(t) Ai (ip)(t pt) 

where P(t) is the probability that node t is encountered, d(t) is the degree of 
node t, pt"() is the probability that we go from t to its jth successor, and T(t, j) 
is the subtree rooted at that successor. 

From this explicit formula we can get a bound on the variance, if the probabil- 
ities are reasonably good approximations to the relative subtree costs: 

THEOREM 3. If the probabilities Pk(;) in Step E4' satisfy 

cost (T(x1, , Xk, k+ X+(J))) cost (T(x1 Xk Xk+ 1 (i))) 

Pky) - Pk() 

for all i, j and for some fixed constant a > 1, the variance of C is at most 

2 (( ? 2a ? I 
c 2 (14) 2St1 ct(T) 
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PROOF. Let q1 = cost (T )/p1, and assume without loss of generality that q1 < 

q2< ** qd < aql. From elementary calculus we have, under the constraints 
cost (T) > O and I p. 

'cost (T.)2 a2 + 2a + ? 

1 <j<d pi 1 / 

equality occurring when d = 2 and q2 = aq1. Furthermore 

cost (T)2 (2 
~2 p1p1(qi - q1)2 =cost(T 

1 <i<jd 1 <j<d Pi 1 j<d 

Letting ,B = (a2 + 2a + 1)/4a, we can prove (14) by induction since (12) now yields 

var (C) < var (C1)/p1 ? (, -1)cost (T)2 
1 <j?d 

< E (,Bn1-1 i ) cost (T,)2/pi ? (- 1) cost ()2 
1 <j?d 

? (,Bn - 1) cost (T)2 + ( 13 ) cost ( .)2 

Theorem 3 implies Theorem 2 when a = 1; for a > 1 the bound in (14) is 
not especially comforting, but it does indicate that a few runs of the algorithm will 
probably predict cost (1) with the right order of magnitude. 

Another way to improve the estimates is to transform the tree into another one 

having the same total cost, and to apply the Monte Carlo procedure to the transformed 
tree. For example, the tree fragment 

c2 C5 

with costs C1 * *, C5 and subtrees a, , 7 can be replaced by 

+C +C+C 
+C+ 

by identifying five nodes. Intermediate condensations such as 
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C + C + C4 

c2 <X)c 5 

are also possible. 
One application of this idea, if the estimates are being made by a computer pro- 

gram, is to eliminate all nodes on levels 1, 3, 5, 7, - * of the original tree, making the 
nodes formerly on levels 2k and 2k + 1 into a new level k. For example, Figure 4 
shows the tree that results when this idea is applied to Figure 3. The estimates in this 
collapsed tree are C= 211, or 451, or 461, or 691, or 931, with respective probabil- 
ities .2, .3, .1, .3, .1, so we have a slightly better distribution than before. 

51 

64 4o l4o 64 16 ho lio 88 16 64 

1 

FIGURE 4. Collapsed Instant Insanity tree 

Another use of this idea is to eliminate all terminal nodes having nonterminal 
"brothers". Then we can ensure that the algorithm never moves directly to a configu- 
ration having dk = 0 unless all possible moves are to such a terminal situation; in 
other words, "stupid" moves can be avoided. 

Still another improvement to the general estimation procedure can be achieved by 
"stratified sampling" [9, pp. 55-57]. We can reduce the variance of a series of esti- 
mates by insisting for example that each experiment chooses a different value of x1. 

6. Computational Experience. The method of Section 3 has been tested on 
dozens of applications; and despite the dire predictions made in Section 4 it has con- 
sistently performed amazingly well, even on problems which were intended to serve as 
bad examples. In virtually every case the right order of magnitude for the tree size was 
found after ten trials. Three or four of the ten trials would typically be gross under- 
estimates, but they were generally counterbalanced by overestimates, in the right pro- 
portion. 

We shall describe only the largest experiment here, since the method is of most 
critical importance on a large tree. Figure 5 illustrates the problem that was considered, 
the enumeration of uncrossed knight's tours; these are nonintersecting paths of a 
knight on the chessboard, where the object is to find the largest possible tour of this 
kind. T. R. Dawson first proposed the problem in 1930 [2], and he gave the two 35- 
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move solutions of Figure 5, stating that "il est probablement impossible de denombrer 
la quantite de ces tours; . . . vraisemblablement, on ne peut effectuer plus de 35 coups.' 
Later [3, p. 20], [4, p. 35] he stated without proof that 35 is maximum. 

FIGURE 5. Uncrossed knight's tours 

The backtrack method provides a way to test his assertion; we may begin the 
tour in any of 10 essentially different squares, then continue by making knight's moves 
that do not cross previous ones, until reaching an impasse. But backtrack trees that 
extend across 30 levels or more can be extremely large; even if we assume an average 
of only 3 consistent choices at every stage, out of at most 7 possible knight moves to 
new squares, we are faced with a tree of about 330 = 205,891,132,094,649 nodes, 
and we would never finish. Actually 320 = 3,486,784,401 is nearer the upper limit 
of feasibility, since it is not at all simple to test whether or not one move crosses 
another. It is certainly not clear a priori that an exhaustive backtrack search is eco- 
nomically feasible. 

