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On Small Zeros of Dirichlet L-Functions
By Peter J. Weinberger

To D. H. Lehmer for his 70th birthday

Abstract. A method is given for calculating the value of Dirichlet L-functions near the
real axis in the critical strip. As an application, some zeros for zeta functions of com-
plex quadratic fields are calculated.

1. Introduction. The Dirichlet L-functions L(s, x) = Z,,_,x(n)/n° are com-
monly believed to have all their nontrivial zeros on the critical line Re(s) = %, although
no single L-function is known to have this property, nor are any counterexamples
known. Extrapolation from the experience of [1] for ¢(s) indicates that one is un-
likely to find counterexamples by calculating zeros up the critical line. The zeros near
s =% are of some independent interest. If x is a quadratic character with x(— 1) =
—1, then zeros of L(s, x) especially close to s =% have an effect on the class num-
bers of complex quadratic fields [2]. L-functions for these characters with conductors
no greater than 800000 are known not to have any real zeros in the critical strip [9],
[10]. Also, zeros near s = % for any x clearly affect, through the functional equa-
tion, the argument of the Gauss sum, which is connected with a conjecture of Kummer.

In this paper I give a method for finding zeros of L(s, x) with Re(s) = % and
Im(s) fairly small, say Im(s) < 1. All known methods for finding zeros of these func-
tions depend on the evaluation of some auxiliary function which has the same zeros.
The values of the auxiliary function are the data which some scheme of inverse inter-
polation uses to locate the zeros of the L-function. The method used in this paper
requires O(k'/? log k) operations for each function evaluation, which compares favor-
ably to the method of [3], [4] which requires more than k steps. For the purposes
of computation, therefore, the present work is a k-analogue of the paper of Lehmer
[51.

A rough guide to the contents of the sections is as follows. Section 2 contains
results used in the calculation of some zeros of L(s, x) for the type of quadratic
characters mentioned above. Section 3 gives a completely independent check on the
calculation. Section 4 presents the actual numbers, and Section 5 contains further
observations on general Y.

The methods in this paper were developed for application in [2] and so are, in
considerable measure, joint work with Hugh Montgomery.
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2. The Method. In this section x denotes a primitive quadratic character de-
fined modulo k. This approach to determining zeros of L(s, x) starts with the func-
tional equation in the form

s+a s+a it 2
0= (E (- (B £ 20n(52,22)
M
I£(1+a—s)/2°°x(n) l+a-s m?
() T)

Here T(w, @) = [7x¥~'e™* dx, and a = (1 — x(— 1))/2. This is the functional
equation since the right-hand side is invariant if s is changed to 1 —s. It will be seen
that this formula is most satisfactory when Im(s) is near zero. I shall not prove this

formula since it is actually an intermediate step in the usual proof of the functional
equation which uses theta functions. If s =% + i¢, then the function Z(z, x) =
£(% +it, x) is real, and whenever Z(t, x) changes sign, L(% + it, x) has a zero. To
use (1) to calculate Z(z, x) it is necessary to bound the error made in truncating the
series. I shall assume that x(— 1) = —1 throughout the rest of this section, since this
is the only case for which calculations were actually performed. This restriction only
affects Lemma 1.

First note that Re(w) <1 implies that

@ ID(w, )| < e %xReMW)—1,

Hence, writing s =0 +it, 0 <1,

<k><o+1)/2 ZL) s+1 7m2) <k ie‘””zl"
m N+1 2k TN+1 "
2
k [=e ™ /kdx k* 2
4 < —nN°“/k
<r fN x 2m°N? ¢ :

This bound is independent of s, and also proves the following lemma.
LeMMA 1. If s =% +it, then

N _n2
k \s+1)/2 + 2 2 -N2njk
,Z(f’ ><>‘2Re[2 (‘) LQP(%T)] <

n=1

The first term of the series is, for large k and small |¢], close to (k/m)*I'(%),
so when N is larger than (k log k)]/2 the truncation error for the series becomes very
small. In the calculations described below I took N = (28k/7r)]/2 which makes the
truncation error no larger than 1.57-10~° for k less than 200000.

