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A Necessary and Sufficient Condition 
for Transcendency 

By K. Mahler 

To D. H. Lehmer in friendship on his 70th birthday 

Abstract. As has been known for many years (see, e.g., K. Mahler, J. Reine Angew. 

Math., v. 166, 1932, pp. 118-150), a real or complex number ? is transcendental 

if and only if the following condition is satisfied. 

To every positive number c there exists a positive integer n and an infinite 

sequence of distinct polynomials {-Pr(z)} = 
{Pro + Prlz 

+ + 
Prnzn 

at most of 

degree n with integral coefficients, such that 

0 < Ipr(OI?{P + P + + p2} ' for all r. 

In the present note I prove a simpler test which makes the transcendency of ? 

depend on the approximation behaviour of a single sequence of distinct polynomials 

of arbitrary degrees with integral coefficients. 

1. If 
n n 

P(z) = ? PhZ = Pn fI (z - ah)' where Pn = 0? 
h=0 h= 1 

is any polynomial with real or complex coefficients, of the exact degree n, and with 
the zeros a1. 'L.na put 

1 ~~~~~~~~~n 
a(p)=n, M(p)=exp logi*2 it)Idt m(p)=? Z Phi2. 

It is well known that 

n 

(1) M(cP) = lPnI Ii max(1, laQh ), M(p) < m((p). 

Next, if ? is any real or complex number, put 

G) 1 if ? is real, 
( 2 otherwise, 

and denote by '$(?) the set of all polynomials p(z) with integral coefficients that 
satisfy the inequality p(?) # 0. 
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In particular, let ? be an algebraic number, say of the exact degree N. There 

exists then just one primitive irreducible polynomial 

N 
P(z) = E PkZ, where PN > 0, 

k=O 

with integral coefficients, that vanishes for z = t. In terms of this polynomial we use 

the notations 

a = (P) = N, M(?) = M(P), M(?) = m(P). 

Then, by (1), 

N 

M(?) PN l max (1, 'tk')' M(?) S M(G), 
k= 1 

where now ?1= t2 * N are the algebraic conjugates of ?, thus the zeros 

of P(z). If, in particular, a(?) = 2, let the notation be such that ?2 is that algebraic 

conjugate of ? which is also complex conjugate to t. 

We wish to investigate how small Ip(?)I, as a function of the parameters a(?), 

a(?), m(r), a(p), and m(p), can be made when p(z) runs over the elements of 3(?). 

2. If ? is algebraic, the following result holds which is essentially due to R. 

Giiting (Michigan Math. J., v. 8, 1961, pp. 149-159). 
THEOREM 1. If ? is algebraic, and if p(z) GE $(I), then 

lp(r)I > max (l, 1lt"l) )m(?)- a (P)IaG) {fvq~+i/ m(@} - (a (0/0 G- 1 ) 

Proof. By the hypothesis, p(T) # 0, but P(T) = 0, where P(z) is the primi- 

tive irreducible polynomial defined in Section 1 that belongs to t. It follows that 

p(z) and P(z) are relatively prime, so that their resultant R is distinct from zero. 

From its representation as a determinant in the coefficients of p(z) and P(z), R is 

an integer, and hence 

(2) RI> 1. 

Also R may be written as the product 

N 
(3) R = PNn H P(Gk)- 

k=1 

Here 

n= 2 n 
h=O h=O h=O 

and 

E ltkl S (n + 1) max(1, I(kn 
h=O 

and therefore 
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(4)~~~~~G I <-V N)l + 1 m(@) max (l, I ?k*l)' 

If a(?) = 2, then in addition IP(G2)l = Ip(?)l because the numbers p(?) and P(G2) 
are now complex conjugate. 

Therefore 
N 

M(t) = PN max (1, I I)a(?) fl max (1, I rk l) S m(G). 
k=a(?)+ 1 

Hence, from (2), (3), and (4), 

N 
1 < JR I JNlp()J() { p) +lm(p) max (1, I k1)n } 

ka(M)+ 1 

< lp?)a +)TM(P}N-U(G)M(r)n max (1 1?1)-ncr(?) 

From this, the assertion follows at once. 

