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The Effect of Interpolating the Coefficients 
in Nonlinear Parabolic Galerkin Procedures * 

By Jim Douglas, Jr. and Todd Dupont 

Abstract. Error estimates are derived for a class of Galerkin methods for a quasilinear 

parabolic equation. In these Galerkin methods, both continuous and discrete in time, 

the nonlinear coefficient in the differential equation is interpolated into a finite-dimen- 

sional function space in order to compute the integrals involved. Asymptotic error esti- 

mates of optimal order are produced. 

Introduction. In order to use Galerkin methods for parabolic problems, it is neces- 
sary to compute large numbers of integrals involving the coefficients in the differential 
equation. An efficient and practically successful method of approximating these integrals 
is to interpolate or project the coefficients and evaluate the integrals by formula. It is 
possible to show, for a rather general collection of approximation schemes, that the 
resulting approximate solution is essentially as good as if the integrals had been evaluated 
exactly. 

These procedures are particularly useful on nonlinear parabolic problems in which 
we have used a Galerkin-type procedure in the space variables and have discretized the 
time variable. For these procedures, it is necessary to reform the matrices at every time 
step; the matrix elements are the integrals referred to above. The effect of this is that 
much of the computation time is spent forming matrices. Hence, economies in the 
formation of the matrices have a very important effect on the total cost of the compu- 
tation. 

We present here several error estimates for approximations of the solution of a 
particular nonlinear parabolic problem. In the process of proving these estimates, we 
develop some approximation theory which may be useful in producing similar estimates 
for other problems. 

In Section 1, we illustrate how to handle a very simple, specific example. In Sec- 
tion 2, we define the principal differential problem and present several error estimates 
under abstract hypotheses on the approximation scheme to be used for the coefficients. 
In Section 3, we develop examples of function spaces and interpolation methods which 
satisfy the abstract hypotheses of Section 2. Finally, in Section 4, we state some speci- 
fic applications of the results of Sections 2 and 3. 
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1. An Example. Consider the problem 

au/at - (alax)(a(x, u)aulax) = 0, (x, t) E I x (0, TI, 

(1.1) (au/ax)(0, t) = (au/ax)(l, t) = 0, 0 < t < T, 

U(X, 0) = Uo(X), x C I, 

where I = (0, 1). Assume that there are positive constants ao and al such that for any 
(x, r) E I x R, 0 < a < a(x, r) < a1. Let6={x}=O,0 = x0 <Xl<*<XN= 

hj = x1 -x l I,1 = (x1 l,x,),andh=maxl<,j<N hi. Take M= Mi(3,6)= {veC (I): 
v is a cubic polynomial on Ii, j = 1, * * *, N}; i.e., M is the Hermite piecewise cubic poly- 
nomial space over the partition 6. Also, take a = {tk}M=k , 0 = to <t<.*. <tM = T, 

Atk = tk - tk l- At = maxl?k<M Atk. The sequence {Un}M=0 in M will be taken to 
approximate u at times tn, n = 0, ** ,M. First, choose UO E M such that uo - UO is 

small; UO can be, for example, the L2 or H1 projection of uo or its Hermite cubic inter 
polant. The successive Un's are defined by the relations 

(1.2) (a u+1,V (x, E ~1)auln+1/2 d V= 0, V E M, tUn+ 1/2, V) + n+ 1/2) a ' dx / 

where (f, g) = f1 fgdx, Un + 1/2 = ?/2(Un + 1 + Un) and atUn + 1 /2 = (Un + I-Un)lAtn + I 
The function En+ 1/2 is a prediction of Un + 1/2 and is given by 

SUn_1/2 + ? + jt (Un-1/2 - Un-3/2), n > 2, 

(1.3) En+l/2 =U1 + (At2 /2At1)(U1 - UO), n = 1, 

12( ? +Uo), n=0, 

where Y1 E M satisfies 

(1.4) ((Y1 - UU)/At1, V) ? ( a(x,U0) (+ UO)0 dxV=0 VeM 

The function 'a(x, Z), for any Z E M, is to be an approximation of a(x, Z); the detailed 
construction of a will be discussed later. 

A convenient basis for M is the set {Vil2NO+ 1, chosen so that for all i and j betwee 
0 and N 
(1.5) V2i(xj) = 

V2i+1(xi) 
= 

5ii, V2i(xJ) 
= 

V2i+1(Xi) 
= 0, 

where 5i, is the Kronecker delta. The functions V2i and V21 + are the "value" and 

"slope" functions at the knot xi. Note that, with this basis, it is easy to construct the 

Hermite cubic interpolant of a differentiable function; we could, for example, define 

N 

(1.6) U0(X) = E (U0(xi)V2i(x) + ? (Xi)V2i+l(X)) 
i=O 
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Equation (1.2) is equivalent to 

(1 .7) (C + /\tn + 1 An + 1 /2 /2)('Yn + 1 - Yn) = -,At n + 1 An + y2n 
where 

=n ('Yn,O 'n,yn 'yn,2 N+ 1) 

(1.8) 
2N+ 1 

Un E 'Yn,j V C = (ci1) = ((Vj, Vi)), 
j=0 

(19)~~~~ n+ 1 /2 = (an+ 1 /2,ij) =((a(x, En+1l 2)Vi!, Vi))-. 

The (2N ? 2) x (2N + 2) matrix C can be written as 

Do F1 
0 

FT D1 

(1. 10) c= | tridiag{Fi' ,D. Fj+ }, 
*FN 

where D =DLi + DRi and, using ho = hN+ 1 = 0, 

( 936hz - 13214\ (936hi+1 132h.+1 
DL = (2520)-i - D3Rh 2h 

(2520) 132hl+1 24hi+ 1/ 

(1.1 1) 

F = (2520)1 (324h. - 78hf\i 
78h2 - 18h!3 

Ehe matrix A = An + 1/2 can be written as 

Go H1 

*. 0 

HT G 

I1.12) A = . = tridiagfHiT, Gi, Hi+ 1} 
H N 

0 HT *GN/ 

where Gi = GLi + GRi with GLo = GRN = 0; the formulas for GLi, GRi, and Hi will 
be given after the description of a. 

For W C M, we shall define 3(x, W) by first defining a'(x, W) and then modifying 
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a^(x, W), if necessary, to insure that a(x, W) is bounded above and below by 3ac,/2 and 

%0/2, respectively. The functions a^ and a will be cubic polynomials on each I,. The 
function a^(x, W) can be defined by taking 

(1.13) VLj = a(x_ 1 X W(xjx 1 )), VR1 = a(xj, W(xj)), 

SL1 = (d/dx)(a(x, W))(xi-1), SR1 = (d/dx)(a(x, W))(x1), 

where these four numbers give the values and slopes of at(x, W) at the left and right ends 
of I4; in this case, a' is the Hermite cubic interpolant of a(x, W). Another reasonable 
choice for a' is to take VL, and VR1 as above and choose SL, and SR, such that a^(x, W) 
interpolates a(x, W) at the two points ?/2(x_ 1 + xd) ? Oh,, where 0 < 0 < 1/2; in this 
case, a(x, W) is just the cubic Lagrange interpolant of a(x, W) using the four points x11 
?h(x. 1 + x1) ? Oh,, xj. This second technique gives a better approximation to a(x, W) 
and can be more or less work to produce than the Hermite interpolant, depending on 
the form of the function a(x, r). There are many other useful ways in which we could 
choose a', and some of them will be discussed in Section 3. 

The function a(x, W) can be obtained from a^(x, W) as follows. Let of = 

min{VL1, VR1} > a0. If ISLj I> y = /1zh1, then change SL1 to be such that ISL1I = T 

and its sign is unchanged. Similarly, if ISRj I> y, multiply it by y/ISRj1. With a defined 
in this fashion, we know that 

ao/2 <a/2 <a(x, W) <a/2 +max{VL1, VR1} <3ac1/2, xEIi 
Thus, to produce a from a', we simply check the size of SL, and SR, and replace them 
if they are too large. 

With a(x, W) defined on I, by VL, VR, SL, SR, we can give the formulas for H1, 

GRj_ 1 and GL,. Let 

Hi= (2520)-l(l P), GL =(2520)-1( ), 

(1.14) 3 Pq3 q4 

GRj1 =(2520)-' 1 92 

3 g4 
Then 

p1 = -(15 12(VL + VR) + 324(SL - SR))h71, 

P2 = 288VL - 36VR + 54SL - 18SR, 

p3 = 36VL - 288VR - 18SL + 54SR, 

(1.15) P4 = - (42(VL + VR) + 3(SL - SR))hj5 

q1= -p1, q2 = q3 = -P2X 

q4 (78VL + 258VR + 15SL - 21SR)hj, 

g1 = P1, g2 =g3 =-P3. 

g4= (258VL + 78VR + 21SL - 15SR)hi. 
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It is possible to show that if a(x, u) and u are sufficiently smooth and Atk+ l/A tk 

is bounded, then there is a C, independent of the hi's and Attk's such that 

(1.16) max 11U,, - u(, tn)I2(j) < C(h4 + (At)2). 
O?<n <M L(I 

This estimate is of the same form as we would expect if the integrals had been evaluated 
exactly. 

