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Error Estimates for a Finite Element Approximation 
of a Minimal Surface 

By Claes Johnson and Vidar Thomee 

Abstract. A finite element approximation of the minimal surface problem for a strictly 

convex bounded plane domain Q2 is considered. The approximating functions are con- 

tinuous and piecewise linear on a triangulation of Q2. Error estimates of the form 0(h) 

in the H1 norm and 0(h 2) in the Lp-norm (p < 2) are proved,where h denotes the max- 

imal side in the triangulation. 

1. Introduction. Let Q be a strictly convex bounded domain in the plane R2 with 
smooth (two times continuously differentiable, say) boundary F, and let p be a given 
function defined on F. Consider the following minimal surface problem: Find a func- 
tion u which minimizes the integral 

J /1 + IVvI2 dx, Vv = grad v, 

over all Lipschitz functions v in Q such that v = p on F. It is known (see, e.g., [2, 
Theorem 4.2.1]) that if p is the restriction to r of a function in the Sobolev space 
Wq(SQ) for some q > 2, and if p satisfies the bounded slope condition (see [2]), then 
there is a unique minimizing function u E W2(E2). 

For the purpose of the approximate solution of this problem, for each h with 
O < h < 1, let Th = {IT} be a finite collection of closed triangles Tj such that Q C 

Uj T2, and such that any Tj with Tj n Q 0 is either contained in Q or has two 
vertices on F. It is also assumed that the triangles have disjoint interiors, that no ver- 
tex of any triangle is on the interior of an edge of another triangle, and that there is a 
constant c, with 0 < c < 1 independent of h, such that the edges of the triangles have 
length between ch and h, and all angles of the triangles are bounded below by c. De- 
noting the union of the triangles contained in Q by Qh, we let Sh be the set of con- 
tinuous functions defined on Qh which are linear on each Tj and assume the same 
values as p on the vertices of the triangulation on F. Consider now the following finite 
element method for the approximate solution of the given problem: Find a function 
uh which minimizes the integral f Sh /1 ? IVvh 12 dx over all functions vh E Sh. To see 
that there exists a unique minimizing function uh, we notice that the function 

f( y) 1?1y12' y (y1 Y2) ER2, Iy12 = y2 + y2 
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is strictly convex since, with f,ij = a2f/ayi ayj, 

fij(y)i (1 + Iy12)-f32 [(1 + y2)t2 - 2y,y2t12 + (1 + Y? )2 

(1.1) > (1 + Iy12)Y312II2 for e 3R2 

Here and below, we use the summation convention; repetition of an index i indicates 
summation over i = 1, 2. Since f is strictly convex, the mapping F: vh - f2hf(Vvh)dx, 
vh, ESh, is also strictly convex. Furthermore, it is clear that F(vh) tends to infinity with 
max h Ivh 1. Since F is continuous and Sh is finite dimensional, it then follows easily that 
there exists a unique minimizing function Uh. 

In this note, we shall prove some convergence estimates for the finite element 
method described above. In order to express our results, we introduce for k an integer, 
1 < p < oo, the following (semi) norms: 

IVIk,p = ( X fI IDVIdx), IVIk,p (I Ik,p) 

with the usual modification if p = oo. We shall also need corresponding norms with Q 

replaced by Qh, and we shall then use the notation 1 Ik,p,h and 11 - Ilk,p,h We intro- 

duce the Sobolev space Wk(2), the closure of C??(Q) in the norm 1L - 
11k,p, and the 

Sobolev space Wk(F), the closure of C'(F) in the norm 

IIVIIk,1,F =dvds, 
j<k I ds| 

where d/ds denotes differentiation with respect to arc length. If k = 0, we omit this 
index. For example, 1I 1p,h will thus denote the Lp-norm over Qh. 

We can now state our convergence results. 
THEOREM 1. Let u E W2 p) n W1 (2). Then, there is a constant C such that 

for 0 <h < 1, 

|u -Uh 11 2h < Ch. 

THEOREM 2. Let u E W2(?q) for some q > 2 and p E W, (F). Then, for any p 
with 1 < p < 2, there is a constant C such that, for 0 < h < 1, 

llu - Uh 11ph < Ch- 

The proofs of these estimates are given in Sections 2 and 3, respectively. For 
linear equations, such results are well known (cf.,e.g., [3]); the latter then holds for 

p = q = 2. 