The principal difficulty in using the formula in Lemma 1 to calculate Z(z, x) is
calculating the values of I'(% + it/2, «). To see what is involved, consider k = 115147.
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Here N = 1013, so « varies over the interval (2.7-107%, 28.0). Hence the evalua-
tion of Z(¢, x) requires about 1000 calculations of I'(% + it/2, @) with the same
value of £. For small « the value is clearly close to I'(% + it/2), so some sort of
power series approximation seems reasonable. For large «, the bound (2) indicates
that the function can be sufficiently well approximated by Gauss-Laguerre integration
using a few points. In between it seems reasonable to construct a table and interpolate
in it, by some means, to the desired argument. One would like to calculate the inte-
grals sufficiently accurately that the accumulated truncation and rounding error for the
integrals is about as large as the bound for the truncation error in Lemma 1.

In this paper, the term truncation error refers to the error due to the use of
approximations to the limiting processes of analysis, while rounding error refers to the
error due to using finite-precision arithmetic.

LEMMA 2. Suppose N +2<a<0 and 0 <Re(w)<1. Then

N (- 1)xi*s QREOW+N +1 i ’1.
F(W'“)”<F(W)"Z Gro )| SIWri+wvr D \! "N+2

j=0
Proof.
_ (w1 & ()X _ B N (- 1)xits
'w, @) = I'(w) f o ¥ ]E:O i dx = T'(w) ,Z::o Gron + Ey,
where
Re(w) oo j Re(w)+N+1 oo j
« a a o
—_— —< . QED.
EN<IN+1+w|].=%+1]’! |N+1+w|(N+1)!J.Z=:O(N+2) QE.D

Some typical bounds for this truncation error for Re(w) = .75 are 2-107!% for
a=.5N=12,910"'¢ for a=1.5,N =18, and 9:107'° for a = 3.2, N=24.
An alternative approach to calculating T(w, @) for small o is to integrate [ox" 'e™ dx
by parts N times, but this seems to lead to somewhat larger error terms. The value
of TI'(w) required for the application of Lemma 2 can easily be found by using the
relation wl'(w) = I'(w + 1) to shift the argument to the right, and then using Stirling’s
approximation. My program calculates I'(w + 8) using 6 terms of the asymptotic
series, which gives an error of no more than 210714,

In order to justify the approximations used for larger «, I need some unpleasant
estimates.

LeEMMA 3. Suppose w=u +iv with 0<u <1, 0<v, and that 0<c <
a< x; <b, for 1 <j<n. Let C be asimple closed contour containing all the x;
in its interior. Then

—-x,.w-1 — + vm/2 —c,u—1
lfce x dx N(r=—1/2)1 +e e ‘c

<

2mi Je Ti(x, n) I'(n/2) 4’7 @y
L a0 N Do) 1 e !
2mi Je T(x, n) I'(n/2) 4l @-o)r 1

where TI(x, n) = I_, (x = x;).
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Proof. The two estimates are much the same, so I only prove the first. Further,
the estimates are empty if n = 1, so assume n = 2. Denote the integral by 1 De-
form the contour to a vertical line segment with Re(x) = ¢ and the arc of the circle
|x| = R to the right of Re(x) = c. The integral on the arc of the circle is

<RRu—lev1'r/2/Rn — O(Rl_n).
Therefore

o ,—C + i w—1
<L~ e tin” ol g,

2nd—w |a—(c + )"
since a <x]- for 1 <j<n. Then

(02 + t2)(u—l)/2
@7 + 2y

e—C oo
< = vm /2
<G +em?) | a,

which proves the estimate, since u <1 and

< 2v-nj2 5 _ TU2)T((n = 1)/2)
2f0 (1 +22)"12 gz ) . QED.
These estimates are useful in bounding the errors in the Gaussian integration
formulae used below. An outline of the derivation of these formulae is presented so I
can make use of the estimates just proved.

