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Continued Fractions and Linear Recurrences 

By W. H. Mills 

Abstract. Let to, t1, t2, be a sequence of elements of a field F. We give a 

continued fraction algorithm for tox + tlx2 + t2x3 + * . . If our sequence sat- 

isfies a linear recurrence, then the continued fraction algorithm is finite and pro- 

duces this recurrence. 

More generally the algorithm produces a nontrivial solution of the system 

E ti+j j 0O < i < s-1, 

j=O 

for every positive integer s. 

1. Let tO, tl, t2, be a sequence of elements of a field F. Set 
00 

T = z t1x'. 
j=0 

Let d be a nonnegative integer. We say that T* is an approximation of T of 
degree d if there exist polynomials V and W such that T* = VIW, deg V < d, 
deg WA d,xtW, and x2dIWT - V. 

We shall give a continued fraction expansion for xT. This yields polynomials 

Vi, Wi, and integers di, O = d, < d2 < d3 < . . , such that (Vi, Wi) = 1 and 

VilWi is an approximation of T of degree di. Suppose T* is any approximation 
of T of some degree d. Then T* = V1/Wi for that value of i such that di < 

d <di+11 
If the sequence of the t1 satisfies a linear recurrence of degree d, but not one 

of smaller degree, then there is an m such that dm = d and the linear recurrence 
is given by the polynomial Wm' In this case, WmT = Vm, the continued fraction ex- 

pansion,terminates at i = m, and we can determine Wm from the first 2d of the 

t1, i.e., from those tj such that 0 ?j < 2d. 
Our algorithm is closely related to Zierler's version of Berlekamp's algorithm [1]. 

2. We consider continued fraction expansions of the form 

? = N + 
I 

1~~~~~~ 
N2 + N - 

where N1, N2, N3, are elements from some field E. We can write 
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oi=Nl +R1, 1/R =N2 +R2, l/R2 =N3 +R3 

If Rm = 0 for some m, then the continued fraction terminates with Nm. Other- 
wise it is an infinite continued fraction. 

In the classical case, a is a real number, the Ni are integers, and 0 S Ri < 1 
for all i We are interested in a different case. 

We set 

(1) Po= 1, Q0=O; Pi=NN, Q1=l, 

(2) Pi= NiPi_ +P1 2, P22, 

and 

(3) Qi=NiQi1 +Qi-2, i>2. 

It is well known, and easy to show, that 

P11Q, = N1, P21Q2 = N1 + 1/N2, 

P3/Q3 =N1 + 1/(N2 + 1/N3), * - 

The sequence Pl/Ql, P2/Q2, P3/Q3,' - - converges to a in many cases, including 
the classical case. 

We put 

Ai ='Qi - Pi, i > 0. 

Then we have 

(4) A=-1 A1=az-N 

and 

(5) Ai= NiAi-1 + Ai-21 i > 2. 

Clearly R1 = a -N1 = -'l/AO. Since R 11 = -N 11 + I/Ri it follows from (5), 

by induction on i, that 

(6) Ri = -Ai1Ai-, i > 1. 

3. We now take E to be the field of all series of the form V'kaxi, where 
the a1 are elements of the field F and k is a rational integer which may be neg- 
ative. For convenience let y =/ lx. We set a = xT and N1 =0. Then R1 
ae = xT. We now define the Ni and Ri inductively using 

(7) l/Ri_1 =Ni +Ri, i > 2, 

where we take Ni to be a polynomial in y and xtRi. Thus if 

I R_ j-= E a1x', ak $ 0, 
j=k 
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it turns out that k < 0 and we have 

0 -k 00 

Ni = X ajxi = , a-uyu and R, = E a1x. 
j=k u=O j= 1 

This determines the Ni and Ri uniquely. If Rm = 0 for some m, then the 
process terminates at this point. The Pp, Qi, and Ai are now determined by (1), 