2. Proof of Theorem 1. Since uh minimizes the functional F over S,h, we find, 
taking first variations, denoting by v 1 the derivative of v with respect to the ith vari- 
able, that 
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(2.1) f (Vfu,(7Uh)x,idX J IVu 2 cdx = O for X eSI, 

0 

where Sh is the set of continuous functions defined on Q2h which are linear on each T. 
0 

and vanish on the boundary of Qh. Let us extend the functions in Sh to be zero out- 
side Qh. Then the functions in Sh are Lipschitz continuous and vanish on the boundary 
of Q so that, taking first variations in the continuous problem, 

(2.2) JJi(Vu)x,idx = JQ 1? dx = O for X E Sh 

Theorem 1 will be an obvious consequence of Lemmas 1 and 2 below. 

LEMMA 1. Let u E W22(Q) f W1 (Q). Then, there is a constant C such that for 

O<h < 1, 

IVU -VU/I12 1/2 
dcx < Ch. 

0 

Proof. Let wh be any function in Sh, and set X = wh Uh Then X E Sh and, 
using (2.1) and (2.2), we find 

A =f V -V- dx 
JQIi + IVu I2 

(Vu - VUh)VX (Vu - Vu,)(Vu - VW) 
-dx?, J dx 

h +IVu I2 V + IVU2 

/ v1vx ( ~ 1 ) dx ? f (Vu - vun)(VU V 
) d) 

= rVuvx _dcx + |,d 
Qh ,i2 V |ivua N/ + IVu v vuh? 

=D1 +D2. 

For the second term, we find by Cauchy's inequality, ID21 A AIu - Wh 1, 2,h. 

For the first term, we obtain with y = max- IVul!/ 1 + IVu12, 

IVu - VuhI (VuI! + 
iVuI 

1) 

D,I | J IVUI IVXI 1?VuI 1? + Vu 2( 1?VuI+ 
1? 

I Vui2) 

J , VXI IVu - Vuh I yA V 
dx)1/2 

1?V + Vu h~ 

< YA(A + u Iwhl1,2,h) 

Thus 
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A 2 
<rA(A + lu - whIl,2,h) + Alu -Wh 1l,2,h, 

so that, since y < 1, 

A < (1 + y)Iu - wh1l,2,h/(1 -) 

Now let wh agree with u at the nodes. By a well-known estimate (cf., e.g., [3]), we 

then have 

lu - WhIl 2,h < ChIu12,2, 

which completes the proof of the lemma. 
As a consequence of Lemma 1, we find 

(2.3) 11VU-VuhIIl,h +(fa V VJ Q 1? I Vu hIdx) <Ch 

since, clearly, fh 1f' + I Vuh 12 dx is bounded as a result of the minimizing property of 

uh. In fact, Lemma 1 and (2.3) hold without the assumption that the edges of the 

triangles have length bounded below by ch. This assumption, however, will enter in 

the proof of the following lemma. 
LEMMA 2. Let u E W2) f W( (Q). Then, there is a constant C such that for 

any 0 < h < 1, lIVuh II,h < C 

Proof. By Lemma 1, we have, in particular, for any T1 C Qh 

c U -VuhI12 \/2 
(I Vu - dx) < Ch, 

so that 

IJ Vu,i 
dx) 1S Ch + CMU,,?(| dx) 

1 
6 Ch. (fT1 1 ? IVUh 12 d) <hCU(d)2C 

Since Vuh is constant on Tj, and the area of Tj is bounded from below by a constant 

times h2, it follows that 

I Vuh |2 

V < C on T. 
N1 + IVUh12 

and thus maxnh IVuh I < C, which proves the lemma. 
Together with Lemma 1, this also completes the proof of Theorem 1. 

3. Proof of Theorem 2. We shall now prove Theorem 2 using an adaptation of a 

duality argument employed previously for linear problems by, e.g.,Nitsche [3]. 
For technical reasons, we shall need to extend uh to a piecewise linear function 

defined on the polygonal domain 2h D Q2 consisting of the union of the triangles which 
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intersect Q. To this end, we first extend u E W2q2() to a domain Q with Q 2 Qh for 

0 < h < 1 in such a way that the extended u belongs to W2(7) (cf. [1]). We then ex- 

tend u. to Qh by setting u, equal to the linear function which interpolates the extended 
u at the vertices of T1 for each Tj C Q2I242h\h It is clear that, with uh extended in this 

fashion, the estimate of Theorem 1 holds, with Qh replaced by Q, i.e., Iu - u. 11,2 < Ch. 

We shall prove that, for any p with 1 < p < 2, there is a constant C such that 

Ilu - ul lip ? Ch2, which implies Theorem 2 since Q2 D Q2h. By increasing p or decreas- 

ing q, we may assume without loss of generality that 1/p + l/q = 1. It will, therefore, 

be sufficient to prove that there is a constant C such that 

(3.1) l(g, u - uh)l = |tg(u - u.)dx < Ch2 llgllq for g E Lq(Q2). 

