
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129
JANUARY 1975, PAGES 183-205

A Method of Factoring and the Factorization of F7

By Michael A. Morrison* and John Brillhart

Dedicated to D. H. Lehmer on his 70th birthday

Abstract. The continued fraction method for factoring integers, which was introduced

by D. H. Lehmer and R. E. Powers, is discussed along with its computer implementation.

The power of the method is demonstrated by the factorization of the seventh Fermat

number F7 and other large numbers of interest.

"Quand on a a' etudier un grand nombre, il faut commencer par en determiner quelques
residus quadratiques."

M. Kraitchik

1. Introduction. The continued fraction method discussed in this paper was in-
troduced in 1931 by D. H. Lehmer and R. E. Powers [11]. At that time, and for sev-
eral decades afterwards, this method was considered by hand computers to be of little
practical value because of its fallibility and so was not used. This judgment was based
on the discouraging and exceedingly frustrating experience of computing for hours on
a desk calculator only to find, time after time, that every combination of numbers
produced, failed to factor your number (" . . . your butterfly net was empty.").

With the advent of electronic computers the practical basis for this negative
judgment disappeared, since the calculations and the inhibiting, complicated data hand-
ling could now be done swiftly and automatically. Thus several failures in a row were

of no particular importance, as long as they were followed by at least one success.
That the situation had in fact changed was not recognized, however, until 1965, when
the second author suggested privately that this method (even with its many failures)
might well be powerful enough to factor the seventh Fermat number-a number of 39
digits which had previously withstood many factorization attempts.

In 1967 this suggestion and details of the method along with its computer im-
plementation came to the attention of D. Knuth, who, after communicating with D. H.
Lehmer and the second author, included an account of it in the second volume of
his excellent series, The Art of Computer Programming [4]. Although it is there at-
tributed to Legendre, this is not entirely correct,as will be shown in Section 6.

In the summer of 1970 the authors decided to use the IBM 360/91 at the UCLA
Campus Computing Network to attempt the factorization of F7 by the continued

Received July 13, 1974.
AMS (MOS) subject classifications (1970). Primary 10-04, 10A25, 10A40; Secondary 10F20.

Key words and phrases. Factorization of integers, Fermat numbers, continued fraction method.

* This research was supported in part by a National Science Foundation Graduate Train-
eeship. Copyright ? 1975, American Mathematical Society

183

184 MICHAEL A. MORRISON AND JOHN BRILLHART

fraction method. At that time the method had never been programmed, and there was
still skepticism being expressed that it would work, especially on a number as large as
F7. It was felt by the authors, however, that the accumulation of data in the method
would eventually overwhelm the number being factored, even though there might be
initial failures.

After a full summer of developing the method, programming and testing, and pro-
duction runs, the factorization of F7 was obtained on the morning of September 13,1970.

2. The Method. Let N> 1 be an odd, composite integer. In rough outline
the method is then the following:

Step A. Expand VN, or vi/kNV for some suitably chosen integer k > 1, into
a simple continued fraction

A/;R~~ ~~ -qO 1 , n1 ' k(+ Pn)lQn I

to some point n = no. For each value of n, 1 < n < no, the familiar identity

(1) A2 _ -kNB2 Q n(-1)' Q,

where An/Bn is the nth convergent, implies the congruence

(2) A2_1 1(-l)nQn (mod N).

We shall speak of the pair of positive integers (An -1' Qn) in this congruence as an
"A - Q pair".

Remark 2.1. The value of no is initially large enough to produce the number
of A - Q pairs estimated to be sufficient for the method to succeed.

Step B. Find among the set of A - Q pairs generated in Step A certain subsets,
called "S-sets", each having the property that the signed product Hli(- 1)iQi of its

Qi's is a square. If no S-set can be found, return to Step A to expand V,/kN further.
Step C. Each S-set found in Step B gives rise to the congruence

(3) A2=lA3 _ H(- 1)'Q = Q2 (mod N),

where 1 < A < N. Compute the A and Q of (3) and the GCD(A - Q, N) = D
for the S-sets produced in Step B. If 1 < D < N for some S-set, the method suc-
ceeds and D is a nontrivial factor of N. Otherwise, return to Step A.

Remark 2.2. Observe that Q2 in (3) is not reduced (mod N).

3. The Method in Detail. In this section, Steps A, B, and C outlined above will
be explained in enough detail to enable one to write a factoring program using this
method. The majority of ideas concerned with writing a fast, efficient program will be
presented in Sections 4 and 5.

Step A. Expand kN into a simple continued fraction by the following algo-
rithm (note Example 3.1):

(i) Set A-2=0,A_1 = 1,Q_ 1=kN,r 1=g,Po=0,Qo =1, and g

[/ kN], where the bracket indicates the greatest integer.

METHOD OF FACTORING AND FACTORIZATION OF F7 185

(ii) Use (4) below to generate qn and rn for n > 0.
(iii) Use (5) to compute An (mod N) for n > 0. (Note that it is not necessary

to compute Bn in this algorithm.)
(iv) Use (6) to generate g +Pn 1 for n > 0.
(v) Use (7) to produce Qn + 1 for n > 0. (For hand computation see Remark

3.7.)
(vi) Increase n by 1 and return to (ii).

(4) g?P=qnQn ?rn, where ?rn <Qn,

(5) An-qnAn +?An-2 (modN),

(6) g + Pn+ 1 = 2g-rn,

(7) Qn '1 = Qn- I + qn(rn rn -1).

Example 3.1. Let N= 13290059 and k= 1. (See [ll, p. 773].) Then g=3645.
The following table contains selected results from the expansion of \/k-/V up to n = 52:

TABLE 1

n g + Pn Qn qn rn An1 (mod N) Qn factored

-1 13290059 3645 0

0 3645 1 3645 0 1

1 7290 4034 1 3256 3645 2 . 2017

2 4034 3257 1 777 3646 3257

3 6513 1555 4 293 7291 5 * 311

4 6997 1321 5 392 32810 1321

5 6898 2050 3 748 171341 2-52-41

10 6318 1333 4 986 6700527 31.43

22 4779 4633 1 146 5235158 41 . 113

23 7144 226 31 138 1914221 2. 113

26 5622 3286 1 2336 11455708 2.31.53

31 6248 5650 1 598 1895246 2 .52. 113

40 6576 4558 1 2018 3213960 2 . 43 . 53

52 7273 25 290 23 2467124 52

Remarks. 3.1. By definition q = [(/ + Pn)IQ], which is easily seen to
be identical to [K + Pn)IQn], where the bracket indicates the greatest integer. This
suggests that the algorithm for the continued fraction expansion be arranged so that
the binomial g + Pn is used instead of Pn.

3.2. The integers Pn and Qn always lie within the following bounds: 0 S

Pn < /kNV and 0 < Qn < 2VQklV for n > 0.
3.3. The fact that Qn satisfies 0 < Qn < 2A/;V can be used as a running

check on the arithmetic of the algorithm, since an error will most likely cause Qn to

eventually fall outside these bounds.