(2), (3), (4), and (5). 
We shall write xrIIA if xr divides A, but xr+ 1 does not divide A. This 

means that A is of the form A = E raix' with ar, O. Let xruIlRi, i >1. If 
Rm = 0, we set rm =oo. Then r? > 1 for i > 1. For i > 2,Ni is a polynomial 
in y of degree ri-1. Set 

d-i (8) d1= Er1. 
1=1 

Then we have 0 = di < d2 < d3 < - - - . It follows from (1) and (3), by induction 
on i, that Qi is a polynomial in y of degree di. Similarly, for i > 2, Pi is a 
polynomial in y of degree di - rl. Set 

d.-1 d. 

Vi1=x Pi, Wi = x Qi. 

Then Vi and Wi are polynomials in x, deg Vi < di, and deg W1 S di. Moreover, 

Wi has a nonzero constant term so that x{W.. Now 
d.-l d.-1 

TW - V = x (aQi - PI) = x A1. 

Since AO = -1, (6) gives us 

Ai= (-)i+n 1 Rj. 
j=1 

Since xrIlIRj, we have 

(9) Xdi+ 1 lA 

by (8). Hence 

(10) xd+d i -1 I iT - Vi. 

Therefore, x2dhiTWi - Vi so that V1/Wi is an approximation of T of degree di. 
LEMMA 1. Let T* be an approximation of T of degree d. Let i be the 

integer such that di Sd < di+1. Then T* = V/Wi. 
Proof. We have T* = VIW, where deg W S d, deg V < d, and x2dIWT - V. 

d+di Now d + di S 2d so that x 'IWT- V Moreover, 'd+ d1 ?c +di+ -1 so 
that xd IW1T- Vi by (10). Since 

ViW- VWi=Wi(WT-V)-W(WiT-V)d 
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we have 

Xd+d I lViW - VWi. 

Now the degree of ViW - VW, is less than d + di. Therefore ViW- VWi = O, so 
that 

T*= V/W= VJWi. 

LEMMA 2. If VJ/Wi = Vj/W1, then i = j. 
Proof. Suppose V7lWi = VJl/W. Then we have Vi = VD, Wi = WD, Vj = VE, 

W. = WE for suitable polynomials V, W, D, E with (V, W) = 1. Since xtWi, we 
have xtD so that (10) yields 

xdi+di+lIITW- V 
Similarly 

x1dj+di+1 1IITW- V. 

Hence 

di + di+ - I = di + di+, - 1. 

Therefore, i = j. 
LEMMA 3. (Vp, W) = 1. 

Proof. Suppose (Vi, Wi) = D where deg D > 0. Then Vi = VD, Wi = WD 
for suitable polynomials V, W such that xVW, deg W < di, and deg V < di - 1. 
Moreover xD so that x iITW - V. Hence VIW is an approximation of T of 
degree less than di. By Lemma 1 we have V/W = VJ(/W for some j < i. This 
contradicts Lemma 2. 

LEMMA 4. For any particular value of i we have either deg Vi = di - 1 or 
deg Wi = di. 

Proof. Since deg W1 = 0 = d1, we may suppose i > 1. If the result is false, 
then VJ/Wi is an approximation of T of degree less than di. By Lemma 1 this 
implies that V/Wi = Vl/W1 for some j < i, which contradicts Lemma 2. 

4. Let {t1} = {to, t *, tn-1 } be a finite sequence of elements of F, and 
set 

n-1 

T =Etjxi. 
j=O 

Let W be a polynomial of degree s with a nonzero constant term. Thus W = 

40=w1xI, where the w; are elements of F, wo 0 0, w, 0 0. The linear recurrence 
given by W is 

s 

(I1 E, Witk-i = ?- 
i=o 

If (11) holds for a particular value ko of k, wve say that the linear recurrence W holds 
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for ko. If (11) holds for all values of k for which the left side is defined, i.e., for 
s < k S n - 1, then we say that the sequence {t, } satisfies the linear recurrence W. 