3. When ? is transcendental, or at least not algebraic of degree < n, it is nec- 
essary to determine polynomials p(z) in sp(?) for which Ip(?)I is small. This con- 
struction is based on the following elementary lemma. 

LEMMA 1. Let 

n n 
F(X0, X1 **Xn) = L Y FhkXhXk (Fhk =Fkh) 

h-0 k=0 

be a positive definite quadratic form in n + 1 variables, and let 

F00 F0i1* *F0n 
Foo F 1 ... F. n 

D = . . . > 0 

Fno Fni *Fnn 

be its discriminant. Then integers p0,P p1, , Pn not all zero exist such that 

F(po0P1,* . Pn) (n + 1)Dl/(n 1) 

Proof Write F as a sum 
n 

F(X0, xl, *** Xn) L h(XOY X1X* Xn x)2 
h=0 

of the squares of n + 1 linear forms Lo, L1, , L, in x0, xl, , x with 
real coefficients. The determinant of these linear forms is equal to +\D. Hence, by 
Minkowski's theorem on linear forms, there exist integers po0 p1, Pi, Pn not all 
zero for which 
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Lh(po, pll I pPn)< D" /2(n+ ) (h = 0, 1, , n), 

and so these integers satisfy the assertion. 
It is well known that one can prove stronger results than Lemma 1, of the form 

F(Po, P1, , Pn) Sc(n + I)Dl /(n+ 1) 

where c > 0 stands for certain constants less than 1. However, Lemma 1 has the 
advantage of simplicity and suffices for our purpose. 

The following lemma is nearly trivial, and its proof is therefore left to the reader. 
LEMMA 2. The positive-definite quadratic form 

/n \2 n 

F(XO, X1,i , Xn) =( fhXh) + hXh 
\h=O / h=O 

has the discriminant D = 1 + 'h 0f , and the positive definite quadratic form 

/n \2 /n 2 n 

F(xO,, 
x * 

, 
Xn) 

= 

(hEofhXh) 

+ 
( 

ghXh) 

+ Xh 
\h=O / \=O h=O 

has the discriminant 

D -1+ (fh2 +gh)+ (fhgkfkgh) 
h=O O<h<k<n 

4. Let now ? be any real or complex number and n an integer satisfying 
n > a(?). We assume that ? is either transcendental, or that it is algebraic of a degree 
greater than n. 

First let ? be a real number, and let s and t be two parameters such that 

(5) s > max(1, )nl(n+1), t = (n + 1)1/2(n + 2)1/2(n+1) max(1, Il)n l(n )S 

The expression 
n \2 n 

F(xO, xl, . x~ S s2(n+1)(x h~h + hOx 
h=O / h=O 

is a positive definite quadratic form in xo, x, * , x n which, by Lemma 2, has the 
discriminant 

n 
D- 1 + S2(n+ ) E t2h 

h=O 

Here 
n 

, t2h < (n + 1) max (1, 1t1)2n, 
h=O 

and hence 

D ?s2(n+ ) max(1, 1t1)2n + s2(n+1)(n + 1) max(1, 1j1)2n 

= s2(n+ 1)(n + 2) max (1, 1I1)2n. 
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Therefore, by Lemma 1, there exist integers pO p1, P . Pn not all zero for 
which 

(6) F(Pow PI1 I * I Pn) < (n + l)s2(n + 2)"/(n+')max(1, 1 1)2n/(n+I 

Denote now by 
n 

P(Z) = Z PhZh 
h=O 

the polynomial which has these integers as coefficients; from the hypothesis, 

(7) p(z) E '() 

The inequality (6) is equivalent to 

s2(f+l)p(;)2 + m(p)2 ? (n + 1)S2(n + 2)1I(n+1) max(1, l?i)2nI(+) 

and so it implies that 

IP()I < (n + 1)1/2(n + 2)1/2(n+ 1) max(1 Ii)n/(n+ 1) 
S n 

m(p) < (n + 1)1"2(n + 2)1/2(n+ 1) max(1, I)nl(n+l)S 

In terms of t, this may instead be written as 

(8) ( + <(n + 1)l n1)/2(n + 2)1/2 max(l I?1), m@)St. 