Let {p;(x)} be a family of monic polynomials with deg(p;) =; and orthogonal
with respect to the inner product defined by

(.0 = | SGwe) dx,

where w(x) is positive on [a, b]. Let x,, -, x, be the zeros of p,(x). An
elementary result in the theory of orthogonal polynomials says that each x; is in

(a, b) and that the x; are distinct. Let p(x) be the polynomial of degree r — 1
satisfying p(x;) = g(x;), j = 1(1)r, where g(x) is some function analytic in a neigh-
borhood of [z, b], and let g(x) be the polynomial of degree r— 1 satisfying

(z - x]-)_1 = q(xj), j = 1(1)r. The coefficients of g(x) are rational functions of z.
Then it is easy to verify that

1/(z = x) = q(x) + p,(x)/(z = 0z, 1),
and that

£x) = pl) +2 /) fc £2)

i e G-, “

2
—p0) +pr(x)q(x) fc g(2) +pr(x) fc 2(2)

2mi i(z, r) z 2mi z - 2)(z, r)? dz.

Then fspr(x)q(x)w(x) dx = 0 since deg(q) < deg(p,), so
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©) f:g(x)w(x) dx = f:p(x)w(x) dx + f:pr(x)zw(x)—ilnf fc oG TE —li(;ﬁ(z, 7 dz dx.

Further, it is well known that

r

@ L plpoa) ax = ¥ ajatey),

=1

where the weights a; depend only on w(x) and r. Thus, once the a;, X; are known,
(3) becomes an approximate integration formula in which the last term is the truncation
error. For the classical orthogonal polynomials, 2 p,(x)*w(x) dx is known, so a
bound for the contour integral in (3) provides a bound for the truncation error for the
approximate integration formula. I only need two families of polynomials, the first
orthogonal on [~ 1, 1] with w(x) = 1, and the second orthogonal on [0, *°) with
w(x) = e %,
the second are the Laguerre polynomials.

LEMMA 4. Write f(y) =e Yy¥~ ! with w=u+iv, 0<u<1,v<0. Let

Xy, ", x, be the zeros of the rth Legendre polynomial; let b,,- - -, b, be the

Except for constant factors, the first are the Legendre polynomials and

corresponding weights in (4). Then

[0y ay - 25 ib,-f(y,)l
j=1

< e Sl + e (p)* 'y »-a)?t!
(@-¢)? 4n'l? (@) T +1/2) (@2r+1) °

where 2y; = (b — a)x]- +a +b.
Proof. Write p,(x) = Ti(x, r) = II_ ,(x — x;). Then [6],

1 B 22r+1 (r!)4
j— 1p’(x)2 x =57 ((2nH? -

Let x =2y ~ (@ + b))/(b — a), so that fff(y) dy = ((b - a)/2)f1_1f(y) dx. Now it
follows from (3) that

1 fo(((b —a)z +a+ b)2) dzlax,

1
< f_ 1p’(x)2 2m (z — 01z, r)?

[L oy ax = 3 4,10
=1

where D is a simple closed contour containing x, x,,* - -, x,. Changing variables in

the contour integral reveals that it is equal to

o2y 1 1)
(b "(1)2 2 2 % c (t—y)H(t—y])2 dt3

and an appeal to Lemma 3 completes the proof of this lemma. Q.E.D.
The proof of the following lemma is even simpler.
LEMMA 5. Let z,," -, z, be the zeros of the rth Laguerre polynomial and
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let ¢y, -, c, be the corresponding weights in (4). Then

I r vm/2 u—1_—a
—x w—1 _ _—a (z. + )1 "2 ') l+e 4 e
L e *x dx —e Elc](z] a) < () TC+1R) 4P G-

In the last two lemmas c¢ is the free parameter of Lemma 3. The xj, Zj, b,-,
and ¢; are tabulated to 30 decimal places in [7]. When applying these lemmas one
chooses ¢ so that the bound on the error is as small as possible.

The tools for evaluating Z(¢, x), |t| <%, are now at hand. In the calculation
leading to the Table, for each ¢, the machine calculated a table of ['(% + it/2, o),
a = 3.2(.2)5.8(.4)10.2(.8)15.8, by calculating I'(%4 + it/2, 3.2) using Lemma 2 with
N = 24, and then calculating each successive function value from the previous value

by 4-point Gaussian integration. (Lemma 4 with r = 4.) Lemma 4 shows that none
of the tabulated values has a truncation error of more than 107 !2. As a measure of
the actual error, the tabulated value of I'(% + it/2, 15.8) minus a good approximation
to [75 ge *x*~ ! dx was smaller, about 2:107'°. The complicated form of the table
was motivated by a desire for efficiency. One does not wish to spend too much time
calculating the table, and since the values of « are not uniformly distributed, it seems
reasonable to have fewer tabular values for large «. The evaluation of any particular
I'(% + it/2, ) during the calculation of the series in Lemma 1 depends on the value
of a. If @< 3.2, the series of Lemma 2 is used, with N chosen as indicated im-
mediately after the proof of Lemma 2. If 3.2 <a <16, and ¢, is the nearest argu-
ment for which the function value is tabulated, then