Whenever we speak of a linear recurrence W we shall mean a polynomial W 
with a nonzero constant term. The degree of the linear recurrence is defined to be 
the degree of this polynomial. 

In order to determine W, up to a multiplicative constant, we must have (11) 
satisfied by at least s values of k. Hence we must have 2s S n. Our problem is to 
determine whether or not the sequence {t, } satisfies a linear recurrence of degree 
S n/2, and if so to determine the linear recurrence of lowest degree that {t1 } sat- 
isfies. 

Let h = [n/2]. Thus h is an integer and either n = 2h or n = 2h + 1. 
Let xT be expanded in a continued fraction as indicated in Section 2 and Section 3. 
This gives us polynomials Vi and Wi and integers d1. Let m be the integer such 
that dm S h < dm + 1 This is equivalent to 

(12) 2dm <nf< 2dm+i* 

Now suppose that the sequence {t, } satisfies a linear recurrence W of degree 
s, where s < n/2. Thus s < h. We suppose W chosen so that s is minimal. Set 
V= s-1vjx , where 

vj= Witji 
i= 0 

Then xn ITW - V by (11) so that V/W is an approximation of T of degree h. 
More precisely it is an approximation of T of degree d for any d such that s < 
d < h. By Lemma 1 and the choice (12) of m we have V/W = Vm/Wm. Since 
W is of minimal degree, we have (V, W) = 1. Moreover (Vm, Wm) = 1 by Lemma 
3, so that W = XWM for some nonzero element X of F. 

More generally, suppose only that the linear recurrence W holds for those k 
such that h < k < n - 1, that deg W S h, and that W is a linear recurrence of 
minimal degree with these properties. As above there is a polynomial V such that 

VIW is an approximation of T of degree h, (V, W) =1, and W = XWM for some 
nonzero X in F. 

It is easy to see that there need not be such a linear recurrence. For example, 
we may take {tj } = {O, 0, - - *, 0, 1 }. However, we have shown that if there is one, 

then it must be Wm, up to a multiplicative constant. 
Now 

dm +d + -1 
x m + IITWM - VM 

by (10). Hence if n > dm + dm+1, then {t,} does not satisfy the linear recurrence 

WM, in fact Wm fails to hold for dm + dm+ - 1. Thus we have the following 
result: 

THEOREM 1. If dm + dm + An < 2dm+i, then the sequence {t1} does 
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not satisfy any linear recurrence of degree < n/2. In fact, there is no linear recurrence 
of degree A n/2 that holds for all k such that h < k < n - 1. 

Now suppose that n < dm + dm +1. Then the linear recurrence Wm holds 
for all k in the range dm < k < n - 1. We have deg Wm < dm. If deg Wm= 
dm, then {t, } satisfies the linear recurrence Wm. However, if deg Wm < dm, 
then deg Vm = dm 1 by Lemma 4, and, therefore, the linear recurrence Wm 
fails to hold at dm -1. Thus we have the following result: 

THEOREM 2. Suppose 2dm < n < dm + dm + 1. If deg Wm = dm, then Wm 
is a linear recurrence of minimal degree satisfied by {t1 }. If deg Wm < dm, then 
there is no linear recurrence of degree < n/2 which is satisfied by {t1}. However, 
Wm is a linear recurrence of minimal degree that holds for all k such that h < 

k < n - 1. It holds for all k in the range dm < k < n - 1, and fails to hold for 

dm -1 

5. In this section, we shall describe an efficient method of computing the poly- 
nomial Wm. As before, let {t1} = {to, tl, - , tn-1 } be the fmite sequence we 

are interested in. We start with N1 = 0, A0 = -1, and 

n-1 

Al =xT-N - tjxi+ 1 

j=0 

For i > 2, (6) and (7) give us 

Ni + Ri = 1 /Ri-, = i-21li- 

where xlRi and Ni is a polynomial in y, y = 1/x. Thus Ni can be obtained 
from Ai-2 and A,1l by an ordinary division process. Then Ai is given by (5): 