186 MICHAEL A. MORRISON AND JOHN BRILLHART

3.4. One method of calculating g is the following modification of the Newton-

Raphson recursion: With an initial estimate xo > \I-k (which can be calculated
using the square root of the leading part of kN), successively compute xn+ 1-
[(X2 + kN)/2xn] for n > 0, where the bracket indicates the greatest integer. When

Xn+l -x9n >0, then g=xn+I'
3.5. The continued fraction expansion of v"k&V is always periodic, because of

the bounds on Pn and Qn. In those cases where the period of \/N is too short
for the method to succeed, it is necessary to expand V kN for some k > 1.
For example, the Fermat numbers Fm 22m + 1, m > 1, require such a multiplier,
since Fm = [g, 2g], where g = 22m-l. More will be said about multipliers in Re-
marks 4.5, 4.7, and 5.3.

3.6. Observe that the congruences (2), (3), and (5), as well as the computations
in Step C, involve only N, not kN, even when a multiplier k > 1 is being used.
Also observe that Qn is already reduced (mod N), since k is always small in com-
parison with N and thus 0 < Qn < 2 kN< N.

3.7. Although formula (8) below requires a division and is thus not as good as
(7) for rapid, automatic calculation, it does make hand computation more reliable,

since the division must be exact.

(8) Q = (kA p2) for n > 0.

3.8. It may be possible to factor N directly, if Qn is a square and n is even.
For then (1) can be written as kVB 1 A2 1 -(,QI)2and te GCD(A_1-VAn)

may yield a factor of N. A special case of this is when Qn = 1, which occurs only
at the end of a period. (For most numbers the period length of the expansion of
'Tk2N is approximately VJkXV)

Example 3.2. In the expansion of N/13290059 shown in Table 1, Q52 = 25
and the GCD(A 51 - NIQ5 2A N) = GCD(2467119,13290059) 4261.

Example 3.3. Let N = 209 and k = 1. In the expansion of 9, A7 -

153 and Q8 = 1. Thus 1532 =1 (mod 209), which yields the factorization
209 = 11 * 19.

Step B. This phase of the method is twofold: namely, determine if any S-sets
exist in the set of A - Q pairs generated in Step A and find some of them when they
do. As it happens, a simple procedure can be devised which will solve both of these
problems simultaneously. It requires, however, that the Qn's involved have been com-
pletely factored.

For the present we set aside the question of factoring the Qn's (this is dealt
with in Section 4), only mentioning here that not every Qn generated in Step A is
completely factored, since the present method works much more rapidly if the Qn's
with large prime divisors are not used.

Suppose, then, that we have a set of A - Q pairs in which each Qn has
been completely factored. Let F be the set of these Qn's and let f be the cardin-

METHOD OF FACTORING AND FACTORIZATION OF F7 187

ality of F. It is clear that when multiplying Qn's from F to form a square, those
primes which divide some Qn to an odd power ("odd-power" primes) must be given
special consideration. To do this efficiently, we first introduce binary "exponent" vec-
tors and devise a procedure for working with them. To record our work, each expo-
nent vector is assigned a companion "history" vector.

Let the Qn's in F be given a definite ordering. Let the odd-power primes
dividing the members of F also be given a definite ordering, say, p1, p2, *--, Pr
(this is usually derived from the ordering of F). With the ith element of F (say it is
Q,n) associate the signed "exponent" vector es = (0, a1' , ?r) where

I 1 if n is odd,
to= o

O, otherwise,

andfor 1?j?r,

1, if pi divides Qn to an odd power,

X O, otherwise.

Note that the sign bit oto corresponds to the sign (- 1)' in Eq. (2) and is found
from the subscript n of Qn and not from the index i of the ordering of F.

For each ei, the companion "history" vector is hi = (PI) f2, *--, f) where
for 1 S m Sf

(1, if m =i,
gm =

O, otherwise.

Example 3.4. Using the data of Table 1, let F = {Q3 = 5 * 311, Q5 =2.52 .41,

Q22 = 41 . 113} and let the elements of F be ordered as listed. Then f = 3 and
r= 5. Let p1 = 5,P2 =311,p3 = 2,p4=41, and p5 = I13. The exponent and
history vectors are then:

el =(1, 1, 1, O, O, O) and hi = (1, O, O),

e2 =(1, O, O, 1, 1, O) and h2 = (O, 1, O),

e3 =(O, O, O, O, 1, 1) and h3 = (O, 0, 1).

Note in e2 that oao = 1, since the sign is (- 1)5, and ae1 = 0, since p1= 5
divides Q5 to an even power.

Given these associations, it is obvious that a signed exponent vector can also
be associated in the same way with the product of two Q,1's from F, and that this vector
will merely be the vector sum of the exponent vectors associated with these Q,'s, the sum

188 MICHAEL A. MORRISON AND JOHN BRILLHART

being computed in the r + 1 dimensional vector space Z2 1 over Z2, the integers
(mod 2). Furthermore, that these particular Qn's were multiplied can be "recorded"
by also adding their two companion history vectors in the vector space Zf.

Example 3.5. Using the vectors of Example 3.4, it is clear that (1, 0, 0, 1, 0, 1) =

(1, 0, 0, 1, 1, 0) + (0, 0, 0, 0, 1, 1) = e2 + e3 represents the square-free part of
(- Q5) (Q22) = - 52 - 2 - 412 * 113. (Note the order.) The history vector associated
with this product is (0, 1, 1) = (0, 1, 0) + (0, 0, 1) = h2 + h3, the sum being com-
puted in Z-

Suppose now that F contains all the Qn,'s belonging to some S-set. Then the
set of exponent vectors associated with F contains a subset whose sum is the zero
vector, since this is the vector associated with a (positive) square. Thus the existence
of an S-set among the A - Q pairs under consideration is equivalent to the set of ex-
ponent vectors being linearly dependent in Z+1 .

The following reduction procedure, which is the forward part of Gaussian elim-
ination (carried out from right to left), will determine whether the set of exponent
vectors is linearly dependent in Zr+ 1 - Note that the effect of step (iii) (b) is to re-
cord which vectors have been combined.

In describing this procedure, the phrase "rightmost 1" will refer to the 1 far-
thest to the right in an exponent (not history) vector. For example, the rightmost 1
in e = (1, 0, 0, 1, 0, 1, 0, 0) has been underlined. The components of the expo-
nent vectors are numbered 0 to r from left to right.

Reduction Procedure

(i) Set j = r.
(ii) Find the "pivot" vector e1 of smallest subscript whose rightmost 1 is in the

jth component. If none exists, go to (iv).
(iii) (a) Replace every vector em, i < m < f, whose rightmost 1 is in the

jth component, by the sum e1 + em, computed in zr;l.
(b) Whenever em is replaced by ei + em, replace hm by hi + hm,

computed in 4.
(iv) Reduce j by 1. If j > 0, return to (ii). Otherwise, stop.

If upon the completion of the above procedure some vector, say es, is zero,
then an S-set exists. For each such S-set, we say that an S-congruence,
A2 = Q2 (mod N), is produced. The actual A - Q pairs involved are easily deter-
mined from the history vector hs.

