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Calculation and Applications 
of Epstein Zeta Functions 

By Daniel Shanks 

To my friend and fellow-worker, D. H. Lehmer 

Abstract. Rapidly convergent series are given for computing Epstein zeta functions at in- 

teger arguments. From these one may rapidly and accurately compute Dirichlet L func- 

tions and Dedekind zeta functions for quadratic and cubic fields of any negative discrimi- 

nant. Tables of such functions computed in this way are described and numerous applica- 

tions are given, including the evaluation of very slowly convergent products such as those 

that give constants of Landau and of Hardy-Littlewood. 

1. Introduction. Many constants, such as those of Hardy-Littlewood [1], [2] 
and Landau [3], are given by very slowly convergent infinite products that can be 
transformed into rapidly convergent products containing the Dirichlet functions 
L(n, X) or La(n) for integer arguments n. Three-quarters of the latter can be ob- 
tained in closed form [4], but the computations become lengthy if a or n is large. 
The remaining, nonclosed-form L(n, X), such as t(3) or Catalan's constant L(2), 
can be computed by polylogarithms [5], polygamma functions, or other means [61 
based upon the periodicity of the coefficients. But the period increases with the 
discriminant and, again, lengthy computations may be needed if accurate values are 
wanted. As a result, even constants of special interest such as h1 63 for the number 
of primes of the form n2 + n + 41, or b14 for the number of numbers of the form 
u2 + 14v2, cf. [3, Eq. (5) and Section 4], have not been computed accurately prior 
to the present work. Values of such special constants are included below. 

If the algebraic field involved is nonabelian, such as 

(1) K= Q(21/3) or Q(31/3) 

the L(n, X) do not suffice, and one needs instead the Dedekind zeta functions tK(n) 

at integer arguments. It was the Bateman constants for (1) [7, especially Section 6] 
that led to the present investigation. Only now (eight years later) is this being pub- 
lished. 

For all cubic or quadratic fields K of negative discriminant -D, the wanted 

UK(s) or L(s, X) can be expressed in terms of Epstein zeta functions: 
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1 +00 +00 
(2) S(A, B, C, s) = - , ?. (Am2 +?Bmn + Cn2)-s 

2m =-oo n=-oo 

wherein Z' means that the single term m = n = 0 is excluded, where s > 1, and 
where the quadratic form is a reduced form with 

(3) D = 4AC - B2. 

All such double series can be transformed into rapidly convergent series, and since the 

number of functions (2) required is the class number h(- D) = O(D? +E) all such 

L(n, X) and tK(n) may now be rapidly computed to high accuracy for any moderate 

D. 

In Section 2, we transform (2) into a rapidly convergent series. In Section 3 and 

Section 4, we give various applications to La((n), b1 4, h 163, etc. In Section 5, we 

discuss briefly the closed-form La(n). In Section 6, we obtain more rapid convergence 

by replacing D with 4D or 9D. In Section 7, we return to the Bateman constants 

(as we promised [7, Section 6]) and include the wanted limits E S(A, B, C, s) for 

s = 1+. And in Section 8 we generalize to other cubic fields such as the four unrami- 

fied cubic extensions of Q(r- 4027). 

2. Epstein Zeta Functions. Many authors have given different (or slightly 

different) expansions of (2), depending on whether the application desired was 

Kronecker's limit formula, the value at s = ?2, the nonexistence of Siegel zeros, or the 

violation of the RH by certain functions (2). See, among others, [8] to [11]. 

