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A Lower Bound on the Angles 
ofTriangles Constructed by Bisecting the Longest Side 

By Ivo G. Rosenberg and Frank Stenger 

Abstract. Let AA1A2A3 be a triangle with vertices at A 1, A 2 and A3. The process of 

"bisecting AA 1A2A3'' is defined as follows. We first locate the longest edge, AiAi+l 

of AA 1A 2A 3 where Ai+3 = Ai, set D = (Ai + Ai+ 1)/2, and then define two new tri- 

angles, AAiDAi+2 and ADAi+lAi+2. 

Let A00 be a given triangle, with smallest interior angle ce > 0. Bisect A00 

into two new triangles, A1 l, i = 1, 2. Next, bisect each triangle A 1 , to form four 

new triangles A2i, i = 1, 2, 3, 4, and so on, to form an infinite sequence T of tri- 

angles. It is shown that if A E T, and 0 is any interior angle of A, then 0 > oj/2. 

Results. Let AABC be a triangle with vertices at A, B and C. The procedure 

"bisect AABC' is defined as follows. We form two triangles from AABC by locating 
the midpoint of the longest side of AABC and drawing a straight line segment from 
this midpoint to the vertex of AABC which is opposite the longest side. (If there 
is more than one side of greatest length, we bisect any one of them.) For example, 

if BC is the longest side of AABC, we set D = (B + C)/2 to form two new triangles 
AABD and AADC. 

Let AABC be a given triangle with interior angles a-, 3 and y located at A, B 

and C, respectively. We form an infinite family T(A, B, C) of triangles as follows. 
We first bisect IA0O AABC to form two new triangles Ali, i = 1, 2. We next bisect 

each of these two triangles to form four new triangles A 2i, i = 1, 2, 3, 4. Next, 

we bisect each of these four triangles to form eight new triangles A3i, i = 1,2,3,..., 

8, and so on. 
It is convenient to apply this procedure of bisections in order to refine the mesh 

in the finite element approximations of solutions of differential equations (see, e.g., [1]). 
Recently [2], this procedure of bisecting triangles was used to obtain a two-dimen- 
sional analogue of the one-dimensional method of bisections for solving nonlinear 
equations. A criterion of convergence of the above procedures is that the interior 

angles of A,ni do not go to zero as n - oo. The Schwarz paradox [3, pp. 373-374] 
provides an explicit example of a situation in which triangles are used to approximate 
the area of a cylinder. In this case, the sum of the areas may not converge to the 

area of the cylinder as the length of each side of the triangles approaches zero, and 

the number of triangles approaches infinity, if the smallest interior angle of each 

triangle approaches zero. 
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In this note, we prove the following theorem, which ensures that the interior 

angles of A,ni do not go to zero as n - 00. 

THEOREM. Let the smallest interior angle of AABC be A, and let 0 < xA < r7/4 
be the solution of 

sin A 
(1) tan xA 2 - cosX 

If A is a triangle in T(A, B, C), and 0 is an interior angle of A, then 0 > xA. 

COROLLARY. If A EE T(A, B, C) and 0 is an interior angle of A, then 0 >X /2. 
In the case when X is small, X. is a better lower bound than A/2, since x,/A 

1 as X O 0. For example, when X = 7r/6, x- .777(1r/6) > .5(71r/6) = A/2. 
Before we start the proof of the above theorem and corollary, we introduce 

the following notation. 
Let ARST be a triangle with interior angles p, a and T at R, S and T, respec- 

tively. If ARST is bisected into two triangles ARi.SiTi with interior angles pi, ai and 

Ti located at Ri. S. and Ti, respectively, i = 1, 2, we use both the notations 

(2) (P, U, T) - 
(PP 

O., 
Ti)5 (Pi, ai, T1) <(Pp U, T). 

As the notation suggests, (p, a, T) actually denotes a similarity class in T(A, B, C) 
and "-&" is a binary relation, or graph,on the set of all these similarity classes. We 
also use the notation XA - NJ to denote the Euclidean distance between the points 
M and N. 

R 

S U T 

FIGURE 1. Bisections of a triangle ARST 

Proof of the Theorem. Let ARST (see Fig. 1) belong to the family 
A\(A, B, C), and let ARST have interior angles p at R, a at S, and T at T. Let us 
also assume without loss of generality that 0 < T < a < p. Since also p + a + T =7T5 
it follows that 

(3) X < 7r/3 < p < 7r, and a < 7r/2. 
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From Fig. 1, we obtain 

(4) (x, r, p + a - x) (p, a, r) - (p - x, a, x + r). 

Since the sizes of the sides of ARST are in the same relation as the opposite angles, 
from a > r we first get IT - R I> IS - RI, and then, applying the same principle to 
ARVU, the relations IV - RI = h1T - RI > ?IS - RI = IV - Ul yield 

(5) x < p - x. 

LEMMA 1. Let r < ir/3 and p = a = 7r/2- r/2. Then the angle xT in Fig. 2 

satisfies 

sin r 
(6) tanxr - tanfl2. 

R 

1/ tH7r - 1/ar \\2 

S U T 

FIGURE 2. ARST when IR - TI = IS - TI 

Proof. The law of sines in ARUV and ARST yields 

sinx _IV-UI IS-RI sinr 
sin y IV - RI IT - RI sin(r/2-rI2)Y 

Since y = 7r/2 - r/2 - x, we obtain 

sin xT cos hr = sin r cos(T/2 + xT). 

Simplifying, we get tan xr = sin r/(2 - cos r). From the relation 2z r < 7r/3, we 
get Cos2z - sin2z = cos 2z > ?h, and hence 2 cos2z > 1 + 2 sin2z = 2 - cos 2z. 
This yields 2 sin z cos z/(2 - cos 2z) > tan z, which proves Lemma 1. 
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cX(Umax) 

R R x(a = 7T/2 -r) = r 

/ / < / / > S ~~~~~~amn) 

m X = '/27T-1/ 

S ( mn TU T 

FIGURE 3. Various values of the angle xT 

With reference to Fig. 3, let us fix S, T, and the angle T, and change a so that 

p > a > r. Clearly, a changes from amin 
= T to amax = r/2 -r/2, when ARST be- 

comes an isosceles triangle. Clearly, x = x(a) is a decreasing function of a in the 

region amin < a < maX, whose range of values are 

XT = X(amax) < X(a) < X(Umin) = 712 f 

where xT is defined in (6). Thus by Lemma 1, 

(7) x XTr T I/2. 

Notice also that when p = ir/2, a = ir/2 - T, and x(a) = x(fir2 -r) = T . It is 

thus evident from Fig. 3, that 

(8) x > T' p > rr/2. 

Finally, we remark that xT is an increasing function of T in the region 0 < T < ir/3, 
which can be easily verified by computing the derivative of xr using (6). 

We next show that 

(9) x+ T< rr/2, p+a-x>ir/2. 

For if x + T > ir/2, then, since the interior angles of ARSU in Fig. 1 add up to 

ir, it would follow that p + a - x < ir/2. However, from (5), we get p - x > p/2, 
and so a + p/2 < /r/2, i.e., p + 2a < r. Since, however, p + 2a > p + a + X = 7r, 
we arrive at a contradiction, i.e., (9) is valid. 

In view of (9), we establish 
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LEMMA 2. The following situation 

(p, a, T) (X, f, p + a-X) 

(10) 1 1 

(p-X, a,x +r) (X, p-X, -p) 

is valid in general. 
LEMMA 3. If 

(11) ir-p >p -X, 

then 

(p, aI fr) < X, 'r, p + a>- x) 

(12) 1 f 

(p-X, a, X + r)< (X, p-X, iT-p) 

Proof of Lemma 3. By combining (11) and (5), it follows that ir - p > p - x 
> x, and (12) now follows by inspection of ARXU or ARUV. 

We next consider the bisection of AWUV or ARSU. 
LEMMA 4. Let (11) hold. If 

(13) x+r >a and X+T ?p-X 

or else if 

(14) p-x<r, 

then 

(p, a, T) <i> (X, T, p + T - x) 

(15) jf Ti 
(p -X, a5X +fr)=(XI p -X, 1 - p) 

Proof. If (13) is satisfied, then (15) clearly follows from (12) and inspection 
of AWUV in Fig. 1. If (14) holds, then p - x < T < x + T, so that the second 
relation in (13) is satisfied. If the first relation of (13) were not satisfied, then 
a > x + T, and, by (14), x + T > x + p - x = p, i.e., a > p, which contradicts our 

original assumption., that T < a <_ Tbi& ,tave& 1rnma 4_. 

Let us now complete the proof of the theorem. Let us set v = v(p, a, T) 

min(p, a, r). We shall show that, along the transition -, either (i) v is nondecreasing, 
or (ii) we get four triples t, = (Pi, ai5 r1) such that P = v(ti) > XT i = 1, 2, 3, 4, and 
such that if an arrow emanates from one of the four triples, t1, to a triple t where 
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t = ti, i = 1, 2, 3, 4, then v(tQ) > f. Since x, is an increasing function of T, it will 
therefore be impossible to get v(Ani) < X. for any Ani E T(A, B, C). 

Let us assume that ARST is an arbitrary triangle in the family T(A, B, C), such 
that p > a > fT. In (10), p + a - x > 7r/2 > f, a > f, x + r > r, and 7r - p = a + 

T > T. Thus, the only candidates for angles< T are x and p - x. If p > ir/2, it 
follows from (5) and (8) that p - x > x > r, and hence v(p - x,a , x + f) > v(x , ,p + a- 

> v(p , f,). 

Let us assume, therefore, that p < ir/2. Then ir - p > 7r/2 > p > p - x, so that 
(11) is satisfied, and, by Lemma 3, we get the situation (12). In (12), the inequalities 
a > T, p + a - x > 7T/2, and ir - p > 7r/2 are valid, and so only the angles x and p - x 
can be less than T. By (7) and (5) p - x ?x >x7. The configuration (12) is such that 
arrows going outside of it can originate only at (p - x, a, x + T ). If p - x > T, then 

v(p - X, a, X + T) > T. 

Finally, if p - x < T, we have the situation of Lemma 4, that is the four triples 

(pi, ai, Ti) form a "trap" in the sense that there are no arrows emanating from them, 
and such that v(pi, ai, Ti) >x,, i = 1, 2, 3, 4. 

This clearly completes the proof. 
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