2. Procedures and Estimates. In this section, we shall demonstrate several error 

estimates for approximate solutions of the following parabolic problem: 

at - V -((a(x, u)Vu) = - (x, t) x(O,T], 

(2.1) au (xX t) = O, (x, t) E a x (0, T], 

U(X, 0) = u0(X), x E 

where Q is a bounded domain in RP with boundary M2, p < 3, and a/av is outward 

normal differentiation on M2, and the function a(x, r) is such that there are positive 

constants ao and a i such that for all (x, r) C Q x R, 0 < o0 < a(x, r) < oil. The error 

estimates presented here are abstractions and slight improvements of those of the authors 

[6] and of Wheeler [1 1 ]. 

We shall assume that u(x, t) is a solution of the weak form of (2.1) [8] in the 

sense that for each time 

(2.1') (au/at, V) + (a(u)Vu, VV) = 0, 

for all v in the Sobolev space H1(Q), where (f, g) is the L2(2) inner product, and we 

have suppressed writing the x argument of a(x, u). If u and MQ are smooth, then u is 

a solution of (2.1) if and only if it is a solution of (2.1'), provided of course that the 

initial values coincide. 

In each of the procedures that we consider for approximating the solution of 

(2.1), we shall use two spaces M and N of functions defined on Q. The space M will be 

a finite-dimensional subspace of H1(Q), and the approximate solution will be an element 

of M for each time. The space N will be a subspace of L'(Q), and an element of N will 

be used to approximate the coefficient a at each time. Assume that there is a map 

d: M > N, such that for all W E M 
(2.2) %o /2 < ?a(W)(x) < 3a 1 /2. 

Take UO E M to be an approximation of uo. The continuous-time Galerkin approx- 

imation of the solution of (2.1) is a differentiable map U: [0, T] -* M such that 

(au/at v)+(ad(U)VU,VV)=O, VE M,o< t<T, 

(2.3) U(O) = U0. 
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A discrete-time Galerkin approximation of the solution of (2.1) is a sequence m 0 
in M, where Un is to approximate u(, tn) and O = to < t1 < ... < tM = T. The 

sequence {Un}mL0 will then be required to satisfy an approximation to (2.3) of the form 

(2.4) (atUn+1/2, V) +("(En+1/2(U))VUn+12 VV)=O, Ve M,On<M, 

where Atn = tn-tn- 1' atrn+ 1/2 = (rn+ 1 -rn)(Atn + 1)- 1, rn+ 1/2 = 1/2(rn + 1 + rn) 
and En + l l 2(U) is an approximation of Un + l /2. The function En + 1/2 (U) will be taken 

to depend on a certain number of Uk's with k < n + 1. Note that if we take 

(2 .5) En + 1 /2 (U) = Un + 1/2 X 

then (2.4) is the Crank-Nicolson approximation to (2.3) [6]. If we chose 

At 
(2.6) El/2(U) = U1/2, En +12(U) = Un + 2 (Un-Un- 1), n ? 1, 

or use (2.6) for n = 0 and 1 and 

?Atn+ 1?+Atn (2.7) En+112 =Un-/2 + _ , (Un1/2 -Un-3/2), n > 2, 

then for n > 1, (2.4) defines {Unj in terms of a sequence of linear algebraic equations 

that are second-order correct (in Atn) approximations of (2.3). In practice, we might 

replace the first step of (2.4) by a predictor-corrector procedure and employ (2.6) or 

(2.7) thereafter, as was indicated by the example of Section 1. This additional compli- 
cation can be treated by arguments similar to those in [6], [11], but will not be dis- 

cussed here. 

In both the continuous and discrete time cases, we shall present bounds for the 

error in the "natural" or "energy" norm and in the L2(Q)-norm. 

For integer s > 0, use the norm on the Sobolev space Hs(Q) given by 

(2.8) IIfIs - Z IIDaI2, 

where 110112 = (s, s), D'? = (a/ax)1 ... 
f(aaxP)P for p-tuples of nonnegative inte- 

gers a = (a * ap), and lal = a, + P Extend (,) to give the duality be- 

tween H1 (Q) and (H1 (Q))'. Let H- 1 (Q) = (H1 (Q))'; some authors use H (Q)= 

(Ho (Q))', but this is not convenient here. Equip H- 1 (Q) with the operator norm; i.e., 
take 

(2.9) = sup {(/, I): i E H1 (Q), 11'11 = 1. 

If 0: [0, T] -+ X, where X is a normed space with norm 11 lIx, then we shall use the 
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following notations: 

(2.10) L2(X) lf0II)IIxdt, '/"L (X) sup It< (t)IIx 

In the special case, X = R,we shall use the usual notation I4IX L2(OT)' and in the case, 
X = HS(92) or LS(2), we shall write lI"L 2(HS)' tIIIL2(Ls) etc. 

We shall assume that the solution u of (2.1') has a uniformly bounded gradient. 
Also, we shall assume that the solution u and the mapping a are such that there exist a 
constant L and a nonnegative function 0(t) such that for all W C M and all t E [0, T] 

(2.11) 11la(W) - a(-, u)II < LIIW - ull + 0(t). 

In the examples which we shall consider in the next section, L is approximately the 
size of the Lipschitz constant for a(x, r) in the variable r, and 0(t) is approximately the 
size of 

inf{la(-, u) - I11 + llu - Xli: ' E N, X E M}. 

The relations (2.2) and (2.11) are all that we assume about the approximation 
process for a(x, u); these two assumptions allow estimates to be derived by methods 
that are very close to those of [6] and [11] . First, we shall estimate the error of the 
continuous-time Galerkin approximation in the "natural norm" for this problem. 

THEOREM 2.1. There is a constant C, depending only on a. ? 1, L, IIVuIIL ??(L ?(Q))' 

and T, such that if U is the solution of (2.3) and u is the solution of (2.1'), then 

(2.12) L|U_ UII L-(L2(n)) + IIU -ulL2(H1()) 

where 
S C[ll(U- u)(O)II + E + 110 IIL2(OT)I 

E =infllu- Zi ? llu - Zll +J- (u -Z) 2 H 1Z [0, T]-41,g E n u LO?(L2) L2(HI) at L 

(2.13) Z continuously differentiable on [0, T]} 

Proof. Let Z be an arbitrary differentiable map of [0, T] into M. Then, with 
= u - Z and a = U - Z, we see from (2.1') and (2.3) that for V CE M 

tat 4' 1 + (3a(U)\7, \7V) 

a V + (a(U)Vr1 + [a(u) - a(U)]Vu, VV), 

where we have suppressed the writing of the x variable in a(x, u). Using V = a at each 
time, we see that 
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2 dt (1It1(t)112) + 
I 

a?oIIV0112 

(2.15) 
+ IIVuIiL )[ L(II'0I1 + llrll) + O]IIVOII 

< 4 ao IIVi112 + C1I1l12 + lLriIIl + 116112 + 021 

where C depends only on ac ?a1, L and IlVull L 0(n); in deriving (2.15), we used the 

inequality cd < ec2 + d2/4e, valid for all c, d and all positive e. The estimate (2.15) 

and Gronwall's Lemma imply that there is a C depending on the permitted quantities 

such that 

L (L 2) 
11 L 2(H1) 

(2.16) <( CF116(O)II + ll2 an + 110 II 
2 

1. 
L216 ' ( " L2(H1) + atI L2(H- ) L (O,T)J 

The triangle inequality and taking the infimum on Z give the estimate (2.12). 

Now assume that if V G M then IIVVII .(n) is finite; this is, of course, valid for 

the piecewise polynomial spaces frequently employed. For each t, define W(t) E M by 

(2.17) (a(u)V(u - W), VV) + (u - W, V) = 0, VE M. 

Thus, W: [0, T] -+ M is a weighted H1 (E2) projection of the solution for each t. The 
next theorem, which says that Ilu - Ull 2 is about the size of Ilu - Wll 2 

will be used to derive L2 error bounds.LL 

THEOREM 2.2. There is a constant C, depending only on ag aj 1, L, IIVWIL o(L ?) 
and T, where W is defined by (2.17), such that if u and U are the solutions of (2.1') 

and (2.3), respectively, then, with t = u - U and r1 = u - W, 

(2.18) IID IIL(L2) < C[(0() + l?7IILo(L 2) 
+ a + 

2(H-1) 1 (L 2(0T)] 

Proof. Note that, from the definition of W and 71, 

(2.19) (a(u)VT?, VV) = - (1, V), V E M. 