5. Secondly, let 

= + i, where r 0#O 

be a nonreal complex number. The powers of ? may be split into their real and 

imaginary parts, say -h = th + i"O, and then 

(9) ?2 + n2 = 1?1 5 

while by Cauclhy's inequality 

(10) -thqk -k?h I < 1?h+k 

Denote now by s and t two parameters such that 

0 1) ~s > max(l, It1)-2n/(n+ 1 
(1 1) 

t = (n + 1)1/2(n + 2)1I(n+1) max(1 ~1)2n/(n+ )S 

The expression 

n 2 n 
F(xo, x,* xn) =Sn+j x th + ZX 2 

h=0 hfO 

can be written as the positive definite quadratic form 
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/n \2 n \2 n 

F(xo, x1, , Xn) = Sn+1( xhth ? +sn+1 ( xh?h) + X2 
\h= /h=O / h=O 

which, by Lemma 2, has the discriminant 

n 
D = 1 + sn1 

I 2 (2 + + S2(n+ 1) Z ()h k - 

h=O Oh<k<n 

Here, by (9), 

n n 

h (th + fh) 
- 

? 1 
? 

(n + 1) max(1, 11)2n, 
h=O h=O 

and by (10), 
n n 

, (t 7 - 4kh )2 < E E i12(h+k) < (n + 1)2 max(I, 11)4 
O?h<k?n h=O k=O 

Hence, from ( 1), 

D < s2(n+ 1){l + (n + 1) + (n + 1)2} max(l, 11)4n 

< s2(n+ 1)(n + 2)2 max(I 511)4n 

With this estimate for D, we apply again Lemma 1. It follows that there exist 

integers pO, PI, * *, Pn not all zero for which 

(12) F(PO P 1 . * Pn ) < (n + 1) * s2(n + 2)2/(n+1) max(l, 
I 
t1)4n l(n +) 

As in the first case, denote by 
n 

p(Z) = , phZh 
h=O 

the polynomial with these integers as coefficients; then p(z) E $3(?). From (12), 

sn + 1Ip(?)I2 + m(p)2 < (n 1 l)(n + 2)2/(n+1) max(l, I1)4n/(n+1)s2 

and hence 

IpM) < (n + l)"12(n + 2)1'(n+1) max(l, I1?)2n/(n+1) 

m(p) < (n + 1)"/2(n + 2)1l(n +) max(1, 
I 

)4n/(n+ )s 

Thus, on changing over to the parameter t, 

(13) 1(-)I < (n + l)(n+ )14(n + 2)1/2 max(l, n?i) m(p) < t. 

6. In both estimates (8) and (13), p(>) # 0 because p(z) is an element of 

3(?). On combining the results just proved we arrive therefore at the following theorem. 

THEOREM 2. Let ? be a real or complex number, and let n be an integer not 
less than u(?). Assume that ? is either transcendental, or that 3(?) > n. Further 
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denote by t any real number satisfying 

t > (n + 1)1/2(n + 2)1/(n+ 1)(a) 

Then there exists a polynomial p(z) - 0 with integral coefficients and such that 

a(p) n, m(p) < t and 

0< Ip(?)I < (n + ?1)(n+ l)/2a()(n + 2)1 /2 max (1, I )n 

To this theorem we add the following remark. 
The estimates (6) and (12) in the proof of Theorem 2 may be written as 

1 - 2 (n + 1)p(,)2 + n m(p) < s 2 (n + 2)1 /(n+ I) max (1, 1 1)2 n (n +1) 

and 

-1 2Sn + 1 IP(r)I2 + (n - 1) 2(P)2 < 2s2(n + 2)2/(n + 1) max(l, n1(n+1) 
n +1In 

respectively. Thus, by the theorem on the arithmetic and geometric means, it follows 
that 