Example 3.6. For hand computation, each exponent vector and its companion his-
tory vector may be placed side by side to form a row of an f x (r + 1 + I)
matrix. Using the information from Table 1, let F = {Q5, Ql0, Q22, Q23, Q26, Q31, Q40}-

Suppose F has been ordered as listed, and let the order of the primes be as below.
(Note a column for 5 is not used.) Then the initial matrix would be:

METHOD OF FACTORING AND FACTORIZATION OF F7 189

Sign 2 41 31 43 113 53 1 2 3 4 5 6 7 1

el 1 1 1 0 0 0 0 1 0 0 0 0 0 0

e2 ? ? 0 1 1 0 0 0 1 0 0 0 0 0

e3 ? 0 1 0 0 1 0 0 0 1 0 0 0 0

e4 1 1 0 0 0 1 0 0 O 0 1 0 0 0

e. 0 1 0 1 0 0 1 0 0 O 0 1 0 0

e6 1 1 0 0 0 1 0 0 0 0 O 0 1 0

e7 0 1 0 0 1 0 1 0 0 0 0 O 0 1

Reducing the above matrix in the manner described earlier yields:

Sign 2 41 31 43 113 53 1 2 3 4 5 6 7

1 1 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 0

O 0 1 0 0 1 0 0 0 1 0 0 0 0

** 00 O 0 00 1 0 1 1 0 0 0

0 1 0 1 0 0 1 0 0 O 0 1 0 0

** 00 O 0 00 1 0 1 0 0 1 0

** 00 O O0 0 0 0 0 0 1 0 1

The three starred rows in the reduced matrix represent S-congruences. The
A's and Q's of these congruences will be computed in Step C below.

Remarks. 3.9. Care must be taken that only those vectors (rows) are combined
whose rightmost l's are in the component (column) being examined. Thus, for exam-
ple, in the reduced matrix it is wrong to combine rows 1 and 3 (assuming that the third
column-that under 41-is being processed).

3.10. For reasons of speed, which will be discussed further in Remark 5.11, the
procedure for processing the exponent vectors was carried out from right to left, rather
than the more customary left to right.

3.11. In a binary computer, vector addition (mod 2) is equivalent to the opera-
tion "exclusive-or".

3.12. Sometimes the form of N provides an "A - Q pair" which can be
input to the program. For example, if N = Fm is a Fermat number, then
(22m 1)2 =- 1 (mod N). Or, if N divides the Fibonacci number U2 + 1, then
the identity U2n + =U" 1 + U? yields Un2+ =-U2 (mod N).

Step C. Since this step is directed toward the calculation of the GCD(A - Q, N),
it is sufficient to know both A and Q (mod N).

190 MICHAEL A. MORRISON AND JOHN BRILLHART

By virtue of its definition in (3), A (mod N) may be computed by simply
forming the product of the appropriate Ai's,' reducing (mod N) after each multiplica-
tion.

The value of Q (mod N) may, of course, be found directly by first computing
the product Q2, taking a square root, and then reducing the result (mod N). (Note
that the reduction cannot be done before the square root is taken.) This direct ap-
proach, however, makes use of modular arithmetic only once-the final reduction. It
also requires that the square root of an extremely large number be calculated, which is
a time-consuming process even on a fast computer.

In contrast, the indirect approach outlined below makes full use of modular re-
duction, takes advantage of the "overlap" of the Qi's, and quickly produces Q, the
least positive remainder of Q (mod N). For convenience, let the Qi of the particu-
lar S-set be renumbered Q1, Q2, .., Q, s > 2. The letters I, Q, R, and X repre-
sent variables, while the arrow indicates replacement.

Square Root Procedure

(i) 2-I, 1 Q, Q1- R (v) I + 1 I

(ii) GCD(R, QI) -+ X (vi) IF I < s GO TO (ii)

(iii) XQ (mod N) Q (vii) IR-* X

(iv) (RIX) (QIIX) R (viii) XQ (mod N) Q

The value of R in step (vii) above is relatively small. For this reason ordinary meth-
ods will quickly produce the square root required (see Remark 3.4).

The actual GCD calculations in this part are straightforward and present no
difficulty. On a binary computer they can even be performed without division, as
noted in Knuth [4, p. 2971.

Example 3.7. Using the history vector in row 7 of the reduced matrix in Exam-
ple 3.6, we have the following S-congruence:

(6700527 . 11455708 . 3213960)2 (2 .31 . 43 .53)2 (mod N)

or 1412982 1412982 (mod N). This represents one of two types of failures which
can occur.

Using the history vector in row 6, we have

(171341*5235158*1895246)2 (252 .41 .113)2 (mod N)

or 130584092 = 2316502 (mod N). But the GCD(12826759, 13290059) = 1
and the method fails.

Using the history vector in row 4, we have

(171341 .5235158 .1914221)2 (2 .5 41 - 113)2 (mod N)

or 14695042 =463302 (mod N). This time the GCD(1423174, 13290059) = 4261
and N=3119-4261.

METHOD OF FACTORING AND FACTORIZATION OF F7 191

Remarks. 3.13. It should be mentioned that multiplying two S-congruences,
each of which has failed to factor N, will produce another S-congruence which will
also fail to factor N.

3.14. Although not evident from Example 3.7, it seems that fewer failures are
encountered if those S-congruences corresponding to zero vectors of largest sub-
script are tested first. This is equivalent in the matrix formulation to trying those at
the "bottom" of the matrix first.

4. Factoring Q,n. As was mentioned earlier, it is faster to ignore Q,2's containing
large prime divisors than it is to completely factor every Qn generated in Step A. This is
not really surprising, since the true worth of any Qn is based on whether or not we
can find an S-set to which it belongs, and when a large prime divisor p is involved,
there is little chance it will appear to an even power. Thus we must discover at least
two Qn's having p as a divisor before there is any possibility of finding S-sets con-
taining such Qn's. However, it is unlikely that the continued fraction algorithm will
produce two such numbers in a reasonable amount of time.

Having made an a priori decision, then, as to when a prime shall be considered
"too large", we proceed by attempting to factor the Qn's using only primes less than
this predetermined value. In our original program, written to factor F7, we adopted
this simple strategy, using in Step B only those Qn's which completely factored over
the given set of primes, called the "factor base".

The following theorem is of great practical importance, since it enables one to
exclude about one half of the primes which might otherwise be included in the factor
base.

THEOREM. If in the continued fraction expansion of kN an odd prime p
divides Qn, n > 1, then the value of the Legendre symbol (kN/p) is 0 or 1.

Proof: Suppose n > 1 and p1IQn. Then Eq. (1) implies that A _1
kNB2_ (mod p). But p cannot divide Bnn- 1 since it is known that

GCD(An-1,Bn-1)= 1. Thus (An_1/B_n)21 kN (modp) and kN isaquadra-
tic residue of p. Q. E. D.

The factor base can now be chosen by selecting a certain number of the smallest
possible odd primes p for which (kN/p) = 0 or 1. In addition, the prime 2 is
always included in the factor base. (In selecting these primes, one should, of course,
check that no p divides N.)