Letting i = U - W and using (2.19), we see that for V E M, 

(30/ t, V) + (a(U)V6, VV) = (3rn/3t, V) + (a(u)Vu -ai(U)VW, VV) 
(2.20) 

= (3rn/3t, V) + ([a(u) - ?a(U)]VW, VV) - (77, V). 

With V = 6, (2.20) implies that 
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2- dt(116112) + -ollV011 

(2.21) < 10177 1111 + IIVWII Wh[L(lill + 11011) + O01IV711 + 1171111911 

< -&lIIIV6112 + C + ll71ll2 + 1l6ll2 + 02] 

where C depends only on ao , L and IIVWIIL-(n). Gronwall's Lemma and (2.21) imply 
that 

(2.22) II0IL0 ?(L 2)< C 11(0)1 + llll L2(L 2) a t L2 (H- 1) 1 I 0L2 (oj 

The triangle inequality then implies the conclusion (2.18). 
Asymptotic error estimates are easily obtained from Theorem 2.2 provided one 

can demonstrate uniform boundedness of VW; one way this can be done is by using so- 
called inverse assumptions [1 1 ] . 

In order to derive estimates for the discrete time procedures, we need some assump- 
tions on the functions En +1/2(U). Each En+ 1/2(U) will be assumed to be defined by 
a function, which we shall also call En + 11/2 of Un + 1 5 Un, Un - 1 Un - 2; in the cases 

E1/2 and E3/2, we of course assume there is no dependence on U_1 and U_2. It will 
be assumed that the rules which define the En + 1/2 s are such that there is a constant 

K1 such that, for any permitted partition {tn}M=0 of [O, T] and any V., * , V4, Z 1 
***,Z4e L2(Q?), 

4 

(2.23) IE1n+1/2(V1,* , V4)-En+1/2(Zl,. ,Z4)11 ? K1 E IIV1-Z1II2. 

The functions En+ 1 /2 will also be assumed to be second-order correct in the sense that 
there is a constant K2 independent of the partition {tn}n=O such that, if LI82w0t2IL,2 (L 2()) 
< 00 

1 lw(tn + l /2) -En + l /2 (wn + l 5 Wn 5 Wn - l 5 Wn -2)II 

(2.24) nK2(At)3$* |2W 2 
< K2 (At) 3 ~ dt, 

where t *_2 = max{O, 
tn-2} 

and At = max{ Atn+, At, At\t_}. Note that (2.23) is 

always satisfied by En+1/2 defined by (2.5) with K, = 1?, but that we need Atn + 1/Atn 
bounded to get (2.23) for En+ 1/2 defined by (2.6) or (2.7). The relation (2.24) is satis- 
fled by each of the examples of En + 1/2' 

In order to simplify the analysis, we shall consider only the case of uniform time 
steps; i.e., take tn = nAt, where At = TIM. The function a(x, r) will be assumed to 
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have uniformly bounded first and second derivatives with respect to r. Take L of (2.11) 
large enough to bound 13a(x, r)I3rl, and let L1 bound 132a(x, r)/1r2 1. In addition, we 
shall assume that the solution u of the differential problem is such that 

(2.25) +I 2 + at + at < 
L2(H__) lat L2(H) L L00(L ?) L??(H1) 

Adopt the following discrete analogues of the notations defined in (2.10); if q: 

{tn}nM -+ X, X a normed space with norm 11 Ilx, then 

IIII?? = max Ill'nlIx, 
LA t(X) O<n<M 

(2.26) M-1 

II~~II22 = Z II~~t~n+i,2II'At. L At(X) 110n+112 X 

In the case 0: [0, T] R, use the notation 

M-1 
11I,1122 = a 10l(tn + 1 /2)12At, 

LAt n-o 

THEOREM 2.3. There are positive constants C and r0, depending only on a, a1 

L, IIVuIIL00(L0) K1, K2, and T, such that if u is the solution of (2.1'), {Un}M 0 is the 
solution of (2.4), and tn = Un - Un, then, for 0 < At < T0, 

(2.27) I1Lot(L2) 
+ III2 1(H1) < C{lUolI + E + (At)2'y + 11011 }2 

LAt 

where 

E = inf 11 t(L2 
) + 11771121 + 77/ltl L 2 (H- 1) 77 = u Z, 

(2.28) Z: [0, T] M a continuously differentiable map}, 

z = 
1132U/at2IL2(L2) 

+ 1133U/at3IIL2(H-1) 

Proof. Let Z: [0, T] -> M be an arbitrary continuously differentiable map of 
[0, T] into M. Using 77 = u - Z and t = U - Z, we can see that for V G M 

(aton+ 1 /2' V) + ("(En + 1 /2)V6n+ 1 2 5 VV) = (tnn+ 1 /2 + Pn V) 

(2.29) + (gn, VV) + ([ '(En+1/2) -a(u(tn+1/2))]VUn+1/2, VV) 

+ (d(En+1/2)V71n+1/2 VV), 

where 

En+ 1/2 = En+ 1 /2(u), 

Pn au (tn + 1/2) -atUn+ 1/2 

= ln+ i 1 2 a3u 

8AtJtn k T +I2 



370 JIM DOUGLAS, JR. AND TODD DUPONT 

gn a(u(tn + 1/2))V[u(tn + 1/2) -Un + 1/2] 
(2.30) 

-1 f ~~~~n+1 _2U 
= 4 a(u(tn + 12))V n1 (At-2 1r-tn + 1 / 12 (r) dr. 

Taking V = in + 1/2 in (2.29) gives 

11 in+1112 - 6nI 112] + 1o 11V6n+1/2112 

< (itrni+1/2 1K1-+1 ? IPn11-1)116n +112111 + lg9n11llVan +1/211 

+ (L llEn + 12 U(tn + 12)11 + 0(tn+ 1/2))11VUn+ 1/2 11L 00(n) 11V6n + 12 

3 
+ 2a111V71n+1/2111 V6n+1/21 

(2.31) 2 

< 4aOjIVi6n+1/21I2 + C[V30?rn+1/2I I + lIpn II + llgnII 

+ 11En +1/2 (Un +1 ' Un , Un -1 ' Un -2) )-U(tn +1/2 )112 

+ ?(tn+ 11/2) + , (1I171112 + 11601112) + IIV?7n + /2 112] 

where C depends only on ac , a 1 L, IVUIILOO(LOO) and K1; in the cases n = 0 or 1, the 
i and q terms with negative indexes are omitted. It is easily seen that 

11i2 1 < (\t)3(320)-ltn+1 3u 112 

(2.32) 

llgn 
1 2 < (':t) 3 (01) 2(48)-l 

+ 2U2 
|dr. 

The discrete analogue of Gronwall's inequality implies that there exist ro > 0 and C, 
depending only on the permitted quantities, such that for 0 < At < r05 

1 
1L t(L 2) + 111 

t2 1t ) 

(2.33) < C[IIt0II + lI71LO(L2) 
+ '1711 L2 t(H1) 

+ I 
t7711L 2 0- 1) 

+ 
(At)2y 

+ 1101 L 2 t(O,T) 

Note that since (On + 1 /2 is the average of 771a/t on [tn, tn + ii, 

(2.34) 113t711 L2 (H-1) 
< I117/ltI L 2(H 1) 

Using (2.34) in (2.33), applying the triangle inequality, and taking the infimum over all 
possible Z's gives the conclusion. 
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In order to get results that will be used to give L2 -norm estimates, we shall again 
compare the parabolic approximation with the solution of the elliptic problem (2.17). 

THEOREM 2.4. There are positive constants r0 and C, depending only on a05, aj 
L, IIWII K1 and T such that if u is the solution of (2.1'), {Un}lm0 is the solu- 
tion of (2.4), W: [0, T] -* M is given by (2.17), 71 = u - W, and tn = Un - 

Un, then, 

for 0 < At < r, 

L2,5) 1 L2) L ~1 ll L( ) 
7 

+ 11011 2 + (At)2Y] 
(2.35) IILI + 117711(L2 + at L2(H-1) LAt 

where y depends on L1, K2, the norms of u in (2.25), and the parameters listed above. 
Proof. Let i = U - W. Then, from (2.4) and the average of (2.1') at tn and 

tn + 1, we see that for V E M 

(at6n+ 1/2' V) +a a(En+ 1/2)V6n+ 1/2, VV) 

(2.36) (Otln + 1+/2 + PnE V) + ((a(u)V?)n + 1 / 2, VV) 

+ ((a(u)VW)n + 12 - n+ 12)VWn+ 12 VV), 

where En + 1/2 = En+ 1/2 (U) and 

(2.37) 
-n 

= 

t/n+/ tun+1/2 = 2At (tn+1 
- 

r)(r - 
tn) t3 (r)dr. 