P75 +it/2, @) = T(T5 + itf2, &) + [ o™ %7541/ ),
%o

and the last integral is approximated by 3-point Gauss-Legendre integration, and the
truncation error is bounded using Lemma 4. Finally, if o > 16, the value of

I['(.75 + it/2, «) is approximated by 4-point Gauss-Laguerre integration as in Lemma

5. Using Lemmas 4 and 5 it is easy to see that the total truncation error in any incom-
plete I'-function is no more than about 107!2, so that this error contributes no more
than 310712k to the error in the series of Lemma 1. Thus, for k around 10°,

the truncation error from the incomplete I'-functions appears to be the dominant
source of error in the calculated values of Z(z, x).

In addition to the errors already considered, there are inaccuracies in the calcula-
tion of €*, log x, and other elementary functions, and errors due to finite-precision
arithmetic, all usually no more than one part in 10'°. One can estimate the effect of
these sources of error on the accuracy of the calculated value of Z(¢, x). Also it is
necessary to check the program very carefully to make sure it is doing what it is sup-
posed to. In place of these otherwise necessary and probably unconvincing details,
the next section contains another, similar way of calculating the zeros of the Table,
which gives the same answers, but which uses none of the calculations made by the
program discussed above.
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3. Another Function. If x(— 1) =-—1, then {(s)L(s, x) = {x(s), the zeta func-
tion of the complex quadratic field K = Q(v/~ k), k being the conductor of the real
valued character x. The functional equation for {4 (s) can be written in a form sim-
ilar to that of (1), namely

112
£ (s) = ( ) L) () = 2SZ(IE) y <k1/2) Z i_lp(s 2mn k%)
)

1-s
k2 — r(n
+ (2,, ) > Z0o0 - 5, 2mykt 1),
n=1

where k >4, h(K) is the ideal class number of K, and r(n) = Z;,x()

If s =% +it, then the function Z,(f) = £x(.5 + if) is real and has its zeros
at exactly those ¢ at which {(s)L(s, x) is 0. Since the smallest zero of {(s) has
t > 14, any zeros of Zg(t) with 0 <t <14 must be zeros of L(s, x). Hence for-
mula (5) can be used in place of formula (1) for finding zeros of L(s, x). A potential
advantage to using (5) is that many of the r(n) will be zero, so that calculating &g (s)
may require calculating fewer terms in the infinite series. Formula (5) also requires
the value of A(K).

LEMMA 6. If s=%+it and k > 4, then

Ze(®-2 Re[ ("(K)) (k 1/2) 2 i)1“(s 27rn/k1/2)]
=1

Proof. The left-hand side is bounded by

2(";:> Zi}fr(s 21rn/k1/2)<2( ) N f21ru/\/k 12=% g qu,

N+1

ke—21rN/k1/2

TN

since Hn) <d(n) < 2n”. This last bound is no larger than

_ 1/2
2\/_ f 21ru/k du <

k__ —2an/E
B 7T2N3/2 e m /\/_ QED

The truncation error in Lemma 6 is somewhat larger than the error term in Lem-
ma 1, at least for the k used in this paper. The program used to calculate Zg ()
works in much the same way that the program for Z(z, x) does. For each ¢ this
program tabulates I'(.5 + it, «) for a = 3(.5)13 using 6-point Gauss-Legendre inte-
gration. The program uses the series of Lemma 2 if a < 3, and 6-point Gauss-Laguerre
integration if a > 13, while for intermediate values of a it interpolates in the Table
using 6-point Gauss-Legendre integration. A discussion of the accuracy with which
Zg () can be calculated is available in [2]. The bounds given there depend on Lemmas
4 and 5, and are very conservative.
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TABLE
, , guaranteed