,(?)2 m(P)2 1 < (n + 2)1 /(n+ 1) max(l, I 1)2n/(n+1) 

and 

IP()I4( 2 n) 
1 
m(P)2(n-1)}1(+) S2(n + 2)2I(n+1) max(11)4n/(n+) 

respectively. On simplifying and combining these two estimates we arrive then at the 

following result. 
COROLLARY. The polynomial p(z) in Theorem 2 has the additional property 

that 

0 < Ip(~)I < (n - a(?) + 1)(n+ 1)I/2a()- 1 /2 {a(p)(n + 2)} 1/2 max(1, 1 1)n 

M(p)(n + l) aG( - 1 

7. We say that a real or complex number ? has the property (A) if there exist 
(i) an infinite sequence of distinct polynomials {P1(Z), P2(z), p3(z), I * } with 

integral coefficients, and 
(ii) a sequence of positive numbers {X1 X 2 3'.* } tending to oo, with the prop- 

erty that 

0 < IPr(G)I < {ea(Pr)m(p)} -r for all r. 

From Theorems 1 and 2 we derive now the following test for transcendency. 
THEOREM 3. The real or complex number ? is transcendental if, and only if, 

it has the property (A). 
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Proof (i) First, assume that r has the property (A), but that it is algebraic. 

Then, by this hypothesis and by Theorem 1, 

max(l, lA;l)"Pd MGr) a (P r) /(? {M PR0 + 1 MWrP} ( (a MI) ( 1) 
a(pr) ~I01<- eaP) 

w 

SlPr(?)I ? {ear)m(Pr)} r, 

Here, on the left-hand side, the two numbers 

m(f)-'la(?) and a(r)/u(?)- 1 

are independent of r; and it is also obvious that 

/acpr) + 1 ea(Pr). 

Hence there exists a positive number c independent of r such that 

max(l, I1) a(Pd)m(?)- a(Pd)la(Q){r W 

> le a (Pr) M(PX) 
-C . 

By hypothesis, all the polynomials Pr(Z) are distinct, and so 

lim ea (PdM(p r) =* 
r->ooo 

because there cannot be more than finitely many polynomials Pr(Z) for which both 

a(Pr) and m(Pr) are below given bounds. Hence, as soon as r is so large that 

Cor > c, a contradiction arises. The hypothesis was therefore false, and ? was trans- 
cendental. 

(ii) Secondly,assune that ? is transcendental. Denote by {n1, n2, n3, } a 

sequence of positive integers tending to infinity, by e a positive constant, and by 

{tl, t2, t3, } a sequence of positive numbers satisfying 

(14) tr > (nr + 2)/+e for all r. 

We now apply Theorem 2 to ?, with the parameters n = nr and t = tr. This 

may be done as soon as r is sufficiently large, because then 

tr > (nr + 2) + > (nr + l)V2(nr + 2)"(nr+ i)a(?) 

It follows that there exists for r > ro a polynomial Pr(Z) with integral coefficients 

such that 

a(Pr) S nr m(Pr) S tr 

and 

(nr + 2)(1/2+a(r)/2(nr+1))(nr+1)/a(M) max(l, IrI)nr 

H < f Prrl 
6 (n +,1aM-1 

Here, for r >rl . 
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2(flr + 1)e4 , max(l, 1D1)nr < (n + 2) r1, tr < (nr + 2) enr'4 

and therefore 

(n + 2)(' /2 + e/4+ e/4 + e/4)(nr+ 1 )/a( 

0 < IP(1 6 r - - (n +1)IUM) 

Now, by (14), 

+ 2 
2 

tI/(1+2e) 

and hence 
0 < IPr(?T)I ? t((nr+ 1 )/a(?)) {1-(2/(1 + 2e))(1 /2+ 3e/4) } t-(e/(2 +4e))(nr+ 1)/a() 

On the other hand, ea(Pr) M(Pr) < e nrtr trAr say, where 

nr 
X r= I + log t o(nr). 

Hence, on writing 
(e/(2 + 4c))(nr+ 1 )/a(r) {ea (Pr)mQ )} r 

tr=le MP) 

the number cor so defined has the property limr- -- Cr = , whence the assertion. 
In the second part of this proof it was assumed that the sequence {nr} tended 

to infinity. This hypothesis cannot be avoided, as follows at once from the existence 
of S-numbers. With regard to the choice of the sequence {tr} by (14), it would have 
some interest to decide whether tr could be chosen as a smaller function of nr. 
Naturally, this might require an entirely different proof. 
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