Note that we can replace the term containing V71 by using (2.19) just as in the proof 
of Theorem 2.2. Next note that 

(a(u)VW)n + 1/2 -)VWn + 1/2 

=(a(u(tn + 1/2 ))-a 3(En + 1/2 ))VWn + 1 /2 
(2.38) 

+ (a(u)n + 1 /2 -a(u(tn + 1/2)))VWn + 1/2 

+ Y/4(a(u)n + 1 - a(U)n)V(Wn + 1 Wn)- 

The first term in the right-hand side of (2.38) is treated as in the proof of Theorem 2.3. 
The second term is bounded as 

11(a(u)n + 1 /2 - a(u(tn + 1 /2 )))VWn + 1 /2 112 

(2.39) 6 IIVWII12 0( )(At)3(48)- It;n+1 (a(u))|| d'r; 

the integral is bounded in terms of L, L1, and the norms in (2.25). The last term in 
(2.38) is bounded as 

II (a(u)n + 1 -a(u)n)V(Wn + 1 - Wn) l12 
(2.40) 2 + W 2 

2Lu 2 
tn+1 

W d112 
< 

2 L tLOL 0 ~ t 
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The integral in this term is easily bounded by using the defining relation for W to see 
that 

(2.41) Iat77|| I + IIz7I 1' <c at I + lull1 

where the constant involves ac , tl, L and 11304 L o(Lm)' 
The above relations, used with (2.36) with V = an+1/2 ' give the conclusion just 

as in the proof of Theorem 2.3. 

3. Construction of a(U). In this section, we shall present several examples of 
triples (M, N, 'd) where the map a: M -* N satisfies (2.2) and (2.11). We shall be par- 
ticularly interested in sequences of such triples for which L of (2.11) is bounded and 
the norm of 0 tends to zero. The map a will be constructed in two steps. We shall 
first study a map a': M -* N which satisfies (2.11) but which may fail to satisfy (2.2). 
The map a will then be constructed using a'. There are two reasons for studying a' 
independently of a. The map a' is useful by itself in situations where (2.2) is not needed; 
this would be the case for the numerical quadratures of a term f(x, t, u) added to the 
right-hand side of (2.1). Also, if certain "inverse assumptions" hold on M and N, then 
a(w) = a^(W) for the functions W in which we are interested, though not necessarily for 
all WE M. 

The function ai(W) will be the projection into N of a(x, W) using an inner product 
(, )p. The choice of reasonable inner products is quite large and, by varying N and 
(, )p, we can, for example, make a^(W) a pointwise least-squares fit, a Lagrange or 
Hermite interpolant or a smooth-spline-type interpolant. The interpolation schemes so 
constructed can be local or global in character, as is convenient. 

Suppose that an inner product ( , )p is defined on a class of functions which con- 
tains M u N u {a(- , u): 0 < t < T} U a( -, M), where u(x, t) is the solution of (2.1) 
and assume that ( , )p defines a norm 11 lp on N. Then define at(W) for W E M to be 
such that a^(W) E N and 

(3.1) (a(W) -a(x, W), V)p = 0, VE N; 

i.e., take a^(W) to be the unique element of N such that ll(W) - a(x, W)llp is minimized 
on N. A useful example of such an inner product is 

J 
(f, g)p = E f(Zk)g(Zk)5 

k=1 

where the Zk's are in Q; all that is required for ( , )p to be defined is that the functions 
in M u N u {a( -, u): 0 < t < T} U a( -, M) have pointwise values at the points Zk. 

The following lemma will be used in finding L and 0 such that (2.11) is valid. 
LEMMA 3.1. Suppose that ( , )p is also defined on a vector space M containing M. 

Let u(x, t) be the solution of (2.1). Suppose that there exist constants m0, yl, 72 such 
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that 

(3.2) IIVII <?7Y1IIPVII,, V E N, 

Ila(, W) - a( , u( , t))II p <-'Y2IIW- uIIP W E M, 0 < t < T. 

Then 

(3.3) 12(W) - a, u( , t))II <zyOzl0y1y2llW - Ull + 0(t), 

where 
0(t) = inf{IIa* - a( , u( , t))II + y1 Ila(* , u( , t)) - a* Il 

(3.4) 
+ y1y2Ilu+ - u( , t)IO +? y0zyly2Iu - u+11: a* C N, u+ E M}. 

Proof. For any a* C N, 

11ac(W) - a(u)II < IlIa(W) - a* 11 + Ila* - a(u)II 

(3.5) ?y71II12(W) -a*llp + Ila* - a(u)II 

< 'yj Ila(W) - a* llp + Ila* - a(u)II, 

where a(u) = a( , u( , t)) and a(W) = a( *, W( * )). In the last step, we used the fact 

that 

IIa(W) -a*112p = IIa(W) - c^(W)II2 + 112(W) a* 112 > lla^(W) - a* 112, 

which follows from (3.1). Next note that 

(3.6) IIa(W) - a*II < lIa(W) - a(u)II + lIa(u) - a*llp < 7211W - ullp + Ila(u) - a*II,. 
0 

For any u+ E M, we have 

IIW - u%? < IIW - u+lip + IIu+ - ullp < 'yOIIW - u+I + IIu+ -ullp 
(3.7) 

< Y0IIW - ull + yollu - u+II + Ilu+ - ullp. 

Use (3.7) in (3.6) and the result in (3.5) to obtain the conclusion. 
0 

In most of the applications of this lemma, M C N= M. In each example in which 
we consider a sequence of pairs of spaces M and N, we shall be able to choose the inner 
product (, )p so that m , 71, 72 are independent of particular element of the sequence. 

Before we discuss the construction of a from a, we shall present several examples 
of spaces M and N and inner products (, )p. In the first two examples, ai(W) is a weighted 
least-squares fit of a(W) = a( , W( )) at a finite set of points; included in each example 
is the important special case in which a^(W) is obtained by Lagrange interpolation of 
a(W). 

It is important to note that if (f, g)p = E cjf(xj)g(x1) for positive ci's, then the 

72 of Lemma 3.1 can be taken equal to the Lipschitz constant for a(x, r) as a function 
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of r. In the examples that follow we shall assume that 

(3.8) la(x,r1) -a(x,r2)I ALjrl -r21, 

for allx E Q and rl, r2 E R. 
Example 1: Local, One-Dimensional, Polynomial Least-Squares Fits. In this 

example, Q is to be the interval (0, 1) and a2(W) is to be a polynomial on certain sub- 
intervals that is a discrete least-squares approximation of a(W) on each subinterval. Take 
apartition6= {x1} 0, O=x0 <x1 <...<xJ=l. Let I,=(x11,x1),h1=x1-x , 
and h = max hj. For some positive integer N, take N to be the set of all functions on 
Q which are in PN(4) for each j, where PN(S) is the set of all polynomials of degree 
less than N + 1 on S. Let M = N n H1( ?); i.e., M is the set of all continuous functions 
on Q which are in PN(4) for j = 1,* * , J. 

For some K >N,let 0<eO< el <..<eK < 1 andO<bk,k= O, .,K. 
Define 

J K 

(3.9) (f,g)p = E E bkf(Xj-1 + h1e9)g(Xi-1 + hiek); 
j=1 k=O 

where f(x11 + hie0) and f(x11 + h1 eK) are taken to be limits from the right and 
left, respectively, in case eo = 0 or eK = 1. Note that, with this N and ( , )p, the con- 
struction of ?(W) is done locally, that is, subinterval by subinterval. If we set M = N, 
then a simple homogeneity argument shows that, for 1 = 0 and 1, 

(3.10) zY = sup1{IfI/ bkf (ek)1 : 0 # f E PN((0' 1)4. 

Thus, the y05 yl and 72 of Lemma 3.1 are independent of the partition 6; they are 
completely determined by L, N, {ek} k= O, and {bk}kO. 

In order to estimate the infimum in (3.4), we shall use the following lemma. 
LEMMA 3.2. There is a constant C, independent of the partition 6, but depend- 

ing on N, {ek} k -o and {bk} k= 0o, such that if 1 < S < N + 1, then, for all g E Hs(Ij), 

(3.11) inf{llg - g+ II + lg - g+ IIp: g+ E NG } <N Chs[ f (g(S)(x))2 dx] 1/2 

This lemma is easy to prove by taking g+ as a Lagrange interpolant of g on each 
subinterval; we shall not prove it here since it follows from a more general lemma in the 
next example. 