k Y Ze()  Z(v,Xx) xlogk  accuracy

2n x 1010
163  .202901338 2.1 -15.7 .164 5
427 249924977 4.1 =54 241 5
2683  .156678803 73 210 .197 5
17923  .030985799 46 —310 .0483 8
28963  .033774095 47 —-400 .0552 10
30895  .018493558 10.3 910 .0304 6
37427  .019504713 7.6  —740 .0327 7
115147  .003157614 .73 —120 .00586 95
123204  .010649913 9.2 -1620 .0199 10
139011 012930178 94 —1760 .0244 10
145412  .017311754 13.6  —2600 .0328 10
151419  .021346721 12.5 2450 .0405 10
188995  .026513007 90 -1970 .0513 12
991027  .151734485 24  -1320 .333 75

4. Calculating the Zeros. In this section I use Z(f) to denote either Z(z, x) or
Zg(t). To find a zero of Z(t) the program locates an interval in which Z(#) changes
sign, and then uses the secant method to get to a point where the calculated value of
Z(?) is very small. In every calculation the secant method converged very rapidly.

The point to which the secant method converges is taken to be an approximation to a
zero of Z(t). These are the values given in the column headed v in the Table. The
next two columns in the Table are calculated values of Z'(y). If the values of Z(¢)
are known to within an error of e and if the value of Z' is known, then the true
zero cannot differ from the calculated zero by more than €/|Z'|. This observation is
the source of the column labelled “guaranteed accuracy x 10'°”. The calculated values
of v are all given to nine decimal places even when the two programs did not give
such an accurate answer. In these cases the value given is an average of the values cal-
culated. The column headed (y log k)/2m gives a measure of how close the zero is to
the real axis.

Except for k = 991027, the values of k in the Table are just those from [2].
In [2] some of the v were necessary to prove a theorem about small class numbers.
The proof would go through if the values were only known with an accuracy of one
part in 20, so for this purpose the accuracy of the Table is not needed. The value
k = 991027 is included because A(K) = 63, according to Daniel Shanks, which is
very small compared to the size of k. This example shows that closeness of v to O
is not invariably implied by small class number.
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5. Other Characters. It is clear that (1) and the results of Section 2 can be used
without change when X is real-valued and x(— 1) = 1. Unfortunately, the formula
corresponding to (5) for these characters is much less convenient, since it contains
double integrals in place of the integral defining I'(s, a). It does not seem to be pos-
sible to use this formula to find zeros of L(s, x), so there is no independent check
available for zeros calculated using (1).

The generalization of (1) to any primitive character is

kN2 [s +a _ (N2 2 x(m) s +a mn?
E(S, X) - (;) F 2 L(sr X)_' T n;] ns F T 9—12—

+iak1/2 -]g (1—-s+a)/2 i n r l-s+a _ﬂ_rﬁ
@ \r) Z =5 %)

where 7(x) = ) x()e*>™V/x.

The same arguments that prove Lemmas 1, 4, 5 show that O(k” log k) terms
of the series give £(s, x) accurately, if |#] is small, but it appears that the evaluation
of 7(x) requires nearly k computations. However, H. Montgomery observed that
the functional equation for theta functions used in the proof of (6) contains 7(¥).
Write

©)

o0 oo

—an? k —-1rn2x/k
0, )= X x(me™™ X%, 0,(x, ) = X nx(n)e :

n=1 n=1
Then [8, p. 70] if x(- 1) = 1, it is true that 7(x)0(x, X) = (k/x)"0(1/x, X), and if
X 1) =-1, 1000,(x, x) = ik'/>x=3/29 (1/x, X). Taking x = 1 gives

n=1

- o — 2
) =K'/ exp(farg > xme ™ /">, it -1 =1,

- ° 2
() = k'/? exp(i arg Y nx(n)e”™ ”‘), if x(-1)=-1.
n=1

Now
o 2
2 nx(n)e™ /¥

o 2
<f xe~™x" 1k dx=—k—e""N2/";
N+1 N 2m ‘

therefore O(k'/2 log k) terms of the appropriate series are enough to calculate the
Gauss sum.
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