The simple procedure of Section 3 was therefore used to estimate the number of 
nodes in the tree, using c(t) = 1 for all t. Here are the estimated tree sizes found in 
the first ten independent experiments: 

1571717091 209749511 
315291281 58736818301 

8231 311 
1793651 259271 

59761491 6071489081 

The mean value is 6,696,688,822. The next sequence of ten experiments gave the es- 
timates 

567911 238413491 
111 6697691 

569585831 5848873631 
111 161 
411 140296511 

for an average of only 680,443,586, although the four extremely low estimates make 
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this value look highly suspicious. (We could have avoided the "stupid moves" which 

lead to such low estimates, by using the technique explained at the end of Section 5, 

but the original method was being followed faithfully here.) After 100 experiments 

had been conducted, the observed mean value of the estimates was 1,653,634,783.8, 

with an observed standard deviation of about 6.7 x 109. 

The first few experiments were done by hand, but then a computer program was 

written and it performed 1000 experiments in about 30 seconds. The results of these 

experiments were extremely encouraging, because they were able to predict the size of 

the tree quite accurately as well as its "shape" (i.e., the number Nk of nodes per 

level), even though the considerations of Section 4 seem to imply that Nk cannot be 

estimated well. Table 1 shows how these estimates compare to the exact values which 

were calculated later; there is surprisingly good agreement, although the experiment 

looked at less than 0.00001 of the nodes of the tree. Perhaps this was unusually 

good luck. 
This knight's tour problem reflects the typical growth of backtrack trees; the 

same problem on a 7 x 7 board generates a tree with 10,874,674 nodes and on a 

6 x 6 board there are only 88,467. On a 9 x 9 board we need another method; the 

longest known tour has 47 moves [18]. It can be shown that the longest reentrant 

tour on an n x n board has at least n2 - 0(n) moves, see [11] . 

7. Use of the Method in Practice. There are two principal ways to apply this 

estimation method, namely by hand and by machine. 

Hand calculation is especially recommended as the first step when embarking on 

any backtrack computations. For one thing, the algorithm is great fun to apply, es- 

pecially when decimal dice [20] are used to guide the decisions. The reader is urged 

to try constructing a few random uncrossed knight's tours, recording the statistics dk 

as the tours materialize; it is a captivating game that can lead to hours of enjoyment 

until the telephone rings. 
Furthermore,the game is worthwhile, because it gives insight into the behavior of 

the algorithm, and such insight is of great use later when the algorithm is eventually 

programmed; good ideas about data structures, and about various improvements in the 

backtracking strategy, usually suggest themselves. The assignment of nonuniform prob- 

abilities as suggested in Section 5 seems to improve the quality of the estimates, and 

adds interest to the game. Usually about three estimates are enough to give a feeling 

for the amount of work that will be involved in a full backtrack search. 

For large-scale experiments, expecially when considering the best procedure in 

some family of methods involving parameters that must be selected, the estimates can 

be done rapidly by machine. Experience indicates that most of the refinements sug- 

gested in Section 5 are unnecessary; for example, the idea of collapsing the tree into 

half as many levels does not improve the quality of the estimates sufficiently to justify 

the greatly increased computation. Only the partial collapsing technique which avoids 

"stupid moves" is worth the effort, and even this makes the program so much more 
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TABLE 1. Estimates after 1000 random walks 

k Estimate, Nk True value, Nk 

0 1.0 1 
1 10.0 10 
2 42.8 42 
3 255.0 251 
4 991.4 968 
5 4352.2 4215 
6 16014.4 15646 
7 59948.8 56435 
8 190528.7 182520 
9 580450.8 574555 

10 1652568.7 1606422 
11 4424403.9 4376153 
12 9897781.4 10396490 
13 22047261.5 23978392 
14 44392865.5 47667686 
15 92464977.5 91377173 
16 145815116.2 150084206 
17 238608697.6 235901901 
18 253061952.9 315123658 
19 355460520.9 399772215 
20 348542887.6 427209856 
21 328849873.9 429189112 
22 340682204.1 358868304 
23 429508177.9 278831518 
24 318416025.6 177916192 
25 38610432.0 103894319 
26 75769344.0 49302574 
27 74317824.0 21049968 
28 0.0 7153880 
29 0.0 2129212 
30 0.0 522186 
31 0.0 109254 
32 0.0 18862 
33 0.0 2710 
34 0.0 346 
35 0.0 50 
36 0.0 8 

Total 3123375511.1 3137317290 

complex that it should probably be used only when provided as a system subroutine. 
(A collection of system routines or programming language features, that allow both the 
estimation algorithm and full backtracking to be driven by the same source language 
program, is useful.) 

Perhaps the most important application of backtracking nowadays is to combina- 
torial optimization problems, as first suggested by D. H. Lehmer [15, pp. 168-169]. 
In this case the method is commonly called a branch-and-bound technique (see [14]). 
The estimation procedure of Section 3 does not apply directly to branch-and-bound al- 
gorithms; however, it is possible to estimate the amount of work needed to test any 
given bound for optimality. Thus we can get a good idea of the running time even in 
this case, provided that we can guess a reasonable bound. Again, hand calculations 

using a Monte Carlo approach are recommended as a first step in the approach to all 
branch-and-bound procedures, since the random experiments provide both insight and 
enjoyment. 
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