A refinement of the factor base approach, which effectively cuts the total run-
ning time by almost one half, has been used in later versions of our programs. It is
based on the fact that after discovering the second largest prime divisor of a Qn, the
factorization is essentially completed. It is possible to identify the second largest prime
divisor whenever, after having removed all prime divisors of Qn which belong to the
factor base, the remaining cofactor is less than p2A (where PA denotes the largest
prime in the factor base).

192 MICHAEL A. MORRISON AND JOHN BRILLHART

Since pA is quite large (even for PA as small as, say, 503), it becomes neces-
sary to introduce an "upper bound" (UB) so that essentially worthless factorizations
(those with large prime divisors) can be recognized and ignored as before. Thus in the
refined approach, a Q,2 is passed to Step B only if either (1) it completely factors
over the factor base, or (2) all of its prime factors, except the largest, lie in the factor
base, and the largest is less than UB.

The advantage of this modification is that a much smaller factor base can be used
and thus the set of factored Q, 's can be produced with considerably less dividing
(see Remark 7.2). Regardless of which of these factor base techniques is used, when
a "reasonable" number of the Qn's have been factored, the A - Q pairs obtained
are processed in the manner described in Steps B and C.

Remarks. 4.1. Determining the optimal values for the number FB of primes in
the factor base and the upper bound UB seems mainly to be a matter of experience.
Currently, we are using the values listed in Table 2.

TABLE 2

Number of
digits in N FB UB

S 20 60 3000
21-23 150 10000
24, 25 200 14400
26-28 300 22500
29, 30 400 29000
31, 32 450 36000
33, 34 500 36000
35, 36 550 36000
37, 38 600 44000
39, 40 650 53000
41-46 700-1000 63000

4.2. The factoring of the Q, 's is time-consuming, requiring better than 90% of the
total running time for most numbers. A slight increase in speed may be obtained by dis-
carding those Q,1's which still remain larger than some predetermined value (such as
1015), after a certain number of the primes in the factor base have been tested (say
one half).

4.3. The Legendre symbol is evaluated as usual by the quadratic reciprocity law
and the formula (2/p)-(- 1)(P2-1)/8* On a binary computer the symbol's evalua-
tion can be carried out rapidly in a way similar to the binary GCD method in Knuth

[4, p. 297].
4.4. It appears from experience that most of the primes in the factor base do

divide some Qn. Thus, it seems unlikely that there are other conditions which could
be used to reduce the factor base further. (Note that the primes dividing k should

METHOD OF FACTORING AND FACTORIZATION OF F7 193

be included in the factor base. For example, in the expansion of 257F7, the prime 257 di-
vides Q8018 = 24 * 3 * 7 * 43 * 257 * 503 * 4733 * 5303 * 9431 as well as many other

Qn)
4.5. A multiplier k may be chosen in such a way that many of the small primes

lie in the factor base. This seems to be advantageous, even though in doing so k may
have to be a two or three digit number. For larger k, the advantage of having numer-
ous small primes in the factor base must be balanced against the resulting increase in
the size of the Qn's. (See Remark 5.3.)

4.6. In the interest of maximum output, several inconclusive experiments have
been conducted in which only certain Qn's were selected for factoring. Such strate-
gies have included considering only Qn's which were smaller than a fixed amount, say

kN/ 103; or Qn's which were divisible by 24 or 30; or, as suggested privately by
R. Schroeppel, only Qn's for which qn exceeds a fixed value (as high as 300 for
large N). There is considerable need for further experimenting here.

4.7. If several k's are used for the same N, the complete set of A - Q pairs
obtained can still be processed in Step B. (See Remark 3.6.) In general, of course, a
single value of k should be used, since otherwise more factored Qn's would be re-
quired to produce an S-set.

5. Program Details. It was decided early in our work that two programs should
be written in order to have an economical set-up which would run easily in the time-
sharing system at UCLA. The first program, RESIDUE, would generate the A - Q
pairs and factor the Q,2's, while the second program, ANSWER, would process the re-
sulting information.

The alternative was a single program which would factor a Q,n and then process
the A - Q pair immediately. Such a program would continue to require more mem-
ory space the longer it ran, thereby proving to be both expensive and difficult to operate.

The following comments give a description of each program's capabilities as well
as a more technical discussion of various time-saving ideas. (The major input param-
eters are also given.) It should be pointed out that both RESIDUE and ANSWER are
PL/1 programs using machine-language subroutines for multi-precise arithmetic compu-
tations, factoring the Q,2's, and vector manipulation.

RESIDUE. This program accepts as input:
- the number N to be factored (< 46 digits)
- integers G and H (if known) such that G2 _ H2 (mod N)
- a multiplier k, 0 < k < 231 (see Remark 5.3)
- the number (FB) of primes desired in the factor base
- an upper bound (UB) (see Section 4)
- the number (LIM) of factored Qn's desired (see Remark 5.5)
- an upper limit (QL) on the subscript n (see Remark 5.6)
- restart values (when used) n, An_ 1 Qn - 1 A,n, g + Pn, Qn, qn, rn (see Re-

mark 5.7).

194 MICHAEL A. MORRISON AND JOHN BRILLHART

In addition to its main function of generating A - Q pairs whose Q 's have
been completely factored, RESIDUE prints both input and restart data, tests N to de-
termine whether it is composite or pseudo-prime (see [1]), checks restart values, and
attempts to factor N when it recognizes that some Qn is a square.

Remarks. 5.1. When computing qn, three subtractions of Qn from g +Pn
were tried before division was resorted to. This was based upon the fact that approxi-
mately 41% of the partial quotients in a simple continued fraction expansion are 1,
while about 17% are 2 and 9% are 3. (See [9, P. 122].) Since multi-precise division is
significantly slower than subtraction, this approach produces the expansion more rapidly.

5.2. On the IBM 360/91 a fixed-point divide requires 36-37 cycles, while a
(double-precision) floating-point divide takes at most twelve cycles. (One cycle equals
sixty nanoseconds.) For this reason, floating-point arithmetic was used to factor the
Qn 's. For each prime p in the factor base (the primes were stored in memory in
floating format), it required only one floating divide to check whether p divided Qn
if Qn < 255, and even though the remainder had to be computed, the overall result
was a divisibility test performed'in less than one half the time required by fixed-point
operations. Notice that two fixed-point divides would have been necessary for Qn >
2 1, with three divides needed for Qn > 262. On the average the floating-point pro-
gramming was capable of about 800,000 divisibility tests per second.

5.3. If k = 0 is input to the program, then RESIDUE chooses its own multi-
plier in the range 1 < k < 97 according to a strategy slightly more complicated than
the following: for each k in the range which allows either 3 or 5 to be in the factor
base, determine the number of primes pi < 31 such that the Legendre symbol
(kN/pi) = 0 or 1. Choose as the multiplier that k which allows the largest number
of such primes. If several k's allow this maximal number, compute (Il/pi) for
each, where the sum is over those primes in the factor base which are < 31. Pick the
smallest k having the largest sum.

5.4. The recommended values for factor base size (FB) and the upper bound
parameter (UB), which are listed in Table 2, represent several years experience and a
considerable amount of experimentation. Nevertheless, they are only at best a compro-
mise to cover a large range of numbers and seldom represent optimal values for a partic-
ular N.