This will be accomplished by rewriting the left-hand side, interpreting g as the right- 

hand side of a certain linear elliptic equation. 
For this purpose, let us start with the simple identity 

(3.2) fQ[Li(Vu) -f,(Vuj)] x,id=x fai(u - uj),jX,jdx, 

where, for x E Q, 

aij(x) = fJ f1(VuS(x) + s(Vu(x) - Vuh(x)))ds, i, j = 1, 2. 

Defining the bilinear form 

an(X, ax) = J jt jdx 

we notice that, by (2.1), (2.2) and (3.2), we have 

(3.3) a,(X, u -u) = 0 for X E Se. 

Since the coefficients of ah are discontinuous, it will be convenient to introduce 

also the bilinear form 

a(X, aX) = fQa1x, i; j dx with ai(x) = f1ij(Vu(x)). 

Since u E WV2(Q) and, in particular, Vu is bounded, we find, using also (1.1), that 

the coefficients aii satisfy the assumptions in the following lemma: 

LEMMA 3. Assume that ai1 E W q (Q) for some q > 2 and that ajj(x)tj 1 is uni- 

fonnly elliptic in Q. Then, there exists a constant C such that, for any g E Lq() 

the Dirichlet problem 

(3.4) - (aijv,i),j = g in Q, v = 0 on F, 

admits a unique solution v E W(2(Q) and 
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Proof. See [4, p. 203]. 
Multiplying (3.4) by u - uh and integrating by parts, we now find that (g, u - uh 

can be rewritten in the following way: 

(g, u - Uh) = a(v, U - Uh) + , v,(U - U)ds 

= ah(v, U - Uh) + (a - ah)(V, U - Uh) + Vn(U - uh)ds. 

Here vn = - njaijv ,, where (nl, n2) is the outward normal to F. We shall prove that 

each of the three last terms is bounded by Ch2 llgllqI which will obviously prove the 

desired inequality (3.1). 
0 

To estimate the first term, let vh e Sh interpolate v on Q, so that Iv - Vh 11 2 < 

Ch I V12,2. Since the coefficients of ah are bounded (cf. (1.1)), we thus find, by (3.3), 

(3.5) and Theorem 1, that 

lah(V u - Uh)I = lah(v - Vh, - Uh)l < ClV - Vh 11,2 IU - Uh 11,2 

Ch2 IvI2,2 2 Ch2 1Ig912 < Ch2 llgllq. 

Consider next the second term (a - ah) (v, U - Uh). Since the derivatives of the 

f ij are bounded in R2, we have 

lai1 - aif =f [f1ij(Vu) - f i(Vuh + sV(u - u))] ds 

<CIVu-Vuhl inQ, 

so that 

laia - a'II2 < CIu- Uhl2, i,j= 1, 2. 

Further, by Sobolev's inequality and Lemma 3, 

(3.6) IvI1,- < CIV12,q < Cllgllq. 

Thus by Theorem 1, 

(a - ah)(v, U - Uh)I < CIVIl o max Ila,, - a'IhI2 Iu - Uh 1,2 
i,jI 

Ch2 llgll q 

Finally, for the boundary term, we have by (3.6) 

fVnGP 
- 

uh)ds < 
CIVl,IJkPo hII 

- Uh l,F < CIllgllq I P - UhI1f,r 

It is therefore sufficient to prove that 

(3.7) IkI-UhI11,1T <Ch2. 
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To see this, let hp, be the piecewise linear function of arc length s defined on r which 

agrees with ep at the vertices on F. We then clearly have that 11p - hp 111 r < ChO I PI2 1r , 

and therefore (3.7) will follow if we prove that IIfh - UhIIl,Fr < CO2. To show this, we 

argue as follows: For any P E F, let Tj be the triangle in 2h\2h such that P E Tl. Let 

P1 and P2 be the vertices of T1 on F, let s1 and s2 be the arc lengths corresponding to 

P1 and P2, and assume that P corresponds to s = s? + X(s2 - s1) where 0 < X < 1. 

Let now P be the point on the chord P1P2 such that dist (P, P1) = X dist (P1, P2). Since 

we are interpolating linearly, we then have (p,(P) = uh(P). It is easy to see that 

dist (P, P) < Ch2 . Further, since uh is the interpolant of u on T1, we have that IVuhI 

is bounded on T7 and therefore 

IPh(P) - Ut(P)I = Iu,(P) - Uh (P)I < CI for P E F, 

which implies that IIf, - uh Ill r < CO2. This completes the proof of Theorem 2. 
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