
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 130 

APRIL 1975, PAGES 464-474 

Approximation Methods 
for Nonlinear Problems with Application 
to Two-Point Boundary Value Problems 

By H. B. Keller* 

Abstract. General nonlinear problems in the abstract form F(X) = 0 and corresponding 

families of approximating problems in the form Fh(Xh) = 0 are considered (in an appro- 

priate Banach space setting). The relation between "isolation" and "stability" of solu- 

tions is briefly studied. The main result shows, essentially, that, if the nonlinear problem 

has an isolated solution and the approximating family has stable Lipschitz continuous 

linearizations, then the approximating problem has a stable solution which is close to 

the exact solution. Error estimates are obtained and Newton's method is shown to 

converge quadratically. These results are then used to justify a broad class of difference 

schemes (resembling linear multistep methods) for general nonlinear two-point boundary 

value problems. 

1. Introduction. We present a general abstract study of methods for approximat- 

ing the solution of nonlinear problems formulated in a Banach space setting. Our basic 
results are of the following kind: If the nonlinear problem has a solution, and a con- 
sistent approximating problem has a stable Lipschitz continuous linearization (i.e., 
Frechet derivative), then the approximating problem has a stable solution which is close 

to the exact solution. Estimates of the error are given in terms of the order of con- 

sistency, and Newton's method is shown to converge quadratically for computing the 

approximate solution. Asymptotic error expansions can also be derived under appropri- 
ate assumptions. We illustrate the theory by studying difference methods for approxi- 
mating the isolated solutions of nonlinear two-point boundary value problems. Of 

course, all of these results are local in that they are confined to some sphere about the 

exact solution. The phenomenon of nonlinear instability does not occur here since, as 

has been shown by Stetter [10], this requires departing from the sphere. Indeed, parts 
of our theory are closely related to that of Stetter whose interest, however, was con- 
fined to the question of nonlinear instabilities; he therefore assumed the existence of 
solutions of the approximating problems. Similar existence results have been 

obtained by Pereyra [13] but his proofs are not constructive. 
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For general nonlinear problems, the isolated nature of the solution replaces or is 
equivalent to the well posedness required of Cauchy problems in the Lax theory [7]. 
In particular, we show in Section 2 that "stability" and "isolation" are essentially 
equivalent. In Section 3, the family of approximating problems are introduced, and the 
main theorem is proven. This shows that a stable family of approximate solutions 
exists, that they can be obtained by Newton's method, and error estimates are given. 
Asymptotic error expansions are not discussed in Section 3 as they are easily obtained 
from our results by employing the techniques indicated in [3] or [9]. 

The present basic theory was initially developed and applied to study a specific 
difference method for nonlinear two-point boundary value problems [3]. However, 
the general simplicity and applicability of the theory to a variety of approximation 
problems prompted the more general treatment. In addition to the above cited use, 
the theory has already been applied by R. K. Weiss in [11] to study implicit Runge- 
Kutta and collocation schemes for nonlinear two-point boundary value problems. It 
can also be usedfor nonlinear Fredholm problems, for mildly nonlinear elliptic problems, 
and to justify the Box scheme applied to nonlinear parabolic problems, etc. Such 
applications will be presented elsewhere. However, we do show, in Section 4, how 
the theory can be applied to justify very general difference schemes for approximating 
isolated solutions of very general nonlinear two-point boundary value problems. A 
crucial step in this demonstration is supplied by a powerful stability result in [4] for 
linear problems. Indeed, we essentially show that any difference scheme which is stable 
and consistent for the initial-value problem is so for isolated solutions of the boundary 
value problem. Our theory is also used in [4] to study the most general difference 
methods for nonlinear boundary value problems in ordinary differential equations. 

2. Stable and Isolated Solutions. For a mapping **F: B13 B2, where the 

B3, are appropriate Banach spaces, we consider the problem 

(2.1) F(x) = 0. 

With the sphere SO(u) {x: x E B1 lix - ull < p}, we introduce the 
(2.2) Definitions. (a) The mapping F(Q) is stable on Sp(u) iff there exists a 

constant Kp > 0 such that*** 

llv - wll < KpIIF(v) - F(w)I 

for all v, w E Sp(u). 
(b) A solution x = u of (2.1) is stable iff F(-) is stable on Sp(u) for some p > 0. 
Trivially, we note that a stable solution is also unique in Sp(u). If F(-) is linear 

and stable, then our definition implies (for any p > 0) Lipschitz continuous dependence 

**To simplify matters, we assume that the domain of F is Bj; the restriction to a proper 
subset offers no difficulty. 

***We do not distinguish notationally between norms on 61 and B2. Rather, we adopt the 
convention that llxli 1lx11B v if x &E Bv. 
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of the solution of F(x) = g on the inhomogeneous data g (which is the usual definition 
for linear problems). 

The Frechet derivative of F at x will be denoted by L(x). This is a linear operator 
L(x): B 1 B 2 which is such that 

(2.3) ( )-IIF(x + y) - [F(x) + L(x)y] -1 0 as llyll ? 0. 

In terms of the Frechet derivative, we introduce the 
(2.4) Definition. A solution u of (2.1) is isolated iff L(u) exists and is nonsingu- 

lar; that is: if L(u)y = 0, then y = 0. 
Now we show that stability implies isolation as in 
(2.5) THEOREM. Let u be a stable solution of (2.1). Then, if L(u) exists, u is 

an isolated solution. 
Proof. Suppose L(u)y = 0 and IIYII / 0. Then, for all positive scalars a < 

p/llyll, it follows that v(a) u + ay E Sp(u). By the stability of F(-) on Sp(u), it 
follows that 

IIu - v(a) II < Kp IIF(u) - F(v)II 

S Kp {IIL(u)cqyII + IIoxyIIr(u, ocy)}. 

Thus-, aIIyII 6 Kpr(u, qy)aIIyII and, if a > 0 is chosen so small that Kpr(u, oy) < 1, we 
must have IIYII = 0. 

Stability is such a strong condition that it implies L(x) nonsingular wherever it 
exists in the interior of Sp(u). The proof is identical to that of Theorem (2.5) since 
the latter does not employ F(u) = 0. Thus, it is not surprising that a form of converse 
to Theorem (2.5) requires the existence of L(x) in some sphere about u. Indeed, we 
require even more in stating 

(2.6) THEOREM. Let L(u) be nonsingular for some u E B1. Let L(x) exist and 
be Lipschitz continuous on Spo(u) for some po > 0; that is: for some constant KL > 

O, IIL(x) - L(y)ll 6 KL lix - yIl for all x, y E Spo(u). Then, F(-) is stable on Sp(u) for 
any p < (KLIIL'1(u)II)-', and the stability constant is 

Kp = IIL-1 (u)II(I - pKL IIL-1 (u)I I). 

Proof. For any x, y E Sp(u) with p 6 po, we have F(x) - F(y) = L(x, y)(x -y), 
where 

L(x, y)-J L(tx + [1 - t]y)dt. 

Write L(x, y) = L(u) + [L(x, y) - L(u)] and note that 

IIL(x, y) - L(u)lI 6f1IIL(tx + [1 - t]y) - L(tu + [1 - t] u)II 

6 KL lIt(x - u) + [1 - t] (y - u)II dt 6 pKL. 
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Thus, if p is so small that pKLI1L-'(u)ll < 1, the Banach lemma implies that L(x, y) is 

nonsingular and 

11l-'(x, y)jI < L- (u)II/(1 - pKL IIL 1 (u)II). 

Now stability follows from (x - y) = L-1 (x, y) [F(x) - F(y)] with the indicated KP . O 

The hypothesis in Theorem (2.6) can be weakened to require only local Holder 

continuity in the restricted form, with some 0 < a < 1: 

IIL(x) - L(u)II < KLIIx - uIIl for all x E Spo(u). 

In this case, p must be restricted by pc < (KLI!L-1(u)'()-1, and the stability constant 

must be suitably altered. 
Finally, we note that if u is an isolated solution of (2.1), then L(u) is nonsingular. 

So if, in addition, L(x) exists and is Lipschitz continuous in some Spo(u), then u is a 

stable solution, by Theorem (2.6). This is the essential converse of Theorem (2.5). 

3. Approximation Problems. On a family of Banach spaces, { B h, B h}, we con- 
sider the family of approximating problems, for 0 < h S ho: 

(3.1) Fh(Xh) = 0? 

where Fh: B h3' B h. To relate problems (2.1) and (3.1), we require that there exist 

a family of linear mappings { ph', ph } wheret 

(3.2) (a) p:h :B h, (b) lim IIPhxIl = IxiI Vx E B 
v v 1..'V h-+O " 

xE 

We find it convenient to use the notation 

pz, - [XIn h, =1,2 

where, of course, [x] hE Bh if x E Bv. The Frechet derivative of Fh at xh is denoted 

by Lh(xh) and SP(xh) is the sphere in B13 of radius p about Xh. We introduce several 

concepts. 
(3.2) Definition. The family {Fh(-)} is stable for u E B I iff for some ho > 0, 

p > O and some constant Mp, independent of h. 

I|Xh - Yh 11 < Mp IlFh(Xh) Fh(yh)l 

for all xh) Yh E Sp( [U] h) and all h E (O, h0] - 
(3.3) Definition. The family {Fh(-)} is consistent of order p with F(-) on Sp(u) 

if and only if 

iFhQ([XI h) - [F(x)I hi - 11h(x)r M(X)hM , 

for all x E Sp(u) and some bounded functional M(x) > 0 independent of h. 

tAgain norms are those of the relevant spaces; llxhII =-lXhIxI if x. E B V. 
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The signiflcance of these deflnitions is well known and, indeed, best summarized 
in the 

(3.4) THEOREM. Let F(u) = 0 and F.(vh) = 0 for some v. E Sp([u] h) p > 0 
and all h E (0, ho] . Let {F,(-)} be stable for u and consistent of order p on SO(u). 
Then 

11[U] h - Vhl 61 MPM(u)hP. 

Proof By (3.2) with xh = [u] h and Yh = Vh I 

|| [U] h - Vh 1 < Mp IIFh ([u] h) - Fh(Vh)II- 

Using Fh(vh) = 0 and [F(u)] h = 0 in the above and recalling (3.3) with p = 0 yields 
the result.0 

We are thus faced with the basic problems: (i) to be insured that the approxi- 
mating problems actually have solutions in some sphere about [U] h; (ii) to be able to 

verify stability; and (iii) to determine the order of consistency. For many explicit 
difference schemes, it is trivial to verify (i), but, for implicit schemes and projection 
methods, this is frequently quite difficult. Again, for most difference approximation 
schemes, the order of consistency is determined by simple Taylor expansions. However, 
for projection or expansion methods, this is by no means a trivial task. The stability 
verification for nonlinear problems of great generality is also not a standard procedure. 
It is usually reduced to a study of the linearized problems. We present such a result as 

(3.5) LEMMA. Let the family of mappings {Fh(-)} have Fre'chet derivatives 
(i.e., linearizations) {Lh(xh)} on some family of spheres SPo(zh) and satisfy for all 
h E (0, ho]: 

(a) {Lh(zh)} have uniformly bounded inverses at the centers of the spheres; that 
is, for some constant K0 > 0, IIL-1 (zh)II 6 KO. 

(b) {Lh(xh)} are uniformly Lipschitz continuous on Sp o(zh); that is, for some 
constant KL > 0, 

IILh (Xh) -Lh (Yh )II 6 KL Xh A 1 

for all x ESPO {Zh}- 

If Zh = [U] h for some u E BI, then the family {Fh(-)} is stable for u. 
Proof The proof is essentially identical to that of Theorem 2.6.0 
To insure the existence of a family of solutions {v,,} approximating a solution u 

of (2.1), we need only adjoin consistency to the above. More precisely, we have 
(3.6) THEOREM. Let x = u be a solution of F(x) = 0. Let the family {Fh(-)} 

be consistent of order p with F(-) on SO(u). Let the hypothesis (a) and (b) of Lemma 

(3.5) hold with zh = [u] h. Then, for po and ho sufficiently small and for each h E 

(0, ho], the problem Fh(xh) = 0 has a unique solution xh = v, E SpO([ulh). These 

solutions satisfy 
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Proof. We define the family of mappings {Gh(xh)} by 

G,,(x,,) x-X L- ([1 QuI)F. (x,) 

and shall show that they are uniformly contracting on Sp O([u] ), provided p0 and ho 
are sufficiently small. Since the sphere is convex, we have, for any xh, Yh E Spo([u] h): 

G.(x,)-Gh(yh) = L [u] {L h( [u] h)(xh -yh,) - (F(xh) -F(yh))} 

= L1 ([u]h) { L([u]h) -^,(x,,yX)}(xI Yh)* 

Here, as in Theorem (2.6), we used the generalized mean value theorem and 

Lh(xh Xyh) ) Lh (txh + [1 -t] Yh) dt. 

From (3.5b), it follows that 

JIL,h([u] h) ,h(x,h y,h)Il <- KLpo) 

and thus, by (3.5a), 

IIGh(xh) - Gh(yh)ll < a llx- yh", a = KoK Po' 

At the center of the sphere, xh = [u] h, we have, by consistency (3.3) and since 

F(u) = 0: 

11[U]h - Gh([u] h)II KoIIFh([U]h) - [F(u)] hI < KOM(u)hP. 

Now if a < 1 and KOM(u)hP < (1 - a)p0, the Contraction Mapping Theorem applied 
to xh = G(xh) implies the existence of a unique solution in Sp o([u] h). 

The error estimate follows from Theorem (3.4),which is now applicable.[l 
Obviously, the iteration scheme implied in the proof of Theorem (3.6) cannot be 

used to compute the approximate solutions since [u] h is not known. However, 
Newton's method is frequently applicable for this purpose as we show in 

(3.7) THEOREM. Let the hypothesis of Theorem (3.6) hold. Then, for any 
h E (0, ho], if po, ho and p1 < po are sufficiently small, the Newton iterates {fvt)} 
defined by: 

(a) v( ) E SPl([u]h), 

(b) L,(vh ) [vhv+') - ] = -Fh(v{v)), v = 0, 1, 2,... 
converge quadratically to the unique solution of Fh(xh) = 0 in SpO([u]h). 

ProofJ By writing 

Lh(Xh) 
= 

Lh([U] h) + [Lh(Xh) -Lh([u] h) 

= Lh([u]h) {I + L-'([u]h) [Lh(xh) -Lh([Uh])]} 

and using (3.5a, b) with KoK p0 < 1, the Banach lemma yields that Lh(Xh) is non- 
singular and, in fact, 
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(a) IL (xh)II < Kol(I - KOK po) = Kpo for all xh E Sp [u] h). 

For any Vhe) C SP ([u]h), we have from (3.7b) with v = 0, as in the proof of 

Theorem (3.6): 

V -V(?) -Lh (v(?))Fh([u]h) + Lh (v( ))4 [u]h)([u]h -V(?)) 

However, the identity 

Lal (v())L4(vh0), [u] h) I L1 (Vh(O)) (Lh(vO), [U] h)-Lh(v40))) 

implies by (a) above and (3.5b) that for some constant C > 0: 

IIL-'(v(?))Lh(v(0), [u]h)II S C. 

Now, consistency in (3.3), recalling [F(u)]h = 0, and the above yield 

(b) Iv(l) - v(?)ll < K M(u)hP + Cp 

Together with (3.5b), conditions (a) and (b) above are sufficient for the quadratic con- 

vergence of Newton's method, provided ho and p1 are sufficiently small (see for 

instance [2] or [6]).[1 
The basic difficulty in applying the above theory is to verify (3.5a); that is, the 

establishment of the stability of the family of linear operators {Lh([U] h)}. Frequently, 

this can be done by showing that there are some close approximations to LhQ([U] ) 

say Lh([u] ), which have uniformly bounded inverses. That is, if 

IILh([u] h)- Lh([u] h) = 0(h) 

and 1I L-1 ([uI h)II 6 Ko for all h 6 ho, then, by the Banach lemma, (3.5a) holds with 

some modified constant, Kl. This technique is illustrated for two-point boundary 

value problems in Section 4; but, of course, the problem is just modified to show the 

stability of Lh([u] ). If the problem F(x) = 0 has an isolated solution x = u, then we 

know that L(u) has a bounded inverse. In Section 4, this fact and some additional 

assumptions on related (initial-value) problems are used to show that the consistent 

approximation Lh([u] h) is stable. In another important class of problems, L(u) is 

selfadjoint and, say positive definite. Then if the same is true, uniformly in h, of 