5.5. When LIM = 0 is input to the program (the recommended procedure),
RESIDUE terminates itself when the number of factored Qn's exceeds the appropriate
value of LIM in Table 3. This dynamic limit is recomputed each time a new Qn is
factored. Table 3 contains empirical formulas for predicting when sufficient informa-
tion exists to factor N by means of an S-congruence. These formulas are designed to
be used with the values of UB listed in Table 2. The results to date have been fairly
satisfying. If, however, it happens that there is not sufficient data to factor N, then
additional A - Q pairs (with Qn factored) are obtained, 50 or 100 at a time.

5.6. The purpose of the input parameter QL may not be readily apparent. It is

METHOD OF FACTORING AND FACTORIZATION OF F7 195

TABLE 3

Number of Dynamic
digits in N LIM

<30 .80(FB +Y)
31-34 .82(FB + Y)

> 35 .84(FB + Y)

Y current number of factored Qn's with
their largest prime divisors lying outside
the factor base,

FB = number of primes in the factor base.

possible that, in the time allotted, RESIDUE might not be able to obtain the required
number of factored Q,,'s. In such a case, the operating system would terminate the

program and no restart values would be printed, necessitating that the program be rerun
if N cannot be factored with the data at hand. To avoid this, RESIDUE is designed to
terminate (with restart data printed) whenever the subscript n exceeds QL. In practice,
then, the value of QL is determined by the speed of the particular computer and the
allotted running time.

5.7. Whenever restart values are entered, RESIDUE verifies them by the follow-
ing four checks performed in sequence:

(i sA_-(ln Qn (mod N)?
(ii) Does Qn- = (kN-Pn)lQn?

(iii) Does g + Pn = qnQn + rn?
(iv) Is A (modN)

(To find Qn + 1 use (7), after first computing g and rn 1 (= g - Pn from (6)).)
5.8. The output from RESIDUE for each A - Q pair (for which Qn was fac-

tored) was designed to fit on two cards: the first contained n, A,n-i' and Qn; the
second contained n and the odd-power primes (up to fifteen in number) dividing Qn.

ANSWER. This program accepts as input:
- the number N to be factored (S 46 digits)
- integers G and H (if known) such that G2 -H2 (mod N)
- the total number (QTOT) of A - Q pairs to be input (Note: QTOT = f)
- an upper bound (PTOT) on the total number of distinct primes in the factor-

izations (usually FB + Y)
- the (card) data output by RESIDUE (see Remark 5.8).
In addition to deciding whether any S-congruences exist (and attempting to fac-

tor N if they do), ANSWER prints the input data (exclusive of the A - Q pairs) and
performs a pseudo-prime test on any discovered factors of N. In the event that there

196 MICHAEL A. MORRISON AND JOHN BRILLHART

are composite factors of N, ANSWER continues to process any remaining S-congru-
ences in an attempt to completely factor N.

Remarks. 5.9. ANSWER constructs six arrays in memory: two arrays of multi-
precise numbers (one for the A l's and one for the Qn 's), two arrays of bit vectors
(one for exponent vectors and one for their associated history vectors), a table of
primes, and a table of pointers. All six arrays are constructed simultaneously as the
A - Q pairs and the factorizations of the Qn's are input.

5.10. The table of primes mentioned in Remark 5.9 is constructed and used as
follows: The first prime of the first factorization is placed in the first position of the
prime table and the first bit of the first exponent vector is set to 1 (recall that the sign
is placed in the zeroth bit). Subsequently, any prime p of a particular factorization
is compared with the primes p1, p2, -, Pm already in the prime table. If p equals
some pj, then the jth bit of the corresponding exponent vector is set to 1. Other-
wise, p becomes Pm + and the (m + 1)st bit is set to 1. All the vector arrays are
"zeroed out" initially.

5.11. The main reason the reduction procedure of Step B is performed from right
to left on the exponent vectors is that there will be less combining of vectors than if
the operation proceeded from left to right. This is a result of the construction of the
prime table which tends to place the small primes in the early part of the table. They
are thus represented by the left components of the exponent vectors, while the large
primes tend to be represented on the right. Hence, vectors which may have small
primes in common will be excluded from any mutual combining very quickly if their
largest primes do not agree.

5.12. The pointer table mentioned in Remark 5.9 enables the procedure dis-
cussed in Step B to be done swiftly with only occasional scanning of the (rather
sparse) exponent vectors. To each exponent vector there corresponds an entry in the
pointer table-its pointer (see Remark 5.13). The value of this pointer indicates the
vector component containing the rightmost 1. Two pointers agree if and only if their
corresponding exponent vectors have their rightmost l's in the same component.

In using the pointer table, a scan pointer is first established. Initially, this corre-
sponds to component r. Beginning with the first pointer in the table, each entry in
the pointer table is compared with the scan pointer. If a match does not exist, then
no exponent vector has a rightmost 1 in that component. In such a case, the scan
pointer is reduced so that it points to the next component to the left and the process
is repeated until all components have been examined.

If, on the other hand, a match occurs, the first match establishes the "pivot"
vector. This vector is exclusive-ored (component-wise addition in Z2) into those
exponent vectors corresponding to subsequent matches with the scan pointer. Thus,
only this pivot vector will retain its rightmost 1 in the component being considered.
When the pivot vector has been combined with another vector, it is necessary to locate
the new rightmost I in the new vector and update its pointer. (It is during this opera-
tion that zero vectors are found.)

METHOD OF FACTORING AND FACTORIZATION OF F7 197

When no further matches with the scan pointer exist, it is reduced so that it
points to the next component to the left, and the entire process is repeated until all
components have been examined.

5.13. Pointer design. Assume the computer being programmed has a 32 bit
(4 byte) word. Suppose each exponent vector begins on a full word boundary. Let
this be the 0th word of the vector. Assuming the bits of each word are numbered 0
to 31 (left to right), it is possible to uniquely identify the rightmost 1 of any expo-
nent vector in terms of its word number and its bit number; e. g., given the vector

Word 0 Word 1
26

10010000000000010100000100000111 0000010 ... 0.

The rightmost 1 has word number 1, bit number 5.
Let each entry in the pointer table occupy two consecutive bytes (or a full word

if the machine lacks half-word capability). The left byte contains the word number,
the right byte (in its five most significant bits) the bit number. For the vector above
the pointer would be

Left byte Right byte

00000001 00101000.

When constructing an exponent vector, each time you advance one component
to the right, the addition of 8 to a register containing the pointer will correctly update it.

5.14. ANSWER, as presently written, requires large amounts of core as indicated
by Table 4. However, as indicated in Table 7, it requires very little running time.
RESIDUE, on the other hand, seldom needs more than 140K.

TABLE 4

Number of Average core for
digits in N ANSWER (in K)

20 150
21-25 220
26, 27 280
28-30 360
31,32 440
33, 34 500
35, 36 750
37, 38 880

By sacrificing speed, ANSWER may be tailored for machines with limited core.
It is not necessary, for example, to store the A - Q pairs internally. They may be
placed on disk or tape in such a way that it is possible to locate any desired pair rather
simply. Also, it is not necessary that the array of history vectors (when considered as
a matrix) be rectangular-lower triangular is sufficient.

