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Sharper Bounds 
for the Chebyshev Functions 0(x) and t6(x) 

By J. Barkley Rosser and Lowell Schoenfeld * 

Abstract. The authors demonstrate a wider zero-free region for the Riemann zeta func- 

tion than has been given before. They give improved methods for using this and a re- 

cent determination that the first 3,502,500 zeros lie on the critical line to develop 

better bounds for functions of primes. 

0. Introduction. As this paper is dedicated to D. H. Lehmer on the occasion of 
his 70th birthday, it is particularly appropriate to remark on Lehmer's long time interest 
in the application of numerical computation to problems in number theory. In particu- 
lar, his papers [1956A, 1956B] reporting that the first 25,000 zeros of the Riemann func- 
tion j(s) lie on the critical line led the way in the application of modern computing ma- 
chinery to the study of the zeros of this function. In default of a proof of the Riemann hy- 
pothesis, the best estimates for 4(x) and 0(x), and hence of 7r(x), ph and other 
functions of the primes, depend on the current state of knowledge of the zeros of c(s). 

The present paper is devoted to obtaining improved estimates for 4(x), the log- 
arithm of the least common multiple of all integers not exceeding x, and 0(x), the 
logarithm of the product of all primes not exceeding x. We reserve for another paper 
the application of these results to ir(x) and pn, simply remarking here that they per- 
mit the deduction of such inequalities as 7r(2x) < 27r(x) for all x > 11 and 0(pPn) > 
n logn for all n > 13. We are also able to show (P1 + P2 + + Pn)/n < ?2Pn 
for n > 9, as conjectured by Robert Mandl. 

To a considerable extent, this paper represents an up-to-date version of part of 
Rosser and Schoenfeld [1962], which will hereafter be cited as R-S. We also make 
considerable use of Rosser [1941]. We assume familiarity with these papers, and shall 
use notation and results from them freely. 

Rosser, Yohe and Schoenfeld [1969] ** announced that the first 3,500,000 zeros 
of c(s) lie on the ciitical line. By applying the stronger result contained in Theorem 
4 of Lehman [1970], we are now able to show that the first 3,502,500 zeros are on 
the line. Our computations extended out to Gram No. 3,502,504; between here and 
the smaller Gram No. 3,502,483, c(s) behaves very regularly so that all of the Gram 
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numbers in this interval separate the zeros of c(s). Letting N(T) be the number of 
zeros p = ,B + iy of v(s) such that 0 < y < T, there is an approximation F(T) to 
N(T) given in Rosser [1941, p. 223]. We define A as the unique solution of F(A) = 

3,502,500; the calculations of Rosser, Yohe and Schoenfeld establish that N(A) = 

3,502,500 so that N(A) = F(A). We note 

(0.1) log A = 14.45443 30529 858 , A = 18 94438.51224 

Throughout this paper, the inequality sign is used in the strict mathematical 
sense; if A <B is written, where A and B contain approximations, then with the 
indicated approximations the inequality does indeed hold. We have not always given 
the very best bounding decimal approximation but have frequently given less strict (but 
correct) bounds which are easier to verify. We occasionally use the sign _ to indicate 
approximate equality with the approximations being accurate to 1 or 2 units in the 
least significant digit shown. Finally, we use z to denote the complex conjugate of 
z, Rz to denote the real part of z, and Iz to denote the imaginary part of z. 

It is our pleasure to express our thanks to John W. Wrench, Jr. of the U. S. Navy 
Carderock Laboratory for the computations he performed for us. We also wish to 
thank Dianne Hollenbeck and Emerson Mitchell of the Mathematics Research Center 
for their help with calculations. 

1. A Zero-Free Region for c(s). In this section we give such a region whose 
form is essentially that of the classical one of de la Vallee-Poussin. The result, stated 
in Theorem 1, is substantially better than the corresponding result, Theorem 26 of 
R-S. The improvement is due primarily to the work of Stechkin [1970B] with other 
improvements resulting from a better nonnegative cosine polynomial and from the 
knowledge that all zeros p = ,B + iy of v(s) for which 0< I'yI A lie on the critical 
line. Although better asymptotic zero-free regions are known from the work of Vino- 
gradov and others, these regions only become wider at heights beyond the main interest 
of this paper. 

We begin with the following result suggested by the work of Stechkin [1970B]. 
LEMMA 1. Let s = a + it and so = 0 + it where o > a > 1. Let 

Oro (0 -1) X=(2- 1)min _1> 
(2a - 1)0 a,' 2ao 

- ~~1) 

and 0 S Rb S 1. Then 

(1.1) R( - b + 1 ) s R s + 1 

If, in addition, lb = t, then 

(1.2) min{ b's - b ( R l + b } R( s0-- b so - + + b 

Proof Let a = Rb. For (1.1), it suffices to deal with 0 < oc < ?2, since 
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otherwise we consider b' = 1 - b. Let Q be the quotient of the left side of (1.1) 
by the real part on the right side of (1.1). Replacing r in the proof of Lemma 2 of 
Stechkin [1970B] by o0 > a, we find that 

2cr 12 - 1__ _ _ _ _ _2cr - 1 
Q F(a, t2) max{F(a, 0), F(a, oo)} max{/(a), 2ao -1 

where F(a, u) and 0b(a) are as defined by Stechkin. Inasmuch as 

= (2cr - 1) * a (0) 

we see that Q > X so that (1.1) holds. 
To obtain (1.2), it suffices to prove it with the left side replaced by Rl/(s - b) = 

1/(c - a). The quotient of this by the real part on the right side of (1.2) is 1/01(a) 
where 

a) o a ao + a -? ? 

This completes the proof of (1.2), which is essentially Remark 2 of Lemma 2 of 
Stechkin [1970B]. 

We define for a > 1 

(1.3) c0 = ?2(1/ 8c2 - 4c + 1 + 1), 

(1.4) K0 c- 
0 20 -1 2 4ac- 1 + /(4(J- 1) 

Then 

(1.5) = =Ko > 1/A/5, c0 > c. 

For 0 < x S 0.03 we easily verify that 

V/5 < 1/5 + 12x + 8x2 < 1/5 + 2.68847x; 

putting x = a - 1 and assuming 1 < a < 1.03, we get 

(1.6) T < c0 = ?2V 5 + 12x + 8x2 + 1/2 < r + 1.34424(c - 1) < 1.659, 

where rT= ?2(V 5 + 1) is the golden ratio. Also 

(1.7) Ko < 0.458 if c S 1.03. 

If 0<x < 1, then 

(5 + 12x + 8X2) (1 + x)2 (1 26 x2)2 

= (5?+ 20x?+ 152 2 + 512 x3 + 128 x4) (1 26 x2)2 

* 5 + 20x + 20x2 - 21x3 - 52x4 - 20x5 + 23X6 + 23x7 + 6x8 

< 5 + 20x + 20x2 = 5(1 + 2x)2. 
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If 1 < a S 1.03 and x = a- 1, then 

I + 2x 1 .1+ 4 1 - 26X2\ 
(1~~ ~ ~~ *8 12X + X 5 5 J 25 J 

(1.8) K ~> 1 ~)1 ~2 
> 1 + 4(a- 1) - 1.06496(o - 1)2} 

The following is the principal result needed for the proof of Theorem 1. 
LEMMA 2. Let P(O) = En= ak cos kO be such that all ak > 0 and P(G) > 0 

for all real 0. If ,B + fy is a nontrivial zero of c(s) such that ,B $ ?2 and 1 < a < 

1.03, then 

al ao 1 - K 
(1.9) af3 a- < 2 Aolog LyI + B + 0.187 6352 ao(a - 1) 

+ 17 E ak 
+3,y 2 k-l k2 

where C is the Euler-Mascheroni constant, and 

AO= al + a2 + + a, B =aOKO ) C 2 E aklog - 

Proof Using the series for t'(s)/l(s) we get 

n tt tt 

aJ 
a 

{KR 
K 

(ao + ikt) - (a + ikt) 

(1.10) 00 A(m) (1 K ( 
(1.10) 00 

~~~~~~~~1 0 P(t log m)?>0. 

m~ \r muou)0 

From Landau [1909, pp. 316-317], we get 

(1 . 1 1) PP~( ) = b -1 - 'rr s2 + 1 )+ T(s), v(s) s-i 2 

where 

(1.12) b =log (27r) - 1 - 2C, 

(1.13) T(s)= ( s + I-) 

where p runs over the nontrivial zeros of c(s). 
For real s = a, we see from (1.11) that T(a) is real and hence is given by 

(1.14) T((Y) = R(J p- 1 1 p)+YER + E R p. 
p p ~~~~~~p P 

As 1 - p runs through all the nontrivial zeros of c(s) exactly once when p = ,B + iy 

does, we obtain from Rosser [1939, p. 29] 

(1.15) ER 1 =ER 1 - E R _-_= _ 2 -o2 I.- p ~1 -(1-p) ,, p 1~3+ 'y2 2 
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Moreover, for 1 < a 1.03, a typical term G(p) of the first sum in (1.14) is 

G(p) = af -: I --0 (a I 
)f 72 - (C - ) (I - 0)} 

(C-f3)2 +y2 (- )2 +?y2 {(- )2 +?y2}{(l13)2 +y2} 

o- 1 2-(1.03- )(1-3) 

ly2?(1f3)2 'y 2 +(1.03 -3)2 

If 3 = ?2, then since Iy I> 14.13 4725 we easily get 

G(p)> 0.997 2714 + (1 - 2= 0.997 2714 (a- 1) R( + i 

If f # ?, then y I >A; as -y2R{ l/p + 1/(1 - -)} < 1 always holds, we have 

G(p)>(au- i)iR + 1 1). 2(2 -1.03) 

> 0.9973 ( - 1) R(p + 1 1) 

Hence the first sum in (1.14) exceeds 

0.997 2714(a - 1) . 2 R - > 0.0460 6537(a - 1) 
p P 

by (1.15). Consequently, (1.11), (1.14), (1.15) and (1.12) yield 

(1.16) - ()< +? 2 4(a+1)-1- C+log2-0.o04606537(a -1), 

where 4(s) = P'(s)Ir(s). By the law of the mean, there is a t E (3/2, Y/az + 1) such 
that 

00 

Q(/o+ 1)- (3/2) = /2 (a - 1); ( Y) = (a- 1) (n + 0 1-2 

n=1 ~ ~ ~ ~ ~~ = 
< 1/2 (or 1 (n + j/2)--2 = { (7r2 /4) - 2} (or- 1), 

n=1 

as a result of a standard formula for 4(s); cf. Whittaker and Watson [1940, p. 241]. 
Using 4(3/2) = 2 - C - log4 from Rosser [1939, p. 29] and (1.16), we obtain 

(1.17) - ?'(U)I?(U) < 1/(a - 1) - C + 0.187 6352 (a - 1). 

Next, putting so = U0 + it and s = a + it, (1.11) yields 

R{KO o (CFO + it) 
- + it)} 

K0 1 K 
K0 R/L (1.18) =(K0 - 1)b z- R - (0?i 

+ 1 4 1 + Y, R Ko P+ K- 

For It I > 1, we have by (1.5) and (1.6) 
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R( - 1-S - 1 )> R SO - 1 75 ao - 1 (a - 1)2 + t2} 
(1. 19) ( l - { T-. 

> R 
1 

.0.03 0.44 +t2}>0 

By (4) on p. 113 
of Edwards [1974], we obtain for a > 0 

) r 

t, 

r (s) 2s 12 1S 12 6Jo {(a + x)2 + t2}3/2 4t2 

Hence, if 2 > a > 0 / t, there is a 00 E (- 5/9,1) such that R4'(s) = log I t I + 

900/(4t2). As a result, if 1 < a < 1.03 and t * 0, then for suitable 0 1 , 02 C 

(-5/9, 1) 

-K4 R4i(2 + 1? +i)R? s+ 1) 

1 - Ko |t |+ 9 K02 -0 
5.65 

g1 g 

- 0log/ 2j? (02 
- 

OKO) < K logj + 
t26 

by (1.7). Using (1. 1 8) and (1.19), we see that for I t I > 1 

R{KO; (a0 + it) g o+ it) 

(1.20) 0- 
(1.20) < 2t log Itl-(I1- Ko) {b+ 1: RI + 1log 2 + '2 + U, 

<2 og 1p 2 ~3,y 

where 

{ ? KOR _ R s _ p}- H(p) - 2 EH(p) + E H(1 -p-) 
(1.21) 

2p { ? s0- + s 1-- + - I(s + p ) 

By (1.1), every term in the last sum is nonpositive. As a result of (1.12) and (1.15), 
(1.20 )becomes for Ikt I> 1 

(1.22) R Ko 0(o + ikt) - (a + ikt) < 2 log Itl - 2 logk 3k22 . 

Now let po = ?0 + fyo be a nontrivial zero of c(s) such that 00 : ?2. In 

(1.21) set t = y0 and consider the two terms arising from the distinct values p = po, 
p' where p' = 1 - in both cases lp = yo. By (1.2) the summand for po does 
not exceed - Rl/(s - po), namely - 1/(a - i30); likewise, the summand for p'0 does 
not exceed - R1/(s - 1 + pO), namely - 1/(a - i0) also. As a result, we get U ? 
- 1/(a - 30). Consequently, (1.20) becomes 
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R {Ko (a0 + iTo) - (a + iYo) 

(1.23) 1 - K K 1 7 -_ 

< 2 log I'YO1 2 log(2ir) a -f300 

We now obtain (1.9) with go yo in place of B, y by using (1.10) with t = yo, 
(1.17), (1.22) with t = y0 and 2 S k A n, and finally (1.23). This completes the 
proof. 

We note that by the law of the mean there is a G E (T, a0) such that for 
1 < a ? 1.03. 

( - (T) = (oo -T) {)d5j- (S) 

(1.24) 
, (ao - T) {d (s)} < 3.33493 (a - 1), 

as a result of (1.6) and the value 

{Td5 S S= r = 2.48089 75061 

supplied to us by John W. Wrench, Jr., who has computed this quantity to more than 
40 decimals. Wrench has also given more than 40 decimals for 

- 1.1399 1 58683 *, 

which, taken in conjunction with (1.24), yields for 1 < a < 1.03 

(1.25) I'(a0)/l(a0) < - 1.139 9158 + 3.33493 (a - 1). 

Wrench computed these values by using the power series expansions about s = 1 
of (s - 1)?(s) and its first two derivatives. His values have been confirmed by an inde- 
pendent calculation by Herman Robinson. In addition, the values appearing in (1.25) 
have been again confirmed by a less extensive, and independent, calculation by Emerson 
Mitchell of the Mathematics Research Center, based on a table of values of t(a) sup- 
plied by Livermore Laboratories. 

In Theorem 1 below, we apply these results and Lemma 2 to establish a zero-free 
region for c(s), which is of the kind ( > 1 - 1I(R, log 1Iy 1), by choosing the a of 
Lemma 2 to be about 1 + v/log Iy I where 

(1.26) 2Va0(/- \4) R AO _ 1- R 
(1 - 1/5)A0 ' R =2(y/a p - Nio )2 1 \5 = 

provided al > ao > 0. It can be shown that this value of a is optimal, and it is 
therefore important to select P(O) so that R0 is minimal, For fourth-degree polyno- 
mials, Ro appears to be minimal for P(6) = 8(a + cos 0)2 (b + cos 0)2 where (ac- 
cording to calculations by Dianne Hollenbeck of the Mathematics Research Center) 

a _ 0.9126 08743, b _ 0.2766 14921. 
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For the choices 

a = 0.9126 0875, b = 0.2766 1490, 

we obtained a value Ro = 17.449 61294 38363 * - - . An extensive computer search by 
Emerson Mitchell of the Mathematics Research Center failed to find a fifth-or sixth-de- 

gree cosine polynomial giving a smaller value for Rol Further, the work of French 

[1966] shows that, regardless of the degree of P(6), Ro > 16.2568; for other results 
concerning P(O) see also Stechkin [1970A], who essentially shows, for example, that 

for fourth-degree polynomials Ro > 17.174 8395. 
To simplify the calculations, we choose a = 0.9126 and b = 0.2766, which 

yield 

aO = 11.185 93553 12082 048, al = 19.073 34400 4352, 

a2 = 11.676 18784, a3 = 4.7568, a4= 1, 

Ao = 36.506 33184 4352, Ro = 17.449 61294 58 ., 

4 4 

E ak log(2ir/k) > 52.38865, E akjk2 < 22.584. 
k=1I k=1 

The preceding value of Ro is smaller by about 0.00014 than a value given by Stech- 
kin [1970B]. Prior to this work of Stechkin, zero-free regions of the present kind had 
R1 replaced by the larger Rol The result below improves Stechkin's Theorem 2 not 
only by having a smaller value for R but also by the presence of the denominator 17. 

THEOREM 1. There are no zeros of c(s) in the region 

(1.27) a > 1 -1/(R log It/17 1), lti > 21, 

where R = 9.6459 08801. 
Proof First, suppose l3 + iy is a nontrivial zero of ?(s) such that ,B = ?2; 

then kyI >A. We assume that 1 < a < 1.03 so that by (1.7) the coefficient of 
4 = ak log(27r/k) in the expression for B is negative; hence this sum can be replaced 

by its lower bound 52.38865. We also replace T'(a0)/l(ao) by its upper bound given 
in (1.25). As the resulting total coefficient of K0 in (1.9) is negative, we may replace 

K0 by the right side of (1.8). With v defined by (1.26), we set 

x = a - 1 = v/log Iy/17 I 
and observe that 0 <x < 0.029172 since y I >A; hence I < a < 1.03. On noting 
that (a - l)log J-yI = + x log 17, a calculation shows that (1.9) yields 

al a2 1< 2 (1 )Ao log YI - 28.85290 + 8.0365x + 31.574x2 - 17.76x3 

< 
(1 +)Ao log Jy/17 I. 

Hence 

-3< v log A log R = (N/a4 - /o) NaI og | 
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From this we easily get 

(1.28) f3< 1- 1/(RjlogI-y/171). 

Second, if 3 = ? and I'YI > 21, then (1.28) clearly holds. Finally, as R1 <R, the 
proof is complete. 

2. Estimates for Certain Integrals Related to the Bessel Functions. In subsequent 

sections, there appear integrals of the form 

(2.1) K, (Z, x) = 2 t IfH(t) dt 

where z>0,x>0 and 

(2.2) HZ(t) = {H(t)}z = exp{- lhz (t + 11t)}. 

The substitution t = ew shows that 

(2.3) K.(z, 0) =K. (z) 

in accordance with a standard notation for the modified Bessel functions of the second 
kind; see [NBS #55, p. 376, 9.6.241. Tabulations for some values of v and other 

means of calculation for K, (z) are given in Chapter 9 of NBS #55. 
Note that K,,(z, x) has the form of (24) on p. 600 of Rosser [1955]. The tech- 

niques of that paper can be used to derive estimates for K,, (z, x) for large z. 
LEMMA 3. Kv (z, x) + K_ (z, I/x) = K. (z). 
Proof. Put t = I/u in the definition of K_,(z, 1/x). 
LEMMA 4. If 1 > v, O < z, and 1 < x, we have 

1P )x - (v- 1)x3\'1 (2.4) ( + 2(r +l) - 1)2 ) Q. (z, x) < K. (z, x) < Q. (z, x), 

where 

(2.5) Q,(Z, x) = x>+ lHZ(x)/{z(X2 - 1)}. 

Proof. Integration by parts yields 

(2.6) K,(z, x) = Q,,(z, x) _ 0 (v + W)t - (v - 1)tp+2Hz(t) 
(2.6) K z QV,(Z 

- 
- -Hz 

(t- 1)2 

We have 

(v + I)t -(v- I)t3 2t (v - )t 

(t2 1)2 (t2 - 1)2 t2 -1 

which is positive and decreasing, since 1 > v and 1 < x ? t. By referring to (2.1) 
we establish our lemma. 

If I (x - 1)2 z/x(v - 1)1 is large, this gives quite satisfactory bounds for K,,(z, x). 
When v = 1, we get satisfactory bounds if I(x - 1)2xz/41 is large. 

LEMMA 5. If 0 < z and 0 < x, then 
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(2.7) (X - 1)Q1(z, x) + (1 + 2/z - 2/z(1 + X)2)K1(z, x) 
< K2@(Z X) < (X - 1)Q (Z, X) + (1 + 21z)K1(z, x). 

Proof By (2. 1) 

K2(z, x) - K1(z, x)-2 (t - l)Hz(t) dt. 

Integrating by parts gives 

K2(z, x) - K1(z, x) = (x - l)Q1(z, x) + zf ( I - + 1)2)Hz(t) dt. 

Then our lemma follows. 
COROLLARY. If 0 < z and 1 < x, then 

(2.8) K2(z, x) < (x + 2/z)Q1 (z, x). 

Proof. Combine Lemmas 4 and 5. 
LEMMA 6. If 1 > v, O < z, and 1 < x, we have 

I(+ 2 (3 - p)X2 
+p2 

1 
Q x) 

- 
2(V-1) x) 

(2.9) 2(2- 1) 
< KV(Z X) < QV (Z' x) + Z Kv (Z, x). z 

Proof. By (2.6) and (2.1) 

K,(z, x) = Q,(z, x) 4 2( -)K - 11 (3- v)tv+l + (P- )tv- Hz(t)dt z v- (x, z) zJ t(2 - 1)2 

We have 
(3- V)t2 + v-1 2t v-I 

t(t2 - 1)2 (t2 - 1)2 t(t2 -1)' 

which is positive and decreasing. So our lemma follows. 
COROLLARY. If 1 > v, 0 < z, and 1 < x, then 

(1+ 2(3 v)x- 2 ) (1?22(-- + 2 )Q(Z. x) 

(2.10)<Kz,x)< 2(v (i) x ?2 k- 2X3 
1 

~z, < KV(Z X) < XI + Z 1) ( (2 Z(2 - 1)2 / QV (Z x) 

Proof. Combine Lemmas 4 and 6, and use (2.5). 
We will be mainly interested in the cases v = 1 and v = 2. If x is appreciably 

greater than unity, Lemma 4 with v =1 and Lemma 5 will serve nicely. If I/x is 
appreciably greater than unity, we can use Lemma 3 to write 

K,(z, x) = Kj(z) - K 1(z, 1/x), 

and similarly for K2. By use of NBS #55, we can evaluate Kj(z). The term 
K 1(z, I/x) will be small compared to K1 (z) if z is of appreciable size. So a rough 
approximation for K_ 1(z, lIx) will suffice, and this is available by (2.10). 
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We still have the matter of dealing with K1(z, x) and K2(z, x) when x is 

near unity. We first consider the case where z is small or of moderate size. For this, 

with the computing facilities now widely available, numerical quadrature seems the best 

procedure. In the present situation, it suffices to use the trapezoid rule and the mid- 

point formula, which are (A2) and (A3), respectively, on p. 446 of Rosser [19671. 
We observe that by (2.1) 

Kv(z, x) = KV(z, y) + 
I 

tv- lHz(t) dt. 

We take y large enough so that K,(z, y) can be estimated with adequate accuracy 

by Lemmas 4 and 5; note that a high order of accuracy for K, (z, y) itself is not 

needed, since it is usually much smaller than the other term on the right. So we desire 

to estimate 

(2.11) 21 f(t) dt 

by numerical quadrature. When v = 1, we have 

(2.12) f(t) = HZ(t), 

(2.13) f'(t) = - f-2 (t2 - 1)HZ(t), 

(2.14) f'(t) = Z {Z(t2 - 1)2 - 4t}HZ(t). 

By Descartes' rule of signs, the polynomial on the right of (2.14) has at most 

two positive roots. As the polynomial is positive at t = 0, negative at t = 1, and 

positive for large t, it must have exactly two positive roots, t, and t2, with t1 < 

1 < t2. For z not too small, the values of t, and t2 are approximately 

(2.15) 1 +? I(1 ). 

If we take 1 + q to be t, or t2, then the recursion 

(2.16) q 2A/1 + qn/{vz(2 ? qn)} 

will converge fairly rapidly to q. 
To get an upper bound for (2.11), we use the midpoint formula for tI < t < t2, 

and the trapezoid rule for the rest of the range of integration. For a lower bound, we 

interchange the midpoint formula and trapezoid rule. If the bounds are not as close 

together as desired, use shorter intervals in the quadrature formula. 

When v = 2, we have 

(2.17) f(t) = tHz(t), 

(2.18) f'(t) = - Z{Z(t2 - 1) - 2t}HZ(t), 

(2.19) f"(t) = 4f3 {z(t2 - 1)2 - 4t3}HZ(t). 
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Clearly we proceed in exact analogy with the case v = 1. Note that the two 
positive zeros of rf'(t) are the reciprocals of the t1 and t2 obtained above. 

We now consider the case for large z. Define 

(2.20) w = (VT- I/T)/) . 
Then 

(2.21) t = 1 + w2 + wV ?w , 

(2.22) dt/dw = 2w + 2(1 + w2)/A/2 + w 2, 

(2.23) tdt/dw = 4w(l + w2) + 2(1 + 4W2 + 2w4)/./2 + w2 

= 4w2 w2 + 4w(l + w2) + 2/2+w2. 

We have of course 

(2.24) K(z, x)= 2 r e- d dw, 
2Z dwdw 

(2.25) K2(Z, x) = 2 t dw, 

where 

(2.26) y = (\x - l/VT)/V2. 

By squaring both sides, we verify that for w2 > 0 

(2.27) > < l1 3 )g 

(2.28) 4w2 + 2w4 <(1 15w2 + 2?w2 4 
W 

Integration by parts gives 

(2.29) 5 wfe-zW dw =Y2l e-ZY2 + 1 wn2e-zw2 dw. 

Using the relations above gives 

(2.30) K1(z, x) < e2 {(1 + 13 ye-zy ? dwj2 

K2 (Zx) < ey3 + 2Y2 + 28z+ y + 2 + 2 e 
(2.31) 

2 418 

? 105 + 15 + z) e-ZW2 

(128z ? 8?J2J e d} 
The integrals appearing in the formulas above are the complementary eiror func- 

tion. Means for calculating or bounding it are well known; see particularly 7.1.5, 7.1.6, 
7.1.13, and 7.1.23 of NBS #55. 
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To get lower bounds, we first verify that for w2 > 0 

(2.32) >: I _ /2, 

whence 

(2.33) 1 ? > ?1 +34-4)/X. 
2?w2 ~~4 4, 

With this and (2.22), we can get a lower bound for Kj(z, x). Integration by parts 
gives 

(2.34) w2 2 W 2 e-zw2 dw = 
y 

2 ezY + 2 e-zw2 dw. 
Y ~~ ~ ~~~~~2z z y > 

With this, (2.23), (2.32), and (2.33), we can get a lower bound for K2(z, x). 

If we let x go to 0 in (2.30) and (2.31), we get the known results 

(2.3 5) K()? ?TT e- KZ e? -L (1 L 2z I 5 K(Z) 2 (i 8z K2(z) 2z ( 8z 1058) 

3. Bounds for 4p(x) - x for Large Values of x. 

LEMMA 7. Let 1 < U 6 V, and let 4?(y) be nonnegative and differentiable 
for U<y < V. Let (W-y).I'(y) > O for U<y < V, where W need not lie in 
[U, V]. Let Y be one of U, V, W which is neither greater than both the others nor 
less than both the others. Choose j = 0 or I so that (- 1)'(V - ) > 0. Then 

U<'0< v 27r V7r 

(3.1) . 0.443 }V F1(y) 
(3.) (-)i0.137+ l Y dy + Ej(U, V), 

where the error term EJ(U, Y) is given by 

Ej(U, V) = {1 + (- 1)'}R(Y)(D(Y) 

(3.2) + {N(V) - F(V) - (- 1)IR(V)}FD(V) - {N(U) - F(U) + R(U)}F(U). 

Proof By the result of Ingham [1932, p. 18], we have 

(3.3) 'j '(1Y) = N(y),V(y)dy + N(V)4(Y) -N(U$(U. 
U<yt<- V 

Case 1. j = 1. We take Y = min (V, W). On the right of (3.3), we replace 
N(y) by F(y) - R(y), and integrate by parts, deducing (3.1) by the observation that 

- 
|uR'(y)4(y)dy<S(-Y 1 0.137 +~ l_ }u dy, 

since yR'(y) > 0.137 + 0.443/log V for 1 <y < V. 

Case 2. j = 0. We take Y = max (U, W). In (3.3), we split the integral at Y. 

In the first part, we replace N(y) by F(y) - R(y), and in the second part we replace 
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N(y) by F(y) + R(y). Integration by parts gives 

u<s v 4ty) i % | 1(y)log 2- dy + fY R'(y) F(y)dy 

|J R'(y) (y)dy + Eo(U, V). 

We discard the third integral, and use the result 

[V 40.443 VF4(y) 
|YR'(y)4?(y)dy < I)' 1i0.137 + 1 |Yt dy J Y~~~~~ ~log yJ y 

< (-1)i 0.137?+ 0.443 V 
dy. 

log Y)J y 

COROLLARY. If, in addition, 27r < U, then 

(3.4) 2: 'Y) 2 + (- 1)' q(Y)} f 44y)log 2 dy + E1(U, V), 

where 
- 0.137 logy + 0.443 
- y logy log(y/27r) 

Proof Proceed as in the proof of the lemma, using 

(- 1)i R'(y)/log (y/27r) < (- 1)i q(Y) 

for y in the range of integration. 
Define, for x > 1, 

(3.5) X= (log x)/R, 

where R = 9.6459 08801, as in Theorem 1. Also, for positive v, positive integer 
m, and nonnegative real T1 and T2, define 

(3.6) Rm(v) = {(1 + V)m+l + 1}m, 

(3.7) S1(m, v) = 2 2 +mv 
0< 1/2 ;0<,Y<Ti 2|P | 

(3.8) S2(m, v) = 2 Z RM(V) 
f3? 1/2;T1<,yVIP(P?1) (p?+m)I 

(3.9) S3(m v) = 2- 
(2 + mv) exp {- X2/log (y/I17)} 

1/2<3;0<'yT2 21p| 

(3.10) S4(M, v) = 2 Z R m (v)exp {- X2/log (y/ 17)} 
1.0/2< T2 < yVm lp(p + 1) ... (p +m) 

LEMMA 8. Let T1 and T2 be nonnegative real numbers. Let m be a posi- 
tive integer. Let x > 1 and 0 < 6< (x - 1)/(xm). Then 
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x (x) - {x - log (27T) - 1/2 log(1 - ) 
(3.11) _ 

< {S1(m, 6) + S2(m, 6)}/Vx + S3(m, 6) + S4(m, 6) + m6/2. 

Proof. Split the sum on the right of Theorem 13 of Rosser [1941] into four 
sums over the regions: I,: < 1/2, 0 < JyI < T1; II,: < 1/2, T1 < Jy1; III, 1/2 < (, 

0 < Jy I S T2; IV, 1/2< f, T2 < yI1. In regions I and III, write the summand in the 
equivalent form 

(3.12) -1f (x+z)Pdz. 

If we now integrate term-by-term m - 1 times, we will get a result similar to Theo- 
rem 14 of Rosser [1941], except that the sum is split into four sums over the four 
regions. (Note that the quantity on the left of Theorem 14 of Rosser [1941] is NOT 
the function of our Section 2.) In regions I and III, as we integrated (3.12) m - 1 
times, we see that an alternative form for the summand is 

(3.13) - dpy dy d f 2 .. f (1 +?y +Y2 + ? Ym)p dym 

If we use + 6 as the upper limit, we can bound the absolute value of (3.13) by 

IPI Jf dY1f0 dy2 ... (1 +Y1 +Y2 +--. +Ym)dYm, 

which equals 

(3.14) Pml 2 
If we use - 6 as the upper limit, the integrand of (3.13) is bounded in absolute value 
by unity, so that in this case also (3.14) is an absolute bound for (3.13). 

In regions II and IV, we get bounds by the reasoning for Theorem 15 of Rosser 
[1941]. By symmetry, we replace sums over all p by twice the sums for positive Y. 
If 3 < 1/2, we have xg +m ?xm+1/x, while if 1/2 < (3 we can use Theorem 1 to 
conclude that 

xP+m < xm + 1exp {-X2/log(y/17)}. 

Finally, we use the reasoning for the proof of Theorem 12 of Rosser [1941]. 
As /Ilp(p + 1) ... (p + m) I <y-m-l for positive y, we can use Lemma 7 

to write bounds for Sj(m, 6) in terms of integrals for suitable q(y). We note that 
for m * 0 

(3.15) (VumY log 2i dM = 1 + m log(U/27r) 1 + m log(V/27r) 3.15)y og - y- m2Um 2V 

fy-r-1 exp {- X2/log(y/17)}log Y 
dy 

(3.16) _ 2 z log(17/27T) 

m217m { K2 (Z U' -K2 (Z, Vf)} ? {K1 (z, U') - K 1(Z, V')}, 
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where z = 2Xvm, U' = (2bn1z)log(U/17), V' = (2*/z) log(V/17); we get (3.16) by 
putting y = 17 exp(zt/2m). Also we get 

y- 1 exp {-X2/log(v /17)}1og 2Y dy 

(3.17) 
- X4{ I(- 2, V") - r(- 2, U")} + X2(logl7/21r) {P(- 1, V") - P(- 1, U")} 

with U"' = X2/log(U/17), VI' = X2/log(V/17) by putting y = 17 exp(X2/t). 
THEOREM 2. If log x > 105, then 

(3.18) 1 (x) - x 1, I0(x) - xi < xe(x), 

where one may take either 

(3.19) e(x) = 0.257 634 {1 + 0.96642 } X314e-x 

or, with R = 9.6459 08801, 

(3.20) e(x) = 0.1 10 123 1 + 3.015 (logx)38 exp{- og x)IR. 
^./log x 

Proof. Take m = 1 and T1 = T2= 0 in (3.6) through (3.11). By Lemma 17 
of Rosser [1941 ], 

(3.21) S1(1, 6) + S2(1, 6) < (0.0463) (2 + 26 + 62)/6. 

Also, as 13=2 for Jy I < A, and the zeros off the critical line occur in pairs which 
are symmetrical with respect to this line, we have 

(3.22) S3(1, 6) + S4(1, 6) 2 + 26 + 62 (A 
A <'y 

where 

(3.23) (V) =Yy-n1 exp {-X2/log(y/l7)}. 

We appeal to Lemma 7, Corollary with N(y) = 1(y), j = 0, U = A, V= , and 
W=W1, wherefor m>-l 

(3.24) Wm = 17exp(X-/Vm + 1). 

Note that q(Y) < q(A). Also, as N(A) = F(A), we have 

(3.25) Eo = 2R(Y)q51 (Y) - R(A) 1(A). 

Further, by Lemma 3 and (3.16), we have 

JfA 4b(y)log Xdy < {XK2(2X) + log(17/21r)KI(2X)}. 

Then, by (2.35), we conclude 

(3.26) 2 01(Qy) < 0.01659 38121 { 1 + 1.9384 + 0.3918 }X3I2e-2X + Eo 

If W1 ?A, then Y=A. Then by (3.25) 
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Eo =R(A)01 (A) = 2 {exp{-X21log(AI17)}xlAe2X}x-l/2e-2X A2 

As the expression in the large braces takes its maximum at 

X = log1A? {log2 + logjlj} 

we conclude 

(3.27) Eo < 10-6X-1/2e-2X. 

If W1 >A, then Y = W1 and X> 16. As R(y)/logy is decreasing for 

y > ee, (3.25) gives 

2R(A) Fo < 2R(Y)tbi(D < lo (A q51(W1)log W1 
_3R(A) [1+ log 171 e-2Vi_2X, 
172 logA { /2+ 

so that we conclude (3.27) for this case also. Then by (3.26) 

(3.28) E q51(y) < 0.01659 38121 {1 + 1.93284 + 0.19 }XX312e2X 

As logx>105, 

(3.29) 0.0463/-,/x = 0.0463 exp (- RX2/2) < 10- 2 1 X-12 e- 2X. 

Choose 

(3.30) 6 = 2(0.01659 38121)1/2 {1 096642 }X34e-x 

As log x > 105, we see that 6X2 is a decreasing function of X; hence 6X2 < 
0.3277 and 0 < 6 < 1 - 1/x. Hence 

(3.31) 2 + 26 + 62 < 2 1 + 0X3 3 

Combining (3.21), (3.22), (3.28), (3.29), and (3.31) gives 

{S1(1, 6) + S2(1, 6)}/N/X + S3(1, 6) + S4(1, 6) 

< 6-'12(0.01659 38121) {1 ? 0.96642 }2X3/2e-2X 

Using the value of 6 from (3.30) with Lemma 8 substantiates (3.19). From it, we 
can get (3.20) by (3.5). 

This establishes the stated inequality for ;1(x). By Theorem 13 of R-S, 

I iP(x) - 6(x)I < 1.43/x. 

Thus, it would appear that for 0(x) we should increase e(x) by 1.43/V/x. However, 
we can treat it as in (3.29) to show it is absorbed when we round up some of the co- 
efficients. 

THEOREM 3. If log x > 105, then 
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(3.32) 1 ;(x) -x 1, I O(x) - x I < xe*(x), 

where 

(3.33) e*(X) = 1 3logX + 1.43813 

217r(4X - 3 log X) r(x) V\J 
here we take e(x) as in (3.19) or (3.20), and 

(3.34) r(x) = 1 + 0.96642/X. 

Proof Take 

(3.35) 8 = 1 (0.2576 33942)r(x)X34e-x. 

We may assume X > 59, since otherwise e*(x) > e(x) and we can appeal to 
Theorem 2. In (3.6) through (3.11), we take m = 1, T1 = 0, and 

(3.36) T2 = 17X - 1AeX. 

As X > 59, we have A < T2 < W0 and W1 < T2. 
We can treat {S1(1, 8) + S2(1, 5)}/N/x and the error terms EJ(U, V) arising 

from the use of Lemma 7, Corollary, as we did in the proof of Theorem 2. Thus, we 
can proceed as though 

(3.37) S3(1, 8) < 2 {I q(T2)}f2 0(o) log 2 dy. 

If v < 1 and x > 0, then 

r(1 x) < x - J e-tdt= Xv_1e_x 

Hence, by (3.17), we have in effect 

(3.38) S3(1 5) < 2 + V '-V{x4(V"Y3 + X2d(V )2}, 
4ir 

where d = log (17/21T) and 

(3.39) v" = 
__ _ _ _ X 

log(T2/17) 4X- 3logX 

Then 

(3.40) V" > X + (3/4) log X, e- V < X-314e-x. 

Also 

X4(V )3 + X2d(V")-2 - (1 -3 
l 

2 (x3 log3X?d)<x 

So, effectively, 

(3.41) 3( ) 4a v 

Similarly, we can proceed as though 

2 + 28 +82(1 + )c2 y 
(3.42) S4(1 8) < 8 ? q(T2)jJ 1(.) log 2jdy. 
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By (3.16) 

(3.43) |T b(Y) log dy= 17 {X2K2(2X, U') + XdKl(2X, U')} 

where 

(3.44) U' =X4 log X= 1- gX TC or: 17 4X 

Write temporarily 

(3.45) q 4X ' NI I 
=r -,-1/ /2'/. 

Then y is negative, and y2 = l?(U' + 1/U') - 1 =q2/{f2(1-q)}. So, by splitting 
the integral at w = 0, we get 

(3.46) |/ e-2Xw2 dw < + 

Hence, by (2.30) we get 

(3.47) XdK1(2X U) < NX/ 2-xx3/2 e+2i (1+ 2+N,I ( ( 6X2% 

As 1 + zy2 < ezY2, we have (2y2 + 21z)e-zY2 < 2/z = 1/X. Hence, by (2.31) we 
get 

X2K2(2X, U') < X32e2X 
4 

(3.48) 2 + 1?(i? 2qN/k( X (l?l!k l? 105 

Combining with (3.43) and (3.47) gives 

IT2 01 ) log 2r dy < 4 X32 e-2XQ, 

where 

Q_ 2- ? 1 +d + ? + 2q14 ) + X93284 + 0.3918,. 

So finally by (3.42) and (3.35) 

(3.49) S4(1, 8) < a (0.2576 33942)r(x)X314e-XQ2, 

where 

2-~I 
q) 

2 + 2 05641 +.62 

(3.50) Q2 =1+ + 
{r(x)62 054 

+ X3/2 } 

As X > 59, 6 is extremely small, so that our theorem follows by (3.11) and (3.41). 

4. Numerical Bounds for l(x) - x for Moderate Values of x. In our main 
table (at the end of the paper) we tabulate values of e against b. These have been 
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determined so that if x > eb, then 

(4.1) 14'(x)-xI<ex. 

If a value of b is chosen, it is clear from (3.5) through (3.11) that a value can be de- 
termined for e, so as to satisfy (4.1), which will depend not only on b but on the 
four parameters 6, m, T1, and T2, as well as a parameter D which will be intro- 
duced. It was not practical in the majority of cases to minimize e by determining 
the optimum values of all five of 6, m, T1, T2, and D. An effort was made, espec- 
ially in crucial regions for b, to make reasonably good choices for 6, m, T1, T2, 
and D; the values chosen for 6 and m are listed in the table, and the choices for 
T1, T2, and D will be described in the text. For the chosen 6, m, T1, T2, and 
D, computations were made which ensured that the values listed in the table for e 

are upper bounds for what would be given by (3.11). To keep the computations 
reasonable in extent, they were usually terminated before the best possible upper bound 
for e had been determined. Thus, for most entries in the table, (3.11) would give a 
slightly smaller value of e than that listed. However, great pains were taken to ensure 

that the values listed for e are indeed upper bounds. The two authors made quite in- 

dependent calculations, on different computers, with different programs, and commonly 
with different schemes of computation, one of which was that described in Section 2. 
Each scheme of computation provided both upper and lower bounds. When these had 
been brought fairly close together, and were consistent as between the two independent 
calculations, the larger of the two computed e's was rounded up and entered in the 
table. 

In the main, T2 was taken to be 0. Uniformly we took 

1 (2Rrn(6)) 1/rn (4.2) T1 ( 2? m 

since an analysis showed that for a given m and 6 this was reasonably close to its 

optimum. We chose also 

(4.3) D = 158.8 4998. 

The zeros for which 0 < y <D are exactly 57 in number, and have been calculated to 
high accuracy by Lehman as stated in his paper [1966, p. 408]. Using Lehman's values, 
two independent calculations verified 

(4.4) S- E IpK' = Z (2 ??)-/2 <0.811 3925. 
0<,yD 0<,yD 

LEMMA 9. With T1 and D given by (4.2) and (4.3), if Ti > D, 6 > 0, and 
m is a positive integer, then 

(4.5) S(m ) 
? 

S m 
(log - + 0.038207 + 

I 
- 2.82m 

2PMroof < 4 By (3 /72 (M (4.)T4 

Proof. By (3.7) and (4.4) 
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SI (m,5) < (2 +m5) {5+ E 7-1 
D < 7 < T 1 

Taking 4(y)= y- 1,j = 0, U =D, V = T1, and W = O in Lemma 7 gives 

V ~~1< 21 6_ 1- {log2 T1 log2 D } (137logD T1 

Then (4.4) together with N(D) = 57 gives 

S1(m, 6) <1 1 
(4.6) 2? < - log Ty + 0.003 0404 

(4.6) T1 {~~~F(Tj) - N(Tj) + R(TI) + 0. 137 + 0.44D3} Ti ~~~~~~~log D} 

Taking 4;) = y-M-, j= 0, U = T1, V = oo, and W =0 in Lemma 7, and 
using (3.15) gives 

5mS'2(m, 6) 1( 1 T1 1 
_ _ _ _ _~ - log - ? 
2Rm(6) Tm 2irm 2ir 2irm2 

+10.137+0.443E 
+(0-137o+ log T,) (m + 1)Tj 3E 

Using (4.2) and combining with (4.6) gives 

S1(m,6)+S2(m,6)? S 4m (log- + 1 m + 1 

where 

4ir / 443 41044 
J = 4r(0.003 0404) + (m + )T (0.137 log T 4 0137 log D) 

4i 0.443\f __ 

< 47r(0.003 0404) T 4rT0137 + lo D I ) m1 + I) 0137 

Our lemma follows from this. 
THEOREM 4. Let Ti > D. Let m be a positive integer, let 21 denote the 

right side of (4.5) and let 

(0.159155)Rm(6)Z ' 17 + 
92 2m m-~tZK2 (Z, A') + 2m (Og-)Kj(Z,At)J 

(4.7) 
+ Rm (6) { 2R(Y)om (Y)-R(A)om (A)}, 

where z = 2XN/W = 2mb/R, AR ' = (2m/z) log(A/17), Y= max {A, 17 exp x/b/(m + 1)R}. 
If b>?l and 0<6<(1l-e-b)/m, then (4.1)holds for all x > eb, where 

(4.8) e = 2 1e-b/2 + &22-m + m5/2 + e-b log 27r. 

Proof Take T2 = 0. Then by Lemma 7, Corollary and (3.16), 
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S3(M, 6) + S4(M, 6) < Q26m 

So we use Lemmas 8 and 9. 
THEOREM 5. Let T1 > D and A < T2 < 17 exp /b/R. Let m be a posi- 

tive integer and let 

3 
2 +m 

[X4{F(- 2, T") -(- 2, A")} 

(4 9) + x2(log 17) {(- 1, T") - r(- 1, A) 

4 2? m6 [2R(T2) 0(T2)-R(A)00(A)] +?2*5-m, 

where A" = b/{R log (A/17)}, T" = b/{R log (T2/17)}, and Q2 is obtained from 

Q2 by deleting the term - R(A)Obm(A) in (4.7) and then replacing A by T2 in 
the definitions of A' and Y. If b > 1/2 and 0 < 6 < (1 - e-b)Im, then (4.1) 
holds for all x > eb, where 

(4.10) e = Qle-b/2 + ? 3 + m6/2 + e-b log 2ir. 

Proof Like those of Theorems 3 and 4. 
We note that, with a slightly different notation, tabulations and other means of 

calculation for IP(v, x) with nonpositive integer v are given in Chapter 5 of NBS #55. 
For many values of x, one can get quite accurate approximations by means of Airey's 
converging factor; see Rosser [1955, pp. 603-611]. Actually, integration by parts gives 
for x > 0 

(4.11) P,(v, x) = x'- 1 e-x + (v - 1)P(v - 1, x), 

whence for v < 1 we get 

(4.12) P(v, x) < x 3e{x2 + (v - 1)x + (v - 1) (v - 2)}. 

We note also for x > O and v < 1 

- wr e-xw dw 0e-xwdw x - 
(4-1 3) 17(v, x) = x' e - xr + ) > xve-xloel>d 

J 
I 

(+ w)l V >xl evf 
w 

XV exI- 

Using these bounds, the entries in the table for b > 3000 were calculated by (4.10), 
using T2 given by (3.36). For large b it appears that (4.10), with m = 1 and 
T2 given by (3.36), gives a better bound than those given by any of Theorems 2, 3, or 4; 
and a similar statement can be made for T2 = T1 where T1 is given by (4.2). 

ADDENDUM 

By Lowell Schoenfeld 

5. Some Inequalities for 4(x) and O(x). In this section I give a few applica- 
tions of the results of the preceding sections, with a more complete treatment reserved 
for another paper. In particular, I have not yet determined the exact point at which 
some inequalities, like (5.2), become false. 
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THEOREM 6. We have 

(5.1) 0(x)< 1.001 102x if O<x, 

(5.2) 0.998 684x < O(x) if 1,319,007 < x, 

(5.3) 4(x) - 0(x) < 1.001 102J/x + 3x1 13 if O < x, 

(5.4) 0.998 684A/x < 4(x) - 0(x) if 121 S x. 

Proof If 108 < x < e1 8.43, then (4.11) of R-S and the first entry of our 
table give 

O(x) < 4(x) - /x < 1.001 2015x - N/x 

< 1.001 2015x - e- 18.4 312 x < 1.001 102x. 

By handling the intervals [el 8.43, e1 8.44), etc., similarly, we derive the same inequality. 
And for x > el 8.7 we use the table and O(x) < 4(x). This proves (5.1) for all x > 108; 
for x < 108, it follows from (4.5) of R-S. Then (5.3) is an immediate consequence of 
(3.38) of R-S. 

If 108 S x < 1016, then (4.12) of R-S and the first entry of the table yield 

O(x) >0(x) - / 3x'13 

> (1 - 0.001 2015)x - 10-4X - 3 * 10-16/3x > 0.998 684x. 

If x ? 1016, then we use (5.3) and the table. If 2,309,661 ? x < 108, then (4.6) 
of R-S gives 

0(x) > x - 2V/x > x - 0.001 316x, 

so that (5.2) follows. By using the Appel-Rosser tables [1961] and D. N. Lehmer's 
well-known table of primes, we then verify (5.2) for 1,319,007 < x. We also discover 
that (5.2) fails for x slightly below 1,090,697. This leaves a region in which I have 
not yet resolved the status of (5.2). 

From (2.24) and (4.11) of R-S and (5.2), we deduce (5.4). 
COROLLARY. We have O(x) > 0.998x if x > 487,381; O(x) > 0.995x if 

x > 89,387; 0(x) > 0.990x if x > 32,057; 0(x) > 0.985x if x > 11,927. 
Proof These follow from (5.2) above, from (4.6) of R-S and from the Appel- 

Rosser tables [1961]. 
This corollary supplements Theorem 10 of R-S, and the lower bounds given for 

x cannot be replaced by smaller ones. 
THEOREM 7. If X > 108, then 

(5.5) 0(x) -xl, x ;(x) - x l < 0.024 2269x/log x. 

Proof If 108 < x < el 8.43, then (4.12) of R-S and our table give 

0(x)-x >{4i(x)-X}-JX- 3x1/3 

> - {0.0012 0116 logx + + 
3 log 

X/ x 
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As the material in the braces increases for the x specified, it does not exceed its value 
at x = el 8.43 which value is less than 0.024 2269. We continue to use the table in 
this way until we have dealt with the range e29 < x < e30. In place of (4.12) of 
R-S, we then use the slightly weaker (5.3) above and continue to use the table up to 
x = el300. For x > el300, we apply Theorem 2 and note that e(x)logx < 0.021 
so that 

O(x) - x > - {e(x)log x}x/log x > - 0.021x/log x. 

This completes the proof of the lower bound for O(x) and hence for i(x). The 
proof for the upper bound for 4(x) is easier since the extra terms v/x and 3x1/3 

do not appear. 
COROLLARY 1. If x > 525,752, then 

O(x) - x < &(x) - x < 0.024 2334x/log x. 

Proof We apply (4.12) and (4.5) of R-S. 
This result may hold for smaller values of x as well. However, in the next corol- 

lary, the bounds for x cannot be lowered. 
COROLLARY 2. We have 

(5.6) I0(x) - x I < 0.024 2334x/log x if 758,699 < x, 

(5.7) I (x) - x < x/(40 log x) if 678,407 < x. 

Proof. The previous corollary takes care of the upper bounds for O(x). The 

lower bounds are handled by using (4.6) of R-S as well as the Appel-Rosser tables 

[1961]. 
THEOREM 8. If x > 1, then 

(5.8) lO(x) - X1,1 (X) - XI < nk XlogkX, 

where 

(5.9) 7n2 = 8.6853, 773 = 11762, 774 = 1.8559 . 107. 

Proof We proceed as in the proof of the previous theorem. For k = 2, we 

use the table up to x = e1750 and then apply Theorem 2. For k = 3 and 4, the 

table is used up to x = e2000. This establishes the results for x > 108. For 1 < x 
< 108 we use (4.12) and (4.5) of R-S to get 

x2gk 3 l lggX x ~(X)- X < 0(X) -X + -\x + 3X1 /3 < 4 - + 3 X2-/3 l gkX 

< (2k)k +3 (3k/2)k) x x 
ef + es flog x log x 

for k =2, 3,4. Also, (4.5) of R-S gives forI 1< X< 108 
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b m 5 e b m S e 

18.42 2 2.69(-4) 1.2015(-3) 450 9 2.59(-6) 1.2968(-5) 

18.43 2 2.68(-4) 1.1969(-3) 500 9 2.48(-6) 1.2407(-5) 

18.44 2 2.67(-4) 1.1924(-3) 600 8 2.51(-6) 1.1288(-5) 

18.45 2 2.66(-4) 1.1878(-3) 700 7 2.55(-6) 1.0196(-5) 

18.5 2 2.61(-4) 1.1653(-3) 800 7 2.28(-6) 9.1330(-6) 

18.7 2 2.45(-4) 1.0800(-3) 900 6 2.30(-6) 8.0657(-6) 

19.0 2 2.24(-4) 9.6459(-4) 1000 5 2.35(-6) 7.0482(-6) 

19.5 2 1.97(-4) 8.0243(-4) 1100 5 2.03(-6) 6.0924(-6) 

20 3 8.47(-5) 6.5941(-4) 1150 4 2.24(-6) 5.6057(-6) 

21 3 5.88(-5) 4.4170(-4) 1200 4 2.06(-6) 5.1392(-6) 

22 3 4.61(-5) 3.0007(-4) 1300 3 2.16(-6) 4.3179(-6) 

23 4 2.11(-5) 2.0211(-4) 1350 3 1.94(-6) 3.8791(-6) 

24 5 1.18(-5) 1.3730(-4) 1400 3 1.74(-6) 3.4850(-6) 

25 6 7.75(-6) 9.4081(-5) 1500 3 1.41(-6) 2.8135(-6) 

26 8 4.69(-6) 6.5642(-5) 1600 2 1.48(-6) 2.2220(-6) 

27 9 3.90(-6) 4.7407(-5) 1700 2 1.13(-6) 1.6887(-6) 

28 11 3.05(-6) 3.5960(-5) 1750 2 9.82(-7) 1.4727(-6) 

29 11 3.02(-6) 2.8876(-5) 1800 2 8.56(-7) 1.2847(-6) 

30 12 2.76(-6) 2.4539(-5) 1850 2 7.47(-7) 1.1210(-6) 

35 12 2.73(-6) 1.8315(-5) 1900 2 6.52(-7) 9.7837(-7) 

40 12 2.72(-6) 1.7748(-5) 2000 2 4.97(-7) 7.4600(-7) 

50 12 2.70(-6) 1.7583(-5) 2100 2 3.80(-7) 5.6958(-7) 

75 12 2.66(-6) 1.7285(-5) 2200 2 2.90(-7) 4.3542(-7) 

100 12 2.61(-6) 1.6993(-5) 2300 2 2.22(-7) 3.3333(-7) 

150 12 2.53(-6) 1.6424(-5) 2400 2 1.70(-7) 2.5556(-7) 

200 11 2.64(-6) 1.5830(-5) 2500 2 1.31(-7) 1.9624(-7) 

250 11 2.54(-6) 1.5257(-5) 2700 2 7.75(-8) 1.1629(-7) 

300 10 2.67(-6) 1.4682(-5) 3000 1 4.77(-8) 5.1018(-8) 

350 10 2.56(-6) 1.4104(-5) 3500 1 1.22(-8) 1.3069(-8) 

400 10 2.46(-6) 1.3548(-5) 4000 1 3.42(-9) 3.6668(-9) 

With b = 18.42068, m 2, and 6 = 2.6855(- 4), one gets e < 1.20116(- 3). 
Most entries were calculated by (4.8). The last three were calculated by (4.10). 

logkx x 
O(x)-x >-2.06Jx = 2.06 - -1OgkX 

(2k)k xx 
>-2.06 k k > rlk 

X 
k ek logkx -7klogkx 

for k = 2, 3, 4. 

THEOREM 9. If e(x) is defined by (3.19) or (3.20), then 

(5.10) O(x) - x < (x) - x < xe(x) for < x, 

(5.11) P(x)-x x 0(x)-x >-xe(x) for 39.4 ?x. 

Proof As a result of Theorem 2, we need only verify (5.10) and (5.11) for 
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x <el'05. As e(x) decreases for x > 1, we have e(x) > 0.03 if x < e105. From 
the table and (5.2), we deduce (5.10) and (5.1 1) for 108 < x < el 05 . For 1 < x 
< 108, we have e(x) > 0.14. Hence (3.35) of R-S gives for 0 <x < 108 

4(x) < 1.04x < x + xe(x). 

And Theorem 10 of R-S implies that for 149 < x < 108 

0(x) > 0.86x > x - xe(x). 

For 1 < x < 149, e(x) > 0.23 so that Theorem 10 of R-S yields O(x) > x - xe(x) 
for 101 < x < 149. We readily complete the proof of (5.1 1) for 39.4 < x < 101. 
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