We can conclude from Lemmas 3.1 and 3.2 that, provided u and a(u) are suffi- 

ciently smooth, 

(3.12) lla'(W) - a(u)II < LIIW - ull + 0(t), 

where 
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(3.13) L = 7o07L, 0 = Chs [1(Ka/3x)suII + II(3/1x)Sa(x, u(x))III, 

for 1 <AS AN + 1, mo and 71 are defined by (3.10), and L is such that (3.8) holds. 
It is of interest to note that if we choose {ek} and {bk} such that 

K 1 

(3.14) i: bkf(ek) = ? f(x)dx, f E P2N((O 1)), 
k=O 

then mo = yl = 1. The relation can be achieved by taking K > N and {ek, bk} to be 
the Gaussian quadrature points and weights, respectively. In the case K = N, a(W) is 
just the Lagrange interpolant of a(W) with respect to the points x_ 1 + ek hi; thus the 
bk's need not be used in computing a(W). One further remark about the case in which 
K = N < 3 and the ek's are the Gaussian quadrature points is that we can use a(W) 
directly instead of a(W) even though a(W) may fail to satisfy (2.2). To see this, note 
that, for any W E M, we have the estimate 

(3 *1 5) ?o ll V'112 < (a(W) V', V'I) < ?f 1 11 V'12, V E M; 

this uses the facts that a(W) = a(W) at the points x1 1 ekhi, that Gaussian quadra- 
ture on N + 1 points is exact on polynomials of degree 2N + 1, and that for N < 3, 
2N + 1 > N + 2(N - 1). The estimate (3.15) and a crude upper bound on 16(W)I in 
terms of ao, a1 and N allow us to dispense with (2.2) in the proofs of Theorems 2.1 
through 2.4 in this case. 

Example 2: General Construction of Local Least-Squares Fits. Take a finite col- 
lection of pairs of sets Sk C Bk, k = 1, * *, K, where Sk and Bk are the closures in 

RP of their nonvoid interiors Sk and Bo. For each k = 1, * *, K, let Nk be a finite- 
dimensional subspace of the space C(Bk) of continuous functions on Bk, and let pk be 
a finite set of pairs (e, b) where e E Sk and b > 0. Assume that for each k = 1,* , K, 

1101IL2(Sk) and "1" k ( bo2(e)) 

define norms on Nk. 
Let Q be a bounded domain on RP that is "triangulated" in the following fashion. 

Assume that Q = UiL 1 a,, where, for each j = 1, * * *, J, a, is the image of a closed 
set rF under a nonsingular affine map T1 on RP, where for some positive integer k1 < K, 

Ski C rP C Bkj. Further assume that the boundary 3au has zero p-dimensional measure 

for each j and that, for 1 / j, ao is disjoint from a0. 1 ~~~~~~~~Ig 
Let N be the space of functions 0 on 2 such that the restriction of 0 to each a0 Ig 

lies in the set {j T* V: V E Nk1}, where 1T is the inverse of T1 and (1T* V)(x) = 

V(1T(x)), for x E a,. For functions f and g on Q such that their restrictions to a9 have 
continuous extensions to a0 U T. (Skj), define 

I9 Ij 
J 

(3.16) (f,g)p = Z E2 bf(T1'e)g(Tj e)I VI, 
j=1 (e, b) Eki 
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where Tj is the linear part of Tj and ITji is the absolute value of det(Tj). In (3.16), if 
(e, b) EE pk is such that e EE a Sk, use the continuous extensions of f and g to Tlj(Ski) 
to evaluate f(Tie) and g(T e). Note, in particular, that ( , )p is defined on N. Hence- 
forth, we shall ignore the technicality of how f (Tie) is evaluated on 3(Tj(Sk,)).) 

We shall take M C N n H 1 () and M = N. For general N, M may not be a good 
space with which to approximate functions in H 1(2), and it is not essential that the 
choice M C N be made. However, for many special cases of importance in practice, such 
as the Nk's being certain classes of polynomials, the spaces M can have nice approxima- 
tion properties. 

LEMMA 3.3. There are constants mo and y1, depending only on Sk, Bk, Pk, and 
Nk for k = 1, ,K, such that 

(3.17) IIVII~ l 70I1V11 and 1I VII < y1IIVIIp, VGE N. 

In fact, we may take y, = sUP {Ylk, k = 1,* * *, K} for I = 0, 1,where 

(8O,k = SUP{IIfIIIIfII L2(SO) ?0 f E Nk}, 
(3.18) 

'yl,k = 
SUP{ifIIL2(B 0/1fIPk: 0 f GE Nk}. 

Notice in particular that mo and y1 are independent of the sets aj and the maps T. 
Proof. We know that 7O,k and yl k as defined in (3.18), exist since, on the finite- 

dimensional vector space Nk, the norms llf"pk' IIfIIL2(kS0 lIfIIL2(Bk) are equivalent. 
For any f E L2(u1), let r(y) = f (Tjy) for y EE r1. Then 

(3.19) f f 2(x)dx = f r2( Tx) dx = I T1,1 f r2(1Tx)I1T'idx 

=I T'7 I r2(y)dy. 

Thus, if f E N, and therefore r E Nk1, we see that 

(3.20) 1 fI112 / bf2(Ta)lTII = llrII12 ""2 2 
/' (e,b)e Pk. ( 

is bounded above and below by mYl,k1 and 1/7 O,k1, respectively. The conclusion follows. 
We now need to consider the infimum in (3.4). In order to produce bounds for 

this infimum, we shall make some approximation assumptions on the spaces Nk and a 
weak smoothness assumption on 2. The spaces Nk will be assumed to include all poly- 
nomials of degree less than m > 3 and the sets Bk will be assumed to be the closures of 
domains having the restricted cone property. It then follows from a result of Bramble 
and Hilbert [3] that there is a constant CBH such that if V E Htm(Bk) 

(3.21) inf{llV - 
2II 2(B ?+ lV _- 11 * E Nk} < CBH E JIDVII2(B L (k) dk Q I be L kp 

The domain 2? will be assumed to have the restricted cone property; hence the Calderon 
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extension theorem [1] implies that, for each s > 0, there is a continuous linear map 

Es: Hs(&) - Hs(RP) such that Esg restricted to 2 is g for each g E Hs(2). Let T 
denote the triangulation given by the au's and T1's, and let 

(3.22) NX = T XT.(Bk.) 
j=1 k L "O(R P) 

where XE is the characteristic function of the set E. We shall assume that u and a(x, u) 
are such that for each t, u and a(x, u) belong to Hm(?). 

For q EG Hm(?), extend q to f = Em b E Hm(RP). Note that if T? i = ? o T., 
a change of variables and (3.21) shows that 

inf{ 11q - X112 + 110 - XII2: x E NI 

(3.23) 
j X 

L 
2 (B k) 

+ T x X k; j 

< CBH I- IT; I E I 11 i 1 1(kj 
j a= L 2(B kj) 

It is easily seen that there is a constant C, depending only on p and m, such that 

(3.24) IT' I IIDE ( OIIL2 (B ) A EiiT;i l I 
2(TjBkj) kaVzm t9I=m L(Ik 

where II T.II denotes the norm of the linear map T; with respect to the Euclidean norm 
on RP. The C in (3.24) does not involve any properties of the maps T1. Thus we see 
that 

(3.25) inf{If 1 - X112 + 11- xI12: Xz N} < CBHC T(maxIITII)IIEmII2110112 X 

where IIEm lI is the norm of Em as a map of Hm (Q) to Hm (RP). 
LEMMA 3.4. There is a constant C, depending on CBH, C and IlEm 11 but indepen- 

dent of the triangulation T, such that with 0(t) defined by (3.4) 

(3.26) 11011 2 < CN mxT1 /2 IITi [[I IUII 2 ?+ Ia(u)II 2 m ] L2(O,T) L'T 'J L (Hm)L(H 

Example 3: Local Fits of Values and First Derivatives. Let Sk C Bk be as in 
Example 2; suppose that Nk is a finite-dimensional subspace of the space C 1(Bk) of 
continuously differentiable functions on Bk . (A function is in C 1(Bk) if it can be 
extended to be in C 1(R").) Let Pk be as in Example 2 and take pk to be a finite col- 
lection of triples (e, b, c) such that e E Sk, b > 0, 0 c C RP. Assume, for each 

k =l1,* * * ,(K, that 11 IL2(Sk) and 11 lp+ pk define norms on Nk, where 

lII hIk+'k = hIPI Ik ? IIPII' 

(3.27) II~31k = 
2 

bq52(e), 110112I = ?(e) 
(e,b)EE Pk k 
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Now assume that Q2 is triangulated as in Example 2; also adopt the definition of N given 
there. Take 

(f, g) E IT.i I bf(Tje)g(Tje) 
i= 1 (e,b)e Wk 

(3.28) a a ) 
+ (T.e) (T.e)?~ 

This inner product gives an analogue of Lemma 3.3 by change of variables. 
LEMMA 3.5. There are constants mo and yl depending only on Sk, Bk, P 

and Nk for k = 1, , K such that 

(3.29) IVII4 <y011VII and IIVII <71ttV1jp, VE N. 

It is also the case that the argument leading to Lemma 3.4 can be used almost un- 
changed to prove an analogue in this case; since the statement of this lemma is exactly 
the same as Lemma 3.4, it will not be repeated. 

The 72 of Lemma 3.1 cannot, in general, be taken to be the Lipschitz constant 
for a. 

LEMMA 3.6. Suppose that a(x, r), (Vxa)(x, r), and 3a(x, r)/1r are uniformly 
Lipschitz as functions of r with Lipschitz constants La, Lax, Lar, respectively. Also, 
suppose that JIVullLJ-(X J (0T)) is finite. We then have that 

(3.30) lla(x, u) - a(x, W)IIp < 'y3ju - WIIp, 

where (using 11 11 for Euclidean norm on RP) 

(3.31) wY3 = 2 [La + 7Y4(Lax + Lar iIll L ??(Q X(o,T)))' 

= max{ II TcI: 1 < j < J, (e, b, c) E P'}J 

Proof. The terms in the sums over the ,k's are estimated just as before. Note 
that for s E RP 

las (a(x, u) - a(x, W))| 

= s * [(Vx a)(x, u) - (Vx a)(x, W)] 

(3.32) aa u a 
+ (x, u) a 1(X w)]aU + 3ar (X 3 Ttaas (U - W) 

< IIs11La)(u 
- W)(x)I + Larl!vull (Ssx(oT))ll" + La[ (u- W(X)1 

This relation, when summed, gives the conclusion. 
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Note that this example of a' includes the case given by (1 .13). In that case, 

K=1, 1 = B1 = [0, 1], m = 4, and N1 is the space of cubic polynomials on [0, 11. 

The sets p, and <1 can be taken as 

P1 = {(0, b), (1, b)}, P1 = {(0, b, 1), (1, b, 1)}, 

for any b > 0. 
Example 4: One-Dimensional Smooth Cubic Spline Interpolation. It seems likely 

that nonlocal interpolation processes will be useful mostly in one-dimensional cases (or 

in situations where a tensor product structure is available) because of the necessity of 

solving a large linear system to produce local representations of the approximations of 

the coefficient a(W). To illustrate a nonlocal interpolation process,we shall consider the 

special case of cubic splines on a uniform mesh. 

As in Example 1, take Q = (0, 1), J > 1,6 = {xj} 0, Ij = (xj_1,x1). Let h = 

1/J = x1 - x1_ 1, for j = 1, ** *, J. The spaces M, N, A are all the smooth cubic splines 

over this partition, i.e., 

(3.33) M = N = M = {V E C2(Q): V E P3(I),j= 1, ...,J}. 

Define the discrete inner product by 

r~~~~~~~~~~~ 
f' 9)P = (X112)9(X112) + f(XJ- 2)9(XJ-1 /2) + E f(xj)g(x ) h, 

L ~~~~~~~~j=0 
where x. = ah. That this inner product induces a norm on N is easily seen; the func- 

tion a1(W) is just the cubic spline that interpolates a(x, W(x)) at knots, with the "end 

conditions" that it also interpolates at x1/2 and xJ 1/2. 

We shall see that the Om 1 72 of Lemma 3.1 can all be taken independdnt of h 

and that if a and u are sufficiently nice, then 0(t) = 0(h4). Just as in Examples 1 and 

2, we may take Y2 = L. It is clear that we can take 

70 
= 3 sup|max IV(x)12: VEP3(2), IIVII = 1l. 

xeQ 

To see that yl is independent of h, we need to do some computation. If we are given 

FO XF11/2, F1, F2, X * I FJ- 1 X FJ- 1/2, FJ as the values of 0 E N, then, using the nota- 

tion S. = h/'(xj), we see that 

Si-1 +4Sj?+ S+1 = 3(Fj+1-Fj_ 1), j=1,2,...,J-1, 

(3.34) SO = Si + 8F1 /2 - 4(Fo + F1), 

SJ= SJ 1 - 8FJ_ 1/2 + 4(FJ + FJ- 1 

These relations are obtained from the facts that ?" is continuous at xj, j = 1,.** 

J- 1, that ?(x1/2) = F1/2 and that O(XJj 1/2) = FJ 1/2- The last two equations in 
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(3.34) can be substituted into the first and (J - 1)st equations to give a strictly-diago- 
nally-dominant set of equations for S1i,**, SJ_ From these equations, we see that 

(3.35) j=O SjF 1/2 + 1 FJ , 

where C is independent of h. It follows from homogeneity in h that, for any cubic 

q(x), 

(3.36) fo q2(x)dx < h [q2(0) + q2(h) ? h2(q'2(O) + 

where 

y = sup {1lq112: q E P3(2), q2(O) + q2(1) + q2(o) + q2(1)= 1}. 

Thus, from (3.35) and (3.36), we see that there is a yl, independent of h, such that 

(3.37) 11 Oil < ly, 1lf 04,I ? E N. 

LEMMA 3.7. There is a constant C, independent of h, such that if g E H4(Q), 

inf {llg - xil + llg - xIIP: X E M} < Ch411g114. 

Hence, if a( *, u( *, t)) and u( *, t) belong to H4(Q), there is a constant C such that 

(3.38) 0(t) _ Ch4 [IIu( *, t)114 + IIa& , u( , t))1141. 

Proof. All that is needed is a local interpolation process which reproduces cubic 

polynomials; if we have such a process, the proof is an easy application of the Bramble- 
Hilbert lemma [3]. Such a process can be defined as follows. Let J: C2(Q) -+ M be 

such that 

(i) for O < k, 3k + 3 < J 

(V- JV)(')(xj) = O, 0 < 1 < 2, j = 3k, 3k + 3, 

(3.39) (ii) for 0 < 3k < J, 3k + 3 >J, 

(V- JV)(')(X3k) = 0, 0 1 < 2, 

(V - J V)(1)(XJ) = , 0 < I < J - 3k - I1. 

It is easily checked that (3.39) uniquely defines a C2 piecewise cubic on the intervals 

(X0, X3), (X3, X6), etc.; it is clear that these fit together in a C2 fashion to give an ele- 
ment of M. 

The lemma now follows by an argument that is very similar to the proof of 

Lemma 3.4. 
Construction of a from a. We shall now consider techniques which we can use 

to modify the a's produced in Examples 1-4 to obtain a 's which satisfy (2.2) as well 

as (2.11). Two ways of constructing a will be discussed in some detail. The first is a 
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theoretical construction that would be difficult to implement computationally but which 
is easily described and analyzed. The purpose of this construction is to point out that, in 
many realistic situations, the map a can be taken to be a on the functions with which 
we deal. The second construction is a crude modification of a on those regions in 
which the function a(W) is so rough that we cannot be assured that a(W) is an approxi- 
mation satisfying (2.2). This procedure can be easily implemented computationally; 
however, it seems unlikely that these "corrections" will be needed in practice if we are 
computing reasonable approximations to the smooth solution u of the differential problem. 

The most straightforward, conceptually at least, construction of a is to define 

3a,1/2, 3cxi/2 < 2(W)(x), 

(3.40) a"(W)(x) = 42(W)(x), aox/2 a <(W)(x) ? 3cx1/2, 

2, 12(0W)(X) < a0/2 

Because of the hypothesis that ao < a(x, r) < a 1 for all r, we know that for any W E M 
and (x, t) E Q X [0, T] 

Ia(W)(x) - a(x, u(x, t))I a Ic^(W)(x) - a(x, u(x, t))l. 

Thus, if (2.11) has been proved for a, we know (2.11) holds for a with the same L 
and 0. The a may not now be in the space N used for a; however, it is in L?(2) and 
satisfies (2.2) and (2.11). Since this map a satisfies the hypothesis of Section 2, we 
can use the results there to yield error estimates. These error estimates can be used in 
turn, with a detailed consideration of a, to show that if u and a(x, u) are sufficiently 
smooth, then we may use a = a in (2.3) and (2.4). This will be done in Section 4 for 

certain special choices of M, N, a. In particular, we shall show in Example 4 of this 
section, that, for h and At sufficiently small, we may use a = a in (2.4). 

We shall describe the second technique for constructing a from a in the context 
of Example 2. We shall then indicate the applicability of this technique in other settings 
and indicate some variants that may be easier to use in certain cases. 

After constructing a(W), we examine it on each set aj and either accept it as 
a(W) or replace it by a constant approximation to a(W). The most natural test to make 
would be to see if a^(W) satisfies (2.2), but this would be difficult in many cases because 
finding the maximum and minimum of a is a nontrivial problem in all but the sim- 
plest examples. 

We can, however, easily measure the ,k1-norm of the difference between jT*a2(W) 
and the best constant approximation to it. If this norm is sufficiently small, then we 
know that (2.2) is satisfied; otherwise, the constant we compared with is an approxima- 
tion on aj to a(x, u(x, t)) that is about as good as a(W) and has the advantage of satis- 
fying (2.2). The detailed construction of a is as follows. 

For each space Nk, there is a positive number dk such that if V E Nk satisfies 

(V, 1)Pk = 0 and 1 Vlp k < dk, then sup {IV(x)1: x C Bk} < 1. Note that since there 
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are usually a very small number of Nk's and their dimensions are not large, the compu- 
tation of dk should not be a difficult problem; of course, it need be estimated only 
once, not once for each problem. 

Fix W E M and a, in the triangulation. Let k = k, and let a*(W) on a, be the 
constant 

a7*(W) = rE ba(T?e, W(Tje))] / E b 
(3.41) (e,b)EEPk j e,b)ePk 

=(M*(W), )p/111112k 

Note that '"''Pk O since 11 ''pk- is a norm on Nk and 1 E Nk, by the assumption that 
I 

Nk contains all polynomials of degree < m for some m > 2. If 

(3.42) 11 T* (a (W)) -a*(W)IIp< Y2 d ja7(W), 

then on a, 

1 1 3 3 
(3.43) 2?o < - a, a^ a*( < 2 all 

Thus (2.2) holds on a,, and we use a(W) = a(W) there. If, on the other hand, (3.42) 
fails, let a(W) = a*(W) on a,. In this case, we know that, for any constant c, 

I |T* C(W))- CIIk > / dk?o , 

since the choice c = a.(W) minimizes the left-hand side. Thus, for any c, 

II A(W) - C1122 (ut (?dkcoI)2 11 11a()C L 2 ( ,) > / k ?t 7 I Tjl 

where y0 is as in Lemma 3. With the choice c equal the average of a(u) = a(x, u(x, t)) 
on a,, we see that 

IIa(u) a WIIL2(a? > lla(W)- ciL2 (aj) - IIa(u) - cilL 2 (ar) 

> czdoO/,yo) ITi VI/2 - y/2 IlVa(u)II .(diam aj)(meas aj)1 /2 

> Y IT]l1 [(dkaOITO) - IIVa(U)IIL (diam Bk)(meas Bk)l 

Thus, for IIT,;II sufficiently small, we see that 

(3.44) lla(u) - L 2(a) > 1h(Y2dk a 

But, since a*(W) is between axo and a,, we see that 

(3.45) lIa(u) -a*(W)I122() 
< 

(a1 - oO)2 IT!Imeas Bk. L (It 

Hence, from (3.44) and (3.45), there is a constant C such that, for max.IIT1II sufficiently 
small, 
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(3.46) lla(u) - a*(W)L 2 (aO) 
< Clla(u) - a(W)IL2 (aj)- 

Thus (2.11) holds for a; the restriction on the size of IIT,II can be viewed as adding a 
term to 0 where the additional term is zero for maxjjT'jj sufficiently small. This com- 
pletes the construction of a for Example 2. 

The above goes through almost unchanged in the case of Example 3. The only 
change is that 11 11Pk and ( I )Pk are modified to include the derivative terms. 

In the above construction, the choice of the 11 "Pk-norm is not essential. We could 
have used the L2(F1)-norm, for example. Nor is the choice of a* as a piecewise con- 
stant essential; what is needed for a* is something in 1T* Nk that lies between ao and 
?t I Both of these points are illustrated in Section 1. In that case, we took a*(W) to 
be the function which interpolated the values of a^(W) and had zero slope at the knots, 
and we used the norm on &(W) - a*(W) = g to be the maximum of g' at each end of 
the subinterval. In that case, we also chose a different replacement for & than a*. 
Finally, note that even if the a^ is obtained from a global fit of the coefficients, as in 
Example 4, we can still use the local corrections to produce a, provided the function 
i is in the space N associated with the local construction. 

4. Asymptotic Error Estimates. In this section, we shall combine the results of 
Sections 2 and 3 with some approximation theory and some elliptic error estimates to 
derive asymptotic estimates of the errors that result when (2.3) and (2.4) are used with 

M and N chosen from particular families of spaces. First, elliptic error estimates will be 
made using general approximation assumptions to provide the needed bounds on terms 
involving 71 and a??/at in Theorems 2.2 and 2.4. Second, the special case of Example 4 
of Section 3 will be discussed. Next a special case of Example 2 will be presented. 

In looking at asymptotic estimates, the following definition will be useful [5]. A 
family {Mh}O<h< 1 of finite-dimensional subspaces of H1 (&2) is an Shin family if there 
is a constant C such that for all V E HS(E2) with 1 < s < m 

(4.1) inf (1 V - XII + h 11V -XII 1) < ChsllV Ils. 

The elliptic error estimates we shall develop here are very similar to others which 
can be found in the literature [9], [10], [7], [4]; however, the previous results are not 
in quite the form needed here. Elliptic regularity is crucial in deriving these results. For 
the necessary regularity to hold, it is sufficient that all the second derivatives of a(x, u(x, t)) 
be bounded in Q2 x [0, T] and that a 2 be a C3, (p - 1)-dimensional manifold regularly 
imbedded in RP. We shall assume throughout this section that these conditions hold. 

However, it should be noted that certain corners can be tolerated; in particular, if Q is 
a rectangular parallelepiped, the elliptic regularity we use is still valid. In the special 
case of p = 1 and Q a bounded interval, the regularity is trivial. 

LEMMA 4.1. Suppose that {Mh}O<h? 1 is a Sh,m family with m > 3. There is a 
constant C such that if rZ = u - W, where u is the solution of (2.1) and W is defined by 
(2.17) with M = Mh, then 
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(4.2) II1IIL~L(L2) + Tt L2(H-1) S Chi [11IIL(Hm) + at IlL2(Hm 1)] 

Proof. Since for each t E [0, T] 

(4.3) B(u, 7?, V) = (a(u)V17, VV) + (n, V) = 0, V G M, 

we see that there is a constant C such that 

(4.4) 117(t)ll1 < C inf lIu(t) - X1I1 < Chm- 1 Iu(t)Im. 

If b is the unique element of H 1 (Q) such that 

(4.5) B(u, 0, V) = ('i, V), VeH1('(Q), 

then p E H2(Q2) and there is a C, depending only on 2, co, and a bound for Va(u), 
such that 

(4.6) 110112 < ClIIilI. 

From (4.5) and (4.3) it follows that for X e M 

11I112 = B(u, 'i, q - X) < CII'11I 1Ikb - X1. 

Thus, taking the infimum over X G M, we see that 

11n112 S Cllnl I h11hll2 < Clinl 1 hilnl 

Hence, for each t G [0, T] 

(4.7) 1177(t)ll <. Chm 1ju(t)jjm . 

If we differentiate (4.3) with respect to t, we see that 

(4.8) B(u, . t, V) = (- at71, VV), e M, 

where rt = 3'i/3t and a, = (a/at)a(x, u(x, t)). First note that (4.8) gives 

(4.9) ,"'t'll ? cIlnll' + inf Ilut-xli3 

SChm 2[llUll1m1 + lIUtlm-1]. 

Next, let 4I G H1 (2) and take 0 such that 

(4.10) B(u, p, V)-(I, V), V C H'(2). 

Then 0 G H3(Q2) and 

(4.11) 110113 C1ll4'lll, 

where C depends on bounds for the x-derivatives of a(x, u(x, t)) through order 2. We 
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can use (4.10) to estimate the H- 1 norm of 71t. Note that, for appropriate X E M, 

(77t, T) = B(u, 77,, ?) = B(u, 77,, ? - x) + (atV71 V(O - X - 0)) 

< C[II1iIl 1 + 117711 1 ] h2 110113 - (atVn V4) 

< C[llUlII - 1 + llUtlim - 1 ] htm JI'lI1 + (71, V * aVO). 

There are no boundary terms that result from the integration by parts since the normal 
derivative of b is zero on the boundary. From the above, we see that, for t E [0, T], 

(4.12) 177tllK1 < Chm [IIullm + IlutIIm i -. 

The result (4.2) follows easily from (4.7) and (4.12). 
We are now ready to produce asymptotic error estimates for Example 4 of Section 

3. Let the space M of (3.33) be Mh for h = 1/J, J = 2, 3, .. It is well known that 

this gives a Sh,4 family; this can be seen easily using J of (3.39) and the Peano kernel 

theorem. It is also easily checked that there is a constant C such that, if V E HS(E2) 

with 2 < s < 4, then, for 2 < p < oo and 1 = 0, 1, 

(4.13) Il(dldx)(V- JV)II P(Q)< Chs-1- 1/2 + 1 /P 11 VIIs 

Let u be the solution of (2.1') and take W to be defined by (2.17). In order to 
apply Theorems 2.2 and 2.4, we need to know that VW = Wx is bounded uniformly for 
J = 2, 3, - * and (x, t) E Q x [0, T]. Note that for each t E [0, T] 

ilwxl L (Q2) < II(W - 
JU)XIIL"O(2) + II(u - JU)XL O(2) + IuxiiL() 

< C(h- 1/2 II(W - Ju)XII + h1 /2 lIu112) + IIUXIIL (Q) 
(4.14) 

< Ch- 12 [11(W - u)XII + ll(u - Ju)XII] + Ch1 /2IlIU12 + IIUXIIc,o 

< (Ch 1/2 + 2)11u112 . 

Thus, if u E L'(H2), we see that Wx is uniformly bounded. Hence, we obtain the fol- 
lowing theorem from Theorem 2.2 and Lemma 3.7. 

THEOREM 4.1. Assume that 

IIa(u)IIL-O(H4) + IIuIIOLO(H4) 4 IIUti L2(H 3) 

is finite. Let a be given by (3.40) with a^ defined as in Example 4 of Section 3. Let 

UO(X) = W(x, 0), and let U be defined by (2.3). Then there is a constant C, indepen- 
dent of h, such that 

(4.15) IIU UllL(L2) 2 Ch4. 

We shall use (4.15) to show that, for h sufficiently small, a^(U) = a(U). All that 
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we need to show is that for t E [0, T] 

(4.16) IaI(U) - a(u)JjL 00 < 1/2 ao 

Recall that we have assumed that a(x, u(x, t)) is boundedly twice differentiable in Q x 

[0, T]. Note that 

IlIa(U) - a(u)jj L 00 (Q2) < IIa^(U) - ^(u)11L 00 (Q) + 11 aI(U) - J(a(u))Il 00 (Q ) 

(4.17) + IIJ(a(u)) - a(u)jjL ?? (Q) 

? Ch- 1/2 [IIa^(U) - a^(u)IIP + IIs^(u) -J(a(u))Ilpj ? Ch3 /2la(u)112, 

where we used the Peano kernel theorem to bound J(a(u)) - a(u). The first term is 

bounded as follows: 

11a(U) - A ?)P < CIIU - u||P < C[y0IIU - J(u)II ? IIJ(u) - ullP 
(4.18) 

< C[lIU - ull + IIu - J(U)II + IIJ(u) - ullp I < Ch4. 

The second term is estimated as 

(4.19) 1IaI(u) - J(a(u))Ilp < 211a(u) - J(a(u))IIp < Ch2 Ila(u)1I2 . 

From these estimates, it is clear that (4.16) holds, for h sufficiently small. 
We also have the following result for the discrete-time Galerkin approximation. 
THEOREM 4.2. Assume that 

jja(u)jjL (H 4) ? II IILo(H4) ? IIUtilL2(H 3 + IlUttliL 2(H1) + IIUtttIL 2(H-1) 

is finite. Take U0 and a as in Theorem 4.1 and let {U,}m 1 be defined by (2.4) with 

Atn = TIM = At. Then there is a constant C, independent of h and At, such that 

(4.20) IIU-ull 00 2) 
< C(h4 + (At)2). 

LA t(L) 

Note that if we take h and At to zero in such a fashion that h- 1 /2(At)2 goes to 

zero, then W(Un) = a^(Un), for h and At sufficiently small. In particular, this holds if 
the natural choice At - h2 is used. 

In order to illustrate possible applications of Example 2 of Section 3, we shall 
derive asymptotic error estimates for a family of spaces which are built from piecewise 
polynomials on triangulations of a bounded domain 2 C R2. 

Let 

B1 = {(x, y): x > 0, y > 0, x + y < 3/2}, 

(4.21) B2 = S2 = {(x, y): x +y < 1} B1, 

Si={(x,y): x+y?h}fnB1. 

Fix an integer m > 3 and let N1 = N2 be the class of all polynomials in two variables of 
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degree less than m. For a sequence of positive h's tending to zero, let 

Th = {(, Tj, kj),j= 1,* Jh}' 

where k = 1 or 2, F1 is a closed set such that Skj C F1 C Bk1, Tj is a one-to-one affine 
map on R2. Assume that Q is the nonoverlapping union of the sets aj = Tj'F as in 
Example 2. We shall further assume that there is a constant C independent of h such 
that 

(4.22) 11jT111 < Clh, JITITj' < Ch. 

Also assume that MQ is contained in the union of the au's for which kj = l and that if 

kj = 1, aj n aQ is a smooth curve from Tj(1, 0) to Tj(O, 1). The NTh defined by (3.22] 
is taken to be bounded independently of h; with our assumption that MQ is C3, it is 
clear that, for h sufficiently small, we can choose Th such that NTh < 2. So that the 
piecewise polynomial functions on each a, fit together nicely, we assume that, if ij l 
a11 nl aj2 is either void, a point, or T1ls1 = Tj2s2, where s1 and s2 are sides of S2. 

Note that N1 and N2 have dimension m1 = m(m + 1)/2 and that we can find m1 
points Z1 **, Zm1 in S2 such that V E N1 or N2 is determined by its values at these 
points. The points Z1, * * *, Zm 1 can be chosen so as to include the vertices of S2' 

m - 2 evenly spaced points in the interior of each side, and ml - 3m + 3 points in the 
interior of S2' The space N is, as in Example 2, the space of all functions b such that 
b is a polynomial in two variables of degree less than m on each Fi. 

Let M = N nl H1(E2); it is easily seen that M consists of those functions in N which 
are continuous on Q2. The functions in M can be represented by their values at the 
points TjZk, I = 1, , J, k = 1, m, i1; these points will not all be in Q2 unless Q 

is convex, but we can use the values at these points of the natural extension of the poly 
nomial on a,. Let J be the map of C(R2) into M such that V - JV= 0 at each point 

TjZk, j = 1,* , J, k = 1,* , mI1. Since MQ is smooth, Q has the restricted cone 

property and we can apply an argument very similar to the one used to prove Lemma 
3.4 to show that this family of spaces M = Mh is a Sh ,m family. In particular, if m > 

s > 2, p E HS(Q) and ? = EsO E Hs(R2) is the extension discussed in Example 2, we 
see that 

(4.23) 11k - J?II + hIlI - J?II1 < ChSIkIIls. 

This result is a straightforward application of the Bramble-Hilbert lemma and change of 
variables; the fact that IIT'lII 111T'II is bounded independently of h and j is used in estima- 
ting the error in the derivatives. It then follows from Lemma 9 of [2] that (4.1) holds. 
We shall also use the easily checked result that, for 3 < s < m and E = E 

(4.24) 1 L JII L () + hI1j7( - J ?)IIL ?(Q) < Chs- 1 
IIIIs 

In order to show that, for W defined by (2.17), VW is bounded on Q2 x [0, T], 
assume that u E L(H3). Then, with u = E3u, for each t E [0, T], 
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I VWII L II (W - J L )II ( ?) II V(u - 
JIIL ( L u (ll ) 

? C{h -IIV(W - J u )II + hIIuII3 + 11U113} 
(4.25) 

? C{h- IIV(W - u)II + h- 1 IIV(u - J'U )i + IIUII 3} 

< CIIu113 - 

A natural choice for a' is interpolation at m1 points in each set a,. In particular, 
if we choose 

(4.26) IkbII112 Z E 2(/2z), 11?pII2 = Z p2(Z1) 

then a^(V) is obtained by interpolating a(V) at the points {T1(?12Z,): = 1,*, ml} 
or {TV(Zd): 1 = 1, * , ml} for k. = 1 or 2, respectively. Assume that a' is given by 
(3.1) with (, )p defined as in Example 2 using (4.26). Use the second construction of 
a from a' in Section 3. I.e., a(V) is either a^(V) on or is a*(V) on oi, where a* is 
defined by (3.41), the choice being based on the truth or falsity of inequality (3.42). 

Note that, in order to use the schemes (2.3) and (2.4), it is necessary to be able 
to compute integrals of the form (a(U)Vj, Vi), where Vi and V, are basis functions for 

M. In the interior of the region, this can be done exactly (up to rounding error). How- 

ever, at the boundary, it will be necessary to build accurate approximations of integrals 

of the form (V, Vj V V1) where the V,'s are basis functions for N. These are computed 
once a problem rather than once a time step. Thus, construction of these approximations 
is not extremely time consuming, even for very accurate approximations. We shall not 
consider here the effect of the errors made in constructing these integrals. 

From Theorem 2.2 and Lemma 3.4, we obtain the following theorem. 
THEOREM 4.3. Assume that m > 3 and that 

IIL O(H m) ? IIa(u)I L (H m) + IlutIl L2(Hm-1) 

is finite. Let Uo(x) = W(x, 0) and let U be defined by (2.3). Then there is a constant 
C, independent of h, such that 

(4.27) IIIILOO(L 2) C . 

A computation that parallels that of (4.17), (4.18) and (4.19) shows that, for h 
sufficiently small, 

(4.28) a2(U) a 

The analogous discrete-time result follows from Theorem 2.4. 
THEOREM 4.4. Suppose that m > 3 and that 

IIa(u)I L O(Him) Ilull L (H m) + II 
IL2 (H m-1) 

t L(L0) +l ttl L2(H ) +1uttt L2(H-1) 
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is finite. Take Uo(x) = W(x, 0) and let {Un}M 1 be defined by (2.4) with Atn = TIM 
A At. Then there is a constant C, independent of h and At, such that 

I1 U-ullL t(L 2) < C(hm + (At)2). 

In this case, if we take h and At to zero such that h - 1 (At)2 goes to zero, then 

(4.28) holds for h and At sufficiently small. In particular, this is true if we use the 

natural choice (At)2 - hm. 
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