The output of RESIDUE may be scanned before it is passed to ANSWER.

198 MICHAEL A. MORRISON AND JOHN BRILLHART

During such an intermediate step, a factorization is flagged if its largest prime is un-
matched and lies outside the factor base. It will then be ignored by ANSWER. For
most N, 25% or more of the factored A - Q pairs can be discarded on any given run
of ANSWER. Of course, the factorization of any Qn, which is completed within the
factor base, would not be flagged.

If a scan step is used, the values of UB in Table 2 can be increased in order to
take fullest advantage of possible matches without increasing core requirements.

Finally, the exponent and history vectors may be stored in a compact format and

fully expanded only when they are to be combined.
5.15. As an option, ANSWER also has the capability of verifying the congruence

A2_ =--(- l)' Qn (mod N) for each A - Q pair input. To date this check has
never caught the IBM 360 in error.

6. Related Factoring Methods. The factoring method discussed in the preceding
sections is based on a combination of ideas due to Legendre and Kraitchik. It is the
purpose of this section to consider these ideas and illustrate their relationship to the
method at hand.

(a) Legendre [7] wrote Eq. (1) as kNB21 = A 12-(-1)nQ. The right
side of this equation can be written as x2 ? ay2, where x = An1 and ay2=Qn,
"a" being square-free. Thus, if p is a prime dividing N, it must have a linear form
associated with divisors of x2 ? ay2. For example, if kNBn1 can be expressed as
x- 2y2, then p must have one of the forms 8m ? 1.

By combining enough linear forms Legendre built a sieve which excluded many
of the possible divisors of N. A good enough sieve can be used to find a factor of N
by merely trying (as possible divisors) those numbers which survive the sieve. When
N is small, a sieve may even be able to establish primality by excluding all possible
factors < V

The factoring method of Legendre can, therefore, be described as a direct search
technique which uses a sieve to create a sequence of trial divisors. As such, it may
fail to find a large prime factor of N.

In contrast, the method of this paper does not use a direct search, since no se-

quence of trial divisors is created. In fact, the real power of the method lies in
its "indifference" to the relative size of the prime factors of N. It is thus probably
not correct to refer to the method of this paper as that of Legendre, even though both
depend on the continued fraction expansion of @kN (cf. [4, p. 351]).

It is important to note, however, that Legendre's method and other sieving tech-
niques are often quite effective in factoring rather large integers (see [1, p. 88]). For
example, it was by this method that D. H. Lehmer, G. D. Johnson, and the second
author factored 2101 - 1 on the IBM 704 (see [4, p. 354]).

Many devices have been constructed to assist in making the use of sieves more
automatic and reliable. The stencils of D. N. Lehmer and the Hollerith card version
of J. D. Elder [13] are of great value in hand computation. (The booklet accompany-

METHOD OF FACTORING AND FACTORIZATION OF F7 199

ing Lehmer's stencils and Elder's sieve cards contains an excellent resume of factoring
methods.)

Over the last forty-five years, D. H. Lehmer and his associates have built various
powerful machines to carry out the sieving process automatically, rapidly, and accu-
rately (see [8], [10], [12]). A new shift-register sieve, SRS-181, capable of process-
ing 20,000,000 values per second, is presently being built at Berkeley and is expected

to be operational by the end of 1974.
(b) The factoring methods of Kraitchik [5] do not use continued fractions. In-

stead, he obtains quadratic residues of N by rather ad hoc methods in which the ex-

pressions AN- x2 or N - AX2 are completely factored for certain choices of X and
x. For example [5, p. 27], if N= (1023 - 1)/9 and X = 1, then

N- 1054086570452 = 2 * 112. 13 . 592 * 712 . 107 . 131 * 163

or
1054086570452 2 - 112 * 13 * 592 712 * 107 * 131 * 163 (mod N),

which implies - 2 * 13 . 107- 131 * 163 is a quadratic residue of N.
The residues found in this way are then employed either to set up a sieve, as in

Legendre's method, or to create "cycles" (Kraitchik's terminology), that is, to select
certain congruences, x R R1 (mod N), whose product will yield a square on the
right side (possibly with some cancelling). For example [6, p. 201], if N = 721 * 228
+ 1 = 193541963777, then he finds the congruences

4399352 28 .72 .67 and 16092.72*67 4494902 (mod N).

Multiplying these and cancelling 72 . 67 gives 7078554152 71918402 (ModA).
Thus the GCD(700663575,N)=9342181 and N = 20717*9342181. (Readers of

Kraitchik's works should beware of numerical errors.)
Remarks. 6.1. It should be pointed out that when cycles are used, it is not

necessary to set up a sieve as in Legendre's method. This is a great advantage, since

sieves demand considerable care in their construction and use.
Even though the use of cycles is a major part of the present method, it is not

correct to attribute this method to Kraitchik, since he did not use continued fractions
to obtain quadratic residues of N, as in (2).

6.2. Kraitchik uses the multiplier X as we do to gain some control over which

primes can divide V - x2 (cf. Remarks 4.5 and 5.3).
6.3. When N is expressed as X2 _y2, a nontrivial representation infallibly

gives a factorization of N. Unfortunately, this representation is usually discovered by
sieving, and sieving, at present, does not compete with the method of this paper. At
this time, the only known possible rival to the present general method is that due to
Shanks [17]. However, Shanks' method has not yet been programmed in machine
language, so an accurate comparison cannot be made.

7. Numerical Results. Factoring F7. In 1905, Morehead [14] and Western

[18] each proved that

200 MICHAEL A. MORRISON AND JOHN BRILLHART

F7 = 2128 + 1 = 340282366920938463463374607431768211457

is composite. They used the well-known theorem of Proth [16] which states that Fm =

22m + 1 is prime if and only if 3(Fm-l)12 =- 1 (mod Fm), m> 1.

In our attempt to factor F7 it was first necessary to choose a multiplier k > 1,

both to produce an expansion with a long period and to allow small primes to be in

the factor base. The choice k = 257 was made only after some experimenting with

other values, such as 17, 3617, 22697, and 1516609494. Each was compared with

257 on the basis of how many of the first 5000 Q,'s could be completely factored

over a factor base of the first 2700 "acceptable" primes.
From the first 1,330,000 Qn's of the expansion of 257F7, 2059 complete

factorizations were obtained. On the average, the program processed 250 Qn's per

second and yielded one completely factored Qn about every three seconds. After

the program was run for about ninety minutes over a period of seven weeks, the accu-

mulated data was processed by ANSWER using 1504K bytes of memory. The first

four S-congruences failed to factor F7. The factorization of F7 (see [15]), which

is the first entry of Table 6, was found using the congruence:

2335036483808358521772321436182279564762

2518647814572804129731227193485202122232 (mod F7).

Although in its current form the factoring program could now probably factor

F7 in about fifty minutes (using A small factor base and an upper bound), the pros-

pects of using it to factor F8, a number of seventy-eight digits, are not very bright,

since the size of each Qn would be about that of F7.