Ai = NiAi1 + Ai-2- In this way, the N1 and the Ai can be successively obtained. 
We must continue this out to i = m where 2dm < n < 2dm + 1 Since xdilli iAl 
by (9), we know at once when we have reached i = m. If dm + dm + I < n, then 
there is no solution. , If dm + dm + 1 > n, then we calculate Qm from the Ni and 
the relations Qo = 0, Q1 = 1, Qi = NiQi- + Qi-2 

If Qm has a nonzero constant term, then deg Wm = dm and Wm = M Qm 

is the required linear recurrence. If Qm has no constant term, then deg Wm < dm 
and {t. } does not satisfy a linear recurrence of degree < n/2. However, in this case, 

Id 
Wm = X mQm is a linear recurrence that holds for all k such that dm < k < n - I. 

We note that xdilAi-l, xdi-u1 ,iA12, and di = ri-, + di-,. Hence in perform- 
ing the division Ai-2/Ai- we need only use the first r11l + 1 terms of Ai-2 and 
the same number of terms of Ai-._I This is sufficient to determine Ni completely. 

Finally we note that it is only necessary to calculate \i out to the term in 
xn-di. This corresponds to the fact that A = xT is known only out to the term in 
xn. To see this, consider the division of Ai-2 by Ai-1. We need ri_ + 1 terms 
of each. More terms of Ai-2 are assumed known than of Ai-l. The number of 
terms of A,__1 that we have is n -di-, - d+ =n-2di + r_l + 1. Since we 
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may suppose i < m, this is at least ri_ + 1 terms. Thus Ni may be computed 
exactly. Clearly if we know A.-2 out to the term in xnd12 and A-11 out to 
the term in xn di-1, then once Ni is known as a polynomial in y of degree 

ri-1 we may calculate Ai out to the term in xndi. 

Tables 1 and 2 give examples of the calculation for small n and F = GF(2). 
The unnecessary terms of Ai, i.e., those beyond x ndi, are given in parenthesis. In 
the first example n = 12, m = 3, d3 = 3, d4 = 7, dm + dm + < n, so there is 
no solution and the Qi are not calculated. In the second example, the sequence sat- 
isfies the linear recurrence x4 + x + 1. 

TABLE 1 

F = GF(2), n = 12, Q}= {1001011101 I} 

i Ni Ai 

0 - 1 

1 0 x +x4 +x6 +x7 +x8 +x10 +xll +x12 

2 y X3 +X5 +x6 +X7 +x9 +X10 +X11 

3 y 2+1 x7(+X12) 

There is no linear recurrence of degree < 6. 

TABLE 2 

F=GF(2), n=8, {t1}= {l111011I} 

i Ni Ai Qi 

0 - 1 0 

1 0 X +X2 +N3 +XI +X7 +X8 1 
2 y + x X3 +X4 +XS +X6(+X8) y + 1 
3 y2 x4 +X5(+X6 +X7 +X8) Y +Y+ +y 
4 y (X7 +X8) y4 +Y3 +1 

The linear recurrence is X4(Y4 + y3 + 1) = X4 +X + 1. 

6. We now consider the system 
s 

(1 3) > ti+Xj), 0 6_ i < S - 1, 
j=0 

of s linear equations in s + 1 unknowns. This system must have at least one non- 
trivial solution in F. If we set 

S- 
A = xjx 

j=0 

then we can write A = xrW, where W is a polynomial with nonzero constant term, 
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and deg W S s - r. If (13) holds, then there is a polynomial V such that deg V < 
s - r and X2S-'ITW - V. Thus V/W is an approximation of T of degree s - r. 
Hence V/W = Vm/Wm for some m with dm As -r and dm + dm+1 - I > 

2s - r, so that dm S s < dm-t-+I*. Thus we see that our algorithm can be used to 
solve the system (13) for any positive integer s. 
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