Our primary interest here is in the value of (2) for s - 1 a natural number. We 

will obtain 

S(A,B, C,s)= +(s ? ir(As (--~ 1) 
(4) As ,,, 

+ 2(7) E r cos(coN) Y(N) Z(A), 

where 

(5) a= 272rVi/A, X = rB/A, r = e-a/2, 

(6) 
~~~~ ~~Y(N)= 

1 

dIN d2s5 

(7) Z(N)=s (2s2m) (= J) 

and (2js-2) etc. are binomial coefficients. (Note that if B = 0 or B =A or B = 
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12A, cos coN simplifies to 0 or ? 1.) We partially follow Weber [12], but our 
derivation is perhaps shorter and clearer, and since s - 1 is an integer the integral in 
(20) below is elementary and no Bessel functions are needed. 

We sum separately the terms with n = 0 in (2) and obtain 

(8) S(A, B, C, s)= () g(n) 
As n=1 

where 
+00 

(9) g(n)= ? (Am2 + Bmn + Cn2)-s. 
m=-00 

Factoring 

Am2 + Bmn + Cn2 = A(m + coin) (m - co2n) 

with 

(10) co1 = (B + iVbi)/2A, Co2 =(-B + ivf)/2A, 

changes (9) into 

1 +00 
(11) g(n) = , (m + co n)-s(m - co2n)-S. 

AS m=-00 

For n > 0, both z = m + coin and z = - (m - co2n) have positive imaginary 
part, and for any such z the gamma function gives 

1 
(27r)s 00 2rz - 

(12) J e2 Uizus- du. 
(-iz)5 F(s) 0 

Therefore, each term in (9) becomes a double integral: 

(13) r(2r) f00 
00 e27Ti[m(u-v)+n(w lu+w2v)] (uv)s-1 du dv. 

Asr2 (s) 

If the r of (5) is small, the dominant part of (13) occurs over the diagonal 
strip - 1 < u - v < + 1, and we may greatly accelerate the convergence of (8) 
by a change of integration variables. In the first octant (u > v), we set 

u - v = xI v =y, 

and since the Jacobian equals 1, this part of the integral in (13) becomes 

I(m, n) =f e2 imx dxf ec nYe2?inX)1 (x + y)S_ lys- 1 dy. 

In the second octant (v > u), we set 

v-u=x, u=y, 
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and that part of the integral is 

II(m, n) =fJ e-27imx dxf e-0 Ye27rinXw 2(x +?y)s-lys1 dy. 

Then Then 
.7r)2 s ~~+ 00 -00 

g(n) - [ E I(m, n) + E II(m, n) 
AsF2(s) Lm-oo m=+oo 

and combining I(m, n) with II(- m, n) gives 

(14) g(n)= ~~~~(27r)2 s +00 0 
(14) g(n) =2 T)2S f e2 7imxf(x, n)dx, 

Asr2(s) M-00? 

where 

(15) f(x, n) = 2rn?x cos &nx f en yysy 1(x + y)s-1 dy. 

Or, if z = O ny, then 

2rnX cos wonx 00s (nx + z) dz. (16) f(x, n) = s 
(an)21 J z(nx+<e dz 

We now rewrite (14) as 

g(n) 

(s)2 

+ E 

fv+1e2lTimxf(x, 

n)dx, 
A sr2 (S) m =-0 V=Ov 

and since Fourier's Theorem gives 

+ 00 1+ 

E f+l e2rimxf(x, n) dx - f(v, n) + f(v + 1, n)], 
m=-00 2 

(14) becomes 

(27T)2s F 00 
(17) g(n) [ f(O n) + f(v, n)- 

Asr2(s) 2 v= 

Since 
00 

1 f P(2s- 1) 
1 

2: - f(O, n)=F 
n=1 2 a 2s-1 n=1 n2s-1 

we may now remove the dominant parts of the integrals (13) referred to above and 
thus obtain 
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~(2s) 27r A _____(2 
- (2 -1 

S(A, B, C, s)= + ( (2s- 1) 
As VWD_D / F2 (s) 

(18) (27T)2s x x 

A S2(s) n=1 v= I 

Finally, the double sum can be changed to a single sum (in powers of r) by 
letting vn = N and resumming according to N. Then the third term of (18) becomes 

(19) 2 ( ) r' cos(coN)Y(N)Z(A, 
\V /N=1 

where Y(N) is given in (6) and 

(20) Z(N)= 1 fzs- ( +N) e-zdz. 
r2(s) 0 

For s - 1 a natural number we expand the integrand by the binomial theorem 

and thereby obtain (7) for Z(N) and so (4). 

3. L Functions. For a fundamental discriminant - D and the Kronecker 

symbol XD Dln), 
00 

(21) L(s, XD) E XDns 
n=1 

is the Dirichlet function for Q(Nf7ii). If D = 4a, we may write (21) in terms of 

the Jacobi symbol as 

(22) La(S) = E (2m )-s. 

But (22) has meaning for every natural number a and this generalization is also 

of interest. If D is odd, one has 

(23) LD(S) = (1 - (2/D)2-s) L(s, XD)5 