Remarks. 7.1. In the expansion of 257F7, the even Qn's were automat-

ically divisible by 8. This is a result of Eq. (1), which states that A21 - 257F7B21 =

(- 1)'Qn, and the fact that the GCD(An l, Bn_) = 1. For if Qn is even, then

both An_ and Bn_- must be odd. Thus, the equation taken (mod 8) implies

that 8 I Qn
7.2. Table 5 contains some statistics, derived from the expansion of ,257F7,

which strikingly illustrate the increased rate at which factored Qn's can be produced

when a small factor base is used and the largest prime divisor of a factored Qn is not

required to be in the factor base. (Note that 52183 was the largest prime in any fac-

tored Qn. See Section 4, Paragraph 2.)

Other Results. With the factorization of F7 completed, the original programs,
and later revisions, were used to factor other numbers of interest. These are mainly

of two types:
(1) an + 1, or one of its composite, primitive factors,

(2) Un or Vn, or one of their composite, primitive factors. Here Un de-

notes the nth Fibonacci number and Vn denotes the nth term of the associated
Lucas sequence (see Jarden [3]).

METHOD OF FACTORING AND FACTORIZATION OF F7 201

Forty-two factorizations (including F7), which were completed by the method
of this paper, are given in Table 6. In each case the factorization accomplished con-
sisted of finding the two largest (nonalgebraic) prime factors.

TABLE 5

%Qn indicates the percentage of factored Qn (out of a total of 2059)
whose 2nd largest prime divisor is less than the BOUND.

%P indicates the percentage of primes in the factor base (out of a
total of 2700) less than the BOUND.

BOUND t Qn %P

8000 43.90 17.78
9000 47.94 19.85

10000 52.45 22.11
11000 56.14 24.33
12000 59.64 26.00
13000 63.14 28.11
14000 66.39 30.07
15000 69.74 32.30
20000 80.91 42.33
25000 88.00 51.96
30000 93.35 60.59
40000 98.45 79.26
52183 100.00 100.00

The forms of the numbers in entries 4 and 10 of Table 6 arise from the Auri-
feuillian factorizations:

612n+6 + 1 = (64n+2 + 1) (64n+2-63n+2 + 3 * 62n+1 -6n+ + 1)

*(64n+2 + 63n+2 + 3 - 62n+1 + 6n+1 + 1)

and

126n+3 + 1 = (122n+1 + 1) (122n+1 -6 - 12n + 1) (122n+1 + 6. 12n + 1).

In Table 6, any algebraic (see [1, p. 87]) factors are placed before the colon,
while an asterisk following a factor indicates it was first discovered by either D. H.
Lehmer, Emma Lehmer, and J. L. Selfridge, or by Bryant Tuckerman at the IBM Re-
search Center, Yorktown Heights, New York. These factors are included here with
their kind permission.

Remark 7.3. Although the most effective strategy for choosing a multiplier
seems to be rather elusive, the following three examples clearly illustrate the importance
of the multiplier k.

1. The composite thirty-one digit cofactor N of V273 (entry 34 of Table 6)

202 MICHAEL A. MORRISON AND JOHN BRILLHART

factored in about seventy seconds with a multiplier of k = 1. Here (Nlp) = 1 for
seventeen out of the twenty-four odd primes less than one hundred as shown below:

N = 1895779504507826667970479592081.

The factor base included 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 59, 61, 71, 73, and 79.

TABLE 6

1. 2128 + 1 = 59649589127497217.5704689200685129054721

2. 577 - 1 - 22. 19531.12207031:527093491*. 8090594434231.162715052426691233701

3. 593 + 1 2.32.7.1303.21207101.28086211607:258065887*.75005167927
*53345671490722200466369

4. 646 + 635 + 3.623 + 612 + 1 = 97:23027140435639321.279219519230141641

5. 753 + 1 = 23 :107-345449549*.35416476134069.58902316970027001503

6. 775 + 1 = 23. 1143.191.6568801.79787519018560501 :151.6005492312551
*7021370289199888801

7. 1141 + 1 = 22.3:711628063*.1216150172449.479378523680060338823

8. 1155 _ 1 2.52.3221.15797.1806113: 25301.39161.643170158708221
.645654335737185721

9. 1160 + 1 = 2.41.7321.10657.20113.1120648576818041 :52020741601
*40589999671017742452961

10. 12 33-61216 + 1 = 1657:5690162377645219.43504476926662819

11. 1237 + 1 = 13: 5250079*.4150805645839.30023720899326796981

12. 1238 + 1 = 5.29 :1977673*. 176477034940417.2016864235215616489

13. 12 + 1 = 52.29.673*85403261.13156924369: 71874601*. 10365509281*
*1612092376073761.5298455664688950121

14. U173 = :1639343785721.389678749007629271532733

15. U197 = :15761.25795969.227150265697.717185107125886549

16. U229 = :457.2749.40487201.132605449901.47831560297620361798553

17. U243 = 2.17.53.109.2269.4373.19441 :448607550257.16000411124306403070561

18. U249 = 2.99194853094755497 :1033043205255409.23812215284009787769

19. U279 = 2.17.557.2417.4531100550901 :11717.594960058508093.6279830532252706321

20. U375 = 2.5 .61*3001*230686501.158414167964045700001 :9001.169501
*41510105455501.9906293406944653501

21. V152 = 47: 562766385967.2206456200865197103

22. V169= 521 :596107814364089.671040394220849329

23. V176= 2207 :1409.6086461133983.319702847642258783

24. V179 = :359.1066737847220321.66932254279484647441

25. V181 = :97379.21373261504197751.32242356485644069

26. V184 = 47 :367.37309023160481.441720958100381917103

27. V191= :22921.395586472506832921.910257559954057439

28. V201 = 22.4021.24994118449 :2686039424221.940094299967491

29. V209 = 199.9349 : 419.20669776469.2959707364050967146316591

*See Section 7.

METHOD OF FACTORING AND FACTORIZATION OF F7 203

30. V246 = 2.32- 163.800483.350207569: 67031206681.46724505421882309671121

31. V249 = 22 221806434537978679: 499.43084912634851.572087591261946589

32. V250 = 3.41*401*570601: 1353439001.5465167948001.84817574770589638001

33. V264 = 2.47.1103.52337681992411201: 893844775132847.3068718630789795983

34. V273 22.29.79.211.521.859.689667151970161: 1836084445651.1032512153239041931

35. V280 47.1601.3041.10745088481: 6135922241.164154312001.13264519466034652481

36. V290 = 3.41.347.1270083883:5801-52201.96281-6854280100961.37296197227456649716I

37. V291 = 22. 3299 56678557502141579:5496409 320657355925861 4959318126280687189

38. V294 2.32.83.281.1427.5881*61025309469041 587.1150184101339307
*190773791763188929

39. V297 22. 19.199.991.2179.5779.9901*1513909: 220862269.1369471729429
.137096217949680001

40. V303 = 22. 809*7879*201062946718741:77569.3334819.42669355669
*37202043349013064289

41. V318 = 2.32. 1483.2969.1076012367720403: 14627.346656889.57157491464963
*116171668216510969

42. V342 = 2. 32. 227*26449*29134601.212067587 : 683.20521.47881*6368731219987307
*324968740886536921

2. The Fibonacci number U173 = 638817435613190341905763972389505493
required more than 800 seconds to factor with k = 1 (see entry 14 in Table 6). A later
test-run using the program-selected multiplier k = 2 showed that the number could
have been factored in less than 200 seconds.

3. Using multipliers of comparable size, entry 27 of Table 6 required 1016 sec-
onds to factor, while entry 29 (approximately the same size) needed only 365 seconds.

8. General Remarks. 8.1. The factor programs described in this paper no longer
exist at UCLA. The latest versions closely approximate a single stage program in their
operation and are now running at the Department of Mathematical Sciences, Northern
Illinois University, DeKalb, Illinois. By means of JCL, control is passed back and forth
between RESIDUE and ANSWER until in most cases N is factored. In their present
forms these programs are suitable for general use at a computer center, especially if a
reasonable limit on the size of N is established in order to avoid excessive use of
both time and core. The power of this factoring package is evidenced in some part by
the information in Table 7 (these figures are based on a comparatively small number
of factorizations).

8.2. Any method which could consistently produce quadratic residues of N
(see (2)) considerably smaller than 2V/N would be of great interest, since the size of
the residues effectively determines the practical limits for this approach.

8.3. For some reason that is not entirely clear, composite numbers with several
prime divisors seem to factor much more quickly than those of comparable size with
only two prime divisors. The fact that these extra prime divisors tend to produce fac-
tor bases containing primes slightly larger than normal does not seem to fully account for
the phenomenon.

204 MICHAEL A. MORRISON AND JOHN BRILLHART

TABLE 7

Average Factorization Times (secs.)

Number of IBM 360/65 IBM 360/91
digits in N RESIDUE ANSWER TOTAL TOTAL

16 6.0 2.0 8.0 2.0
17-18 7.5 2.0 9.5 2.5
19-20 19.0 3.0 22.0 5.5
21-22 43.5 5.5 49.0 12.5
23-24 65.5 14.5* 80.0 20.0
25 134.5 15.5* 150.0 37.5
26 275.0 19.0* 294.0 72.0
27 326.5 19.5* 346.0 82.0
28 364.0 20.0* 384.0 88.0
29 585.0 25.0* 610.0 140.0

* Assumes an average of 1.5 runs of ANSWER (cf. 8.1)

8.4. It does not appear that either prior knowledge of the form of the factors of
N or knowledge that N has no factors below a certain limit can be used in any way
to speed up the continued fraction factoring method.

8.5. It can happen, as observed in [11, p. 771], that N and Qn can have a
factor in common. Such a factor must also divide P,n and Pn+ +. For example, in
the expansion of V7i69, P4 = P5 11. However, in some expansions such
as A/2813, the GCD(N, Qn) = 1 for every n. Whether or not such an approach is
practical in trying to factor a large N has not been investigated, as far as we know.

8.6. It is unfortunate that there does not appear to be any practical approach to
finding S-sets which does not require the complete factorization of some collection of

Qn's. If such a technique did exist, it would no doubt greatly speed up the present
method.

8.7. It is very important to realize that once S-sets begin to appear, increasing
the number of factored Qn's by as little as 50 tends to produce a large increase in
the number of S-sets.

8.8. Having about seven S-congruences is usually sufficient to factor N. The
method seldom seems to succeed, however, when there is only one such congruence,
and there are examples where it has failed with as many as 25 S-congruences.

9. Acknowledgments. The authors would like to express their gratitude to David
Cantor of UCLA for the use of his multiple-precision subroutines and for his interest
and general support of this work. They would also like to express their gratitude to
D. H. and Emma Lehmer for their many helpful ideas and suggestions and to J. M. Pollard

METHOD OF FACTORING AND FACTORIZATION OF F7 205

for his insightful comments on an earlier version of this paper. Finally, they would
like to thank the directors of the UCLA Campus Computing Network for providing the
computer time to carry out this project.

Department of Mathematics
University of California
Los Angeles, California 90024

Department of Mathematics
University of Arizona
Tucson, Arizona 85721

n
1. J. BRILLHART & J. L. SELFRIDGE, "Some factorizations of 2 +1 and related re-

sults," Math. Comp., v. 21, 1967, pp. 87-96; Corrigendum, ibid., v. 21, 1967, p. 751. MR 37 #131.
2. J. BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and fac-

torizations of 2m ? 1," Math. Comp. (To appear.)
3. D. JARDEN, Recurring Sequences, 2nd ed., Riveon Lematematika, Jerusalem, 1966, pp.

40-59. MR 33 #5548.
4. D. KNUTH, The Art of Computer Programming, Vol. 2: Semi-Numerical Algorithms,

Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.
5. M. KRAITCHIK, Recherches sur la theorie des nombres. Tome II, Gauthier-Villars, Paris,

1929.
6. M. KRAITCHIK, The'orie des nombres. Tome II, Gauthier-Villars, Paris, 1926, pp. 195-208.
7. A. M. LEGENDRE, Theorie des nombres. Tome I, 3rd ed., Paris, 1830, pp. 334-341;

Also under the title, Zahlentheorie, translated by H. Maser, Teubner, Leipzig, 1893, pp. 329-336.
8. D. H. LEHMER, "A photo electric number sieve," Amer. Math. Monthly, v. 40, 1933,

pp. 401-406.
9. D. H. LEHMER, "Computer technology applied to the theory of numbers," Studies in

Number Theory, Math. Assoc. Amer., distributed by Prentice-Hall, Englewood Cliffs, N. J., 1969,
pp. 117-151. MR 40 #84.

10. D. H. LEHMER, "An announcement concerning the delay line sieve DLS-127," Math.
Comp., v. 20, 1966, pp. 645-646.

11. D. H. LEHMER & R. E. POWERS, "On factoring large numbers," Bull. Amer. Math. Soc.,
v. 37, 1931, pp. 770-776.

12. D. N. LEHMER, "Hunting big game in the theory of numbers," Scripta Math., 1933, pp.
229-235.

13. D. N. LEHMER, Factor Stencils, rev. and extended by J. D. Elder, Carnegie Inst. of Wash-
ington,Washington, 1939. MR 1 #133.

14. J. C. MOREHEAD, "Note on Fermat's numbers," Bull. Amer. Math. Soc., v. 11, 1905, pp.
543-545.

15. M. A. MORRISON & J. BRILLHART, "The factorization of F7," Bull. Amer. Math. Soc.,
v. 77, 1971, p. 264. MR 42 #3012.

16. F. PROTH, Comptes Rendus, Paris, v. 87, 1878, p. 374.

17. D. SHANKS, "Class number, a theory of factorization, and genera," Proc. Sympos. Pure
Math., v. 20, Amer. Math. Soc., Providence, R.I., 1971, pp. 415-440. MR 47 #4932.

18. A. E. WESTERN, "Note on Fermat's numbers and the converse of Fermat's theorem,"
Proc. London Math. Soc., v. 3, 1905, xxi-xxii.

	Cit r221_c237:

