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and so are given in base 32. For statistics about the class number distribution see the
reviewer’s paper in this issue [2].
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Let P be a rational prime =1 mod 8, and 7 =a + bi a Gaussian prime with
norm a? + b% = P, normalized so that a, b > 0,5 =0 mod 4. Then K = Q(/)
is a totally complex quartic field with no quadratic subfield other than Q(). The
arithmetic of K has many strong analogies to that of a real quadratic field with prime
discriminant. In particular, the class number A(m) of K is odd.

This table lists the first 5000 primes P =1 mod 8 (from P = 17 through
P = 226241), the (normalized) Gaussian prime factor m of P, and the class number
h(m) of the quartic field K = Q(v/m). The final page of the table lists the cumulative
distribution of class numbers for each successive 1000 fields. The distribution of class
numbers is very close to that for the first 5000 real quadratic prime discriminants [2].
Details of the method of calculation, as well as the class number distribution, are con-
tained in [1].
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The absolute modular invariant j(r), defined by
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where x = exp 2mir and o0,(n) = Z,,,d", is the Hauptmodul of the classical modular