whereas, if a = bc2 with b square-free, one has 

(24) La(s) = HS (1-(-b/p)p5)Lb(s), 
Plc 

the product being taken over all primes p dividing c. For all integral s, all such 

La(s) are therefore rational multiples of the functions in (21). Now 

(25) c(s) L(s, XD) = 
WK(S) = E [N(A)] -s 

A 
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equals the Dedekind zeta function of K = Q(\7-), where N(A) is the norm of 
the integral ideal A. If D > 4 and there are (only) two units (+ 1 and - 1), 
then the S(A, B, C, s) of (2) is the sum E [N(A)] -s over all A in one equivalence 
class since each Am2 + Bmn + Cn2 occurs a second time by the substitution m = 

-im, n =-n. Generally, if u(3) = 3, u(4) = 2 and u(D) = 1 for D > 4, one has 

1 h (-D) 
(26) v(s) L(s, XD) = u(D) E S(A, B, C, s) 

with the sum taken over the h(- D) inequivalent reduced quadratic forms of dis- 
criminant - D. Note that S(A, B, C, s) = S(A, - B, C, s) for improperly equivalent 
forms and one simply has 2S(A, B, C, s) as their sum. 

The formulas (4), (23), (24) and (26) now enable us to accurately compute 
La(ln) fairly easily for all moderate a and n. In [5], I wanted L1o(n), and 
obtained them to (nearly) 10 decimals, thanks to an existing 1 OD table of polylogarithms. 
I gave L1 0(2) = 0.9314284985. The present much more powerful (and general) 
method gives 

L10(2) = [S(1, 0, 10, 2) + S(2, 0, 5, 2)]/?(2) 

7r2 9 6 
+2 10(3)c + - a(m) (m +c)rm 12 10 = 

where c = (7rV'_)'1, r = exp(- 7rVY@), and a(1) = 1, a(2) = 13/8, a(3) = 28/27, 
a(4) = 109/64. Since r5 = 0.267 - 10-23 four terms in m suffice for more than 
20 decimals. One has L1 o(2) = 0.9314284986 0077434939; (note the rounding 
error in the earlier value). 

As I indicated, this investigation grew out of my work with Mohan Lal on 
Bateman's constants [7]. Lal then used this method to compute the following ele- 
gant table [13]: 

La(f) to 25D, a = 1(1)100, n = 1(1)20. 

4. Landau and Hardy-Littlewood. There are 39 Abelian groups of order < 25. 
The smallest a for which Q(34,/a) has a prescribed Abelian group as its class group 
is listed in Table 1. 

For the study of the effect of the class group in various phenomena, it is use- 
ful to have La(n) for such a. Lal's table therefore continues with these a and n = 

1(1)20 as before. 
The number of numbers AN of the forms u2 + 14V2 and u2 + 21v2 be- 

have very differently because of their differing groups of order 4, cf. [14], [3]. In 
Table 1 of [3] I was unable to give the related Landau constant b14 accurately. 
But with the La(n) for a = 11, 13, 14 I can now easily complete that table: 
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TABLE 1 

Group a Group a Group a 

C(M) 1 C(10) 74 C(18) 293 
C(2) 5 C(11) 167 C(3) x C(6) 2437 
C(3) 23 C(12) 89 C(19) 311 
C(4) 14 C(2) x C(6) 110 C(20) 194 
C(2)2 21 C(13) 191 C(2) x C(10) 209 
C(5) 47 C(14) 101 C(21) 431 
C(6) 26 C(15) 239 C(22) 269 
C(7) 71 C(1 6) 146 C(23) 647 
C(8) 41 C(2) x C(8) 161 C(2) x C(12) 329 
C(2) x C(4) 65 C(2)2 x C(4) 285 C(24) 542 
C(2)3 105 C(2)4 1365 C(2)2 x C(6) 546 
C(9) 199 C(4)2 1513 C(25) 479 
C(3)2 4027 C(17) 383 C(5)2 12451 

bil = 0.677388018, b13 = 0.420720518, b14 = 0.563486772 

from the formulas in [3]. 
The number of primes of the famous form n2 + n + 41 for n S N should be 

asymptotic [1] to 

N dx 
h 163J2 log X' 

but computation of h163 requires the values of L163(n). Beeger [15] counted 
the primes of the forms n2 + n + (1 + a)/4 for a = 163, 77683, 111763, 289963, 
where the larger three a have (- alp) = - 1 for all p < 43. Lal's table continues 
for these four a and I therefore get 

h1 63 = 3.319773177471, h77683 = 3.299935431518, 

h111763 = 3.631999797155, h289963 = 3.694708051836, 

in good agreement with the count of the primes. 
At this point, the Lehmers sent me D = 991027 with its impressively low 

class number h(- D) = 63. One has L(1, X) = 0.19881, which is near the lower 
limit allowed by the Riemann Hypothesis [16]. I get h991027 =4.123706726184. 
(Personal note: It was largely this h(- 991027) = 63 that led me into a very 
long and fruitful correspondence with the Lehmers.) 

In the expansion (26) for the numbers L(s, X991027) just mentioned, one 
computes 32 different S(A, B, C, s): S(1, 1, 247757, s) for the principal form 
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and 2S(A, B, C, s) for each of the 31 pairs of improperly equivalent reduced 
forms (A, B, C) and (A, - B, C). But it is not necessary to input all these 
(A, B, C) since the class group is cyclic. A generator is the form 

F = (41,5,6043). 

Inputting this, and this alone, one computes the other forms by composition; thus: 

F2 = (173, - 69, 1439), F3 = (149, 11, 1663), etc.; 

and follows each Fm thus obtained by the computation of S(Fm, s) as before. 
Similarly, I determined that L(1Q, X991027) > 0 by Low's method [11] except 
that I generated the forms by composition. That is much faster. 

5. Generalized Euler and Class Numbers. In [4] I defined ca,m for all 
m>0 and a >1 by 

i2m V~aiCa, m 
(27a) La(2 1) ) (2m)! (a > 1), 

1 r ( \2m++1 C,m 
(27b) Li(2m + )(2m)! 

and proved that all ca,m are integers computable by explicitly given recurrences 
on the variable m. In a two-dimensional array, the first row of ca,m contains 
the Euler numbers while the first column lists the number of primitive inequivalent 
classes of Au2 + Buv + CV2 having B2 - 4AC = - 4a. That is: 

(28) Ci,m =Em ca 0 = h(- 4a). 

Alternatively, all ca,m can be computed as above from (26). And since 
they are integers, the series (4) can be truncated as soon as the resulting error in ca,m 
would be < 1. With cam thus fixed, La(2m + 1) can then be computed to 
arbitrary accuracy by the closed forms (27a, b)-we have a "bootstrapping" operation. 

As an example, we know that 

L163(1) = (3/2) irh(- 163)/VT6 

and so c163, 0 = 3. Next, 

(29) - t(3)L 163(3) = t(6) + 12irX(5)1632 _ e 

where e is of the order exp(- irV/6). Thus 

c l 63 1 18[?(6)X- l16321/2 + 12?(5)]/Xr2 (3) 

= 166680.000000 000000 080074, 
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and so cl63,1 = 166680. Likewise, c163 ,2 = 22516624416, etc. 
These computations may be further accelerated by known modular congruences 

[4, p. 693], one of which is 

(30) Ca,m+2 Ca,, (mod 60) (m > 0). 

Thus, alternate Euler numbers Em (m > 0) are 1 and 5 (mod 60), respectively. 
For some a, larger moduli are easily obtainable. For example, for a = 34 and m > 0, 

C34,2m+1 88, C34,2m+2 200 (mod 300). 

The series (4) may therefore be truncated as soon as the resulting error in ca,m is 
less than 60 (or even more). 

Lal's table of La(n) includes a table of Ca m for a = 1(1)100 and m = 0(1)9 
computed in this way. 

For all real X it is known that L(s, X) is rational for all s = 0, - 1, - 2, 
For negative discriminants, these rational numbers may be obtained from the integers 

Ca,m by the functional equation [6, Section 4]. It is widely believed now that these 
rational numbers are of fundamental importance. If my "Inductive Formulation of 
the Riemann Hypothesis" [17] goes through for ?(s), where the corresponding 
rationals are - B2n/2n, then no doubt the Extended Riemann Hypothesis will likewise 
follow for L(s, XD) from the aforementioned recurrences for ca,m and the Pade 
Table of F(s) where 

(31) F(s) = 1/L(s/(l - s), xD). 

There are numerous implications of the rapidly convergent series (4) whether or 
not it contains closed form evaluations such as (29). One minor application is this: 

Grosswald [18] has recently given the elegant and nicely convergent series: 

77T3 00 n-3 19ir7 00 Fn7 
t(3) = 2 E - E (7) = 56700 -2 E 180 e n=1 e2~ 

etc., for t(4m - 1). His series for 0(4m + 1) are more complicated, and less valuable, 
computationally speaking. But if we have already computed t(3), then (29) may be 
rewritten as a very rapidly convergent series for t(5): 

2315 2 ~3 265694 
1 0 

t(5) = I T2?(3)_ l 1r kk-- ,(-r)n[(2kn +3)2+ 3] Ed-5 
3 11340 6fn=1 din 

where k = rrVY6, r = exp(- k). (The two leading terms already give t(5) to 13D.) 
Again, if we write an equation for (8/9) t(3)L67(3) analogous to (29), and 

eliminate t(5) between these two equations, we obtain the approximation 
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163212 - 672?12 ir3 

1548 7! 
correct to 12 decimals. 

6. Epstein Zeta Functions for D' = DE2. In [5], J. W. Wrench, Jr. computed 
L7(2m) for me by elaborate interpolation in an existing table of polygamma functions. 
The present method, based upon 

(32) L7(s) = (1 - 1/25) S(1, 1, 2, s)/A(s), 

is much easier. The series for S(1, 1, 2, s) is in powers of exp(- lr\/7), but clearly 
we would double the rate of convergence if we could use S(1, 0, 7, s) with 
exp(- 2ir\/Y) instead. This can be done since one has 

4S 

(33) S(1, 1, 2, s) = S(1, O, 7, s) 4s 
4s -2s+1 ?2 

The slower convergence of 

(34) L 1 (s) = Y/2 S(1, ,0 1,5 S)IW() 

may be similarly doubled by substituting a slightly different rational multiple: 

(35) 1-S(1, O, 1, s) = S(1, O, 4, s) 
2 4s - 2s + 2 

The even slower convergence for D = 3 can be circumvented by use of 

(36) 1 S(1, 1, 1, s) = S(1, 0, 3, s) 4S 
3 4s +2 

having r = exp(- 27r\/3), or the even faster 

(37) - S(51 1, 1, s) = S(1,5 1, 7, s) 
9 

_ 

3 9s - 3s + 3 

having r = exp(- 3ir\/3). 
Since my proofs of these and analogous identities are similar to Weber's treatment 

[12, Section 142], I omit them here for brevity. The equations (36) and (37) are of 
value in discussing UK(S) for pure cubic fields K = Q(a1/3) since the discriminants 
of all these fields are square multiplies of - 3. To this we now turn. 

7. Pure Cubic Fields; Bateman Constants. In [19] Dedekind gives a leisurely, 
careful and detailed account of the Dedekind functions UK(S) for pure cubic fields. 
For cube-free a = o432 with a and f prime to each other and square-free, K = Q(al/3) 

and Q((qa21)1/3) are identical and its discriminant is - D with D = 3(3)2 or 

3(3c43)2 according as a2 = f2 (mod 9) or not. There are h(- D) reduced forms 
(A, B, C) with 4AC - B2 = D and we have 
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(3 8) tK(S)/1(S) = E ciS(Ai, Bi, Ci, s) 
i=l 

for certain coefficients ci = 1 or - 1/2. Table 2 shows these linear combinations for 
some small a with S(A, B, C, s) abbreviated as [A, B, C] and with improperly 
equivalent forms combined as before: [A, B, C] + [A, - B, C] = 2[A, B, C]. 

TABLE 2 

a D h(- D) KS(s)/A(s) 

2 108 3 '[1,0,27] - [4,2,7] 

3 243 3 [1, 1,61] - [7,3,9] 
5 675 6 [1, 1, 169] + [13, 1, 13] - [7, 5, 25] - [9, 3, 19] 
6 972 9 [1,0,243] +2[7,6,36] -[13,4,19] -[9,6,28] - [4,2,61] 
7 1323 6 [1, 1, 331] + [19, 11, 19] - [13, 9, 27] - [9, 3, 37] 

10 300 6 [1, 0, 75] + [3, 0, 25] - [7, 6, 12] - [4, 2, 19] 

12 972 9 [1, 0,243] + 2[13,4, 19] -[7, 6,36] -[9, 6, 28] -[4, 2, 61] 

If the primes p = Au2 + Buv + Cv2 have a as a cubic residue, ci = + 1, other- 
wise Ci = - ?. Example, a = 10: p = u2 + 75V2 or 3U2 + 25v2 have (O1/p)3 = 

+ 1;p = 7u2 + 6uv + 12v2 or p = 4U2 + 2uv + 19v2 have (10/p)3 1. The Ci 

can also sometimes be determined this way: For a = 10, the form F = (7, 6, 12) 
generates the cyclic class group C(6). For each n, Fn has a character exp(2,rin/3) 
and ci as its real part. In contrast, a = 6 and 12 both have D = 972 and the same 
9 forms with the noncyclic group C(3) x C(3). If we have already computed the 
[A, B, C] for a = 6, these are also the [A, B, C] for a = 12, but now the cf = 1 

forms constitute a different subgroup of index 3. 
Lal's table referred to above now continues with 

WK()/O (n) to 25D for n = 1()20 

and a = 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19 and 20. Other a, such as - 12 
or + 18, are not independent since they have the same field as a = 12. The limit: 

lim,=1 + K(s)/l(s) of (38) is easily obtained from (4). All terms there, except the 
second terms: 

(39) I (D s -1) 2s - 1), 

cause no problem; in fact, they simplify for s = 1. The poles in (39) cancel out and 
its limit for s = 1 + is easily found to be 
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For example, for a = 2 and r = exp(- irrV2), one has 

ir2 ITr 
(41) WK(s)/W(s)j = 8 - log 2 + / (r - Y2r2 + .) 

= 0.8146240592 6114105707. 

This number can be given in closed form in terms of the class number and regulator 
for Q(21/3), namely, 

(42) 2ir log (41/3 + 21/3 + 1). 

We return to this presently. 
One can reduce the computations for these UK(s) by a factor of about 3. By 

similar argumentation to that which gave (36) and (37), one obtains, for example, the 
following identities for D = 108 and 243: 

(43) S(1, 0, 27, s) + 2S(4, 2, 7, s) = L3(s)W(s) ( ) (4 ?) 
18S(2S + 1) 

(44) S(1, 1, 61, s) + 2S(7, 3, 9, s) = L 3(s)(s) (81s - 275 + 3.9s5 3.3s + 9)2s 
81S(2S + 1) 

Thus, the use of known tables of L3(s) and c(s), cf. [6], allows one to eliminate 
the more slowly convergent [4, 2, 7] for a = 2 in Table 2. Similarly, one eliminates 
the [7, 3, 9] for a = 3 which converges at 1/7 the speed of [1, 1, 61] and requires 
the factors cos(3irN/7) in addition-see (4). In general, for any a, one may eliminate 
all [A, B, C] having ci =-?; the proportion of such [A, B, C] approaches 2/3 
as a increases. 

Since the second term in (4) is now a rational multiple of L3(1)4(2s - 1) for 

integral s, and since r= 0.66 * 10-14 for a = 2, one has the approximations: 

DK(2)/?(2) 
3 
2(4) + L 3(1) (3)/54 - 5L 3 (2)?(2)/12, 
2 

DK (3)/?(3) 
3 
2(6) + L 3(1) (5)/1944 - 2585L 3(3)t (3)/5832, 
2 

etc. for K = Q(21/3) good to 13 decimals or more. The analogous combinations of 

L3(s) and c(s) for a = 3 are even more accurate. 
The Bateman constants, which are the Hardy-Littlewood constants for the poly- 

nomials n3 + a, were discussed at length in [7]. They are given by the products 

(45) ka = IIP 0- a(P))I(P -1) 
p * a 
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taken over all primes p 1 (mod 6) not dividing a with oa(p) = 3 or 0 according 
as a is a cubic residue of p or not. To improve the very poor convergence of (45), 
Davenport and Schinzel [20] utilized lim=1 +(S)/AK(S) for K = Q(al/3). 

For example, for a = 2, if we express WK(S) in product form then (42) gives 

(46) 1= jj q2 IF(p) 
21r log (41/3 + 21/3 + 1) q q2 - P 

for the primes q 5 (mod 6), p 1 (mod 6) with 

(47) F(p) = p2/(p - 1)2 or p2(p - )/(p3 - 1) 

according as 2 is a cubic residue of p or not. This is true since p splits completely 
or is inert, respectively, in these cases, while the remaining primes 2 and 3 are the 
cubes of ideals. The product of (45) and (46) therefore gives 

-\/10-8q2 LI P3 p( 
____ (48) k2 = 2 __p3 ___ - 3) 

2lrlog(41/3 +21/3 +1) qq2_l p P3-1 p (p-1)3 

for (2/p)3 = 1 = (2/P)3. These products now converge absolutely and less slowly. 
In effect, we have improved the convergence of (45) by dividing out the equally poor 
convergence in the infinite product for lims= 1 + WAK(S) 

The generalization of (42) for other a is 

(49) lim pK(s)/l(s) = 2irD-1/2H(a) I log e(a)l 
s 1 + 

where - D, H(a) and e(a) are the discriminant, class number, and fundamental unit 
of K. For large a, the determination of H(a) and e(a) could themselves require 
lengthy computations. That is unnecessary here since we need neither number. We 
need only the specific combination in (49) and we can evaluate the left side of (49) 
directly and rapidly by our Epstein zota function series, as we explained above. 

But (48) and its analogues for a > 2 still converge slowly. We may speed up 
its convergence repeatedly [7, Section 6] by similarly dividing out appropriate 
powers of t(n)/AK(n) for n = 2, 3, 4, **. Let us be brief by making repeated 
reference to [7] . We first extend the last product in (48) over all p 1 (mod 6), 
not merely those having (2/p)3 = 1, and compensate in the second product in (48) 
as in [7, (23)-(24)]. Thus [7, (10)] 

(50) k2 = ? (1) . Lori P(P 1)3 

rK P (P- 3) (P3 -1) 

where Lo = 0.920038563618492 and (2/P)3 # 1 as before. Now [7, (69)] 
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(51) f(s)- (s)() ((- 1 - ) PS 

WK(S) 2s 3s p (ps- 1)3 

taken over the same P, and we may utilize these f(s) for s = 2, 3, *-- to accelerate 

the convergence of (50). 
For ,x I < 1/3 one has the identity 

(52) (1-x) - = r 
I x 

(I 3x) (I - X 3) s=2 L(I - Xs)3 

for the exponents b(2) = 1, b(3) = 3, b(4) = 6, b(5) = 16, b(6) = 39, b(7) = 104, 

b(8) = 270, etc. These exponents are determined by recursion after taking the 

logarithm of both sides and equating like powers of x. Then x = 1/P in (52) gives 

P(P - 1 )3 II ( ) 

P (P- 3) (P3 - 1) s=2 

and the right side converges faster. But the convergence is very much faster if, for 
some moderate n, we compute the first n factors P(P - 1)3/(P - 3) (P3 - 1) on 
the right of (50) directly, and evaluate the remaining product there by 

(53a) n ( ) = II [f(5)]b(s) 

P>Pn (P-3) (P31) s=2 

where 

(53b) ~~~~Pn (pl )3 I'-1 
(53b) fn (s) f(s)JI ( = f(sJ P 3PJ 

P1 p3s_ 
- P \ (P-i)2 / 

With very modest limits on n and s one now easily finds 

(54) k2= 1.298539557557843. 

The product on the right of (53) converges monotonically increasing and, as in 
[7], there is a complementary formula based upon the (2/p)3 = 1 primes that is 

monotonically decreasing. It converges even faster-since p1 = 31 > P1 = 7 and 
since there are twice as many P as p-but we omit it for brevity. The generalization 
for other Q(al/3) is obvious and is also omitted. 

8. Other Cubic Fields; Unramified Cubic Extensions. Although Dedekind con- 
fined himself to pure cubic fields Q(al/3) in [19], other cubic fields with negative 
discriminants may be computed very similarly. For example, consider the Q(V'72) 
in Table 1 having the class numbers 
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h(- 23) = 3; h(- 4 * 26) = 6; h(- 199) = 9. 

Since their class groups contain C(3) as a subgroup, cubic fields Q(x) having the 
same discriminants are obtained by adjoining a root of 

x3 -x + 1 =0, x3 -x +2=0, x3 +X2 +4X + 1 =0, 

respectively, to the rationals. The formulas corresponding to those in Table 2 are 
now listed in the first three rows of Table 3. 

TABLE 3 

D h(- D) WSW(S)?S) 

23 3 [1, 1, 6] - [2, 1, 3] 
104 6 [1, 0, 26] + [2, 0, 13] - [5, 4, 6] - [3, 2, 9] 
199 9 [1, 1, 50] + 2[7, 5, 8] - [2, 1, 25] - [4, 3, 13] - [5, 1, 10] 

4027 9 [1,1,1007] + 2 [13,9,79] - [17,11, 61] - [19,1,53] - [29, 27,41] 
4027 9 [1, 1,1007] + 2f17, 11, 61] - [13,9,79] - [19,1,53] - [29, 27, 41] 
4027 9 [1,1, 1007] + 2[19, 1,53] - [13,9,79] - [17, 11,61] - [29,27, 41] 
4027 9 [1,1, 1007] +2[29,27,41] - [13,9,79] - [17, 11,61] - [19,1,53] 

As before, the forms (Ai, Bi, Ci) in (38) that have ci = 1 are the cubes in 
these cyclic class groups; otherwise, ci = - 2. For D = 23 and 104, the ambiguous 
forms are obviously those with ci = 1. For D = 199, it is apparent that F = (2, 1, 
25), which represents 2, generates the group and its square and cube are (4, - 3, 13) 
and (7, - 5, 8), respectively. Thus, [7, ? 5, 8] have ci = 1. Alternatively (and 
perhaps easier for those who cannot do composition), for D = 199 one finds that 

f(x) = x3 +?X2 + 4x + 1-(x - 1) (x - 2) (x - 3) (mod 7), 

while f(x) is irreducible mod 2, 13, and 5. Since (7, ? 5, 8) represents the splitting 
prime 7, while (2, ? 1, 25), (4, ? 3, 13) and (5, ? 1, 10) represent the inert primes 
2, 13, 5, their ci may be assigned correspondingly. 

Since Q(F- 4027) has C(3) x C(3) as its class group, D = 4027 has the four 
distinct cubic fields listed in Table 3. (Compare D = 972 in Table 2.) They are 
obtained by adjoining the roots of the following cubic polynomials of discriminant 
- 4027: 

0 X1 -4X1 ? 12X 1 - 1 =(xl - 3) (x1 + 5) (x1 - 6) (mod 13), 

O=x3 -8x2 ? 15(x2 ?4) (x2 + 6) (X2 + 7) (mod 17), 

0=3 ?2 -7+1 x31(3 8) (X3- 8) (modl19), 0 = X 3+ X23 - 7X3 + 12-(X3 + 1) (X3+8)(3-) (md1, 

0 = X 10X4- (X4 + 2) (X4 + 3) (X4 - 5) (mod 29). 

Since 13, 17, 19, and 29 split as shown and are inert in the other three fields, 
these four fields Q(xi) are listed in the same order in Table 3. In Q(xl), xl = 
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0.08573074519 is a fundamental unit (it is obviously a unit since it divides 1), and 
(49) becomes 

tKl?(I) = 0.2432279947h. 

On the other hand, (38), (40) and (4) give 

W I)= ~(2) 1 +) ? log 17192 
rK/?(~~~1)(2( 3 17 19 29 )A~O 17- 19 29 

(55) 47r 00 
? Zc Zi <cos(coiN)Y(N). 

\/A O27 i N=1 

Two terms in N: 1 and 2 gives the ten-figure 

WM/?1) = 1.459367969, 

and so h = 6. (The first two terms of (55) would suffice to obtain this class 
number.) 

Similarly, x4 = 0.09990029880 is a fundamental unit in Q(x4), and WK/M(1) = 

1.368497769 is obtained from (55) with 13 and 29 interchanged. So its h = 6 
also, while Q(x2) and Q(x3) have larger regulators and h = 3. 

These four h illustrate Callahan's conjecture [20] which states that if Q(V7ii) 
has a 3-rank of r, then the l2(3r - 1) associated cubic fields all have 3-ranks of 

r - 1.* These cubic fields give the unramified cubic extensions of Q(V\Z-) and are 
required if we want to imbed Q(\/\Ii) in a larger algebraic field such that all integral 
ideals of Q( - D) are now principal. 

More elaborate examples are Q( /- 63199139) with r = 3 and 13 cubic fields, 
and Q(-,/- 87386945207) with r = 4 and 40 cubic fields [21]. While the calcula- 

tions of (55) are easily carried out on a hand computer, such as an HP-45, we clearly 
would prefer a larger computer for these larger discriminants. 

9. Extensions. To further extend the methods developed above, one would 
want answers to these questions: 

A. What other UK(S) can be expressed in terms of S(A, B, C, s)? 
B. What modifications are required to handle positive discriminants and the 

corresponding indefinite quadratic forms? 

Computation and Mathematics Department 

Naval Ship Research & Development Center 

Bethesda, Maryland 20084 

*(Added later) Callahan proved [20] that the cubic fields have 3-ranks of r - 1 or r - 2. 
I now learn that Georges Gras has just proven that r - 1 is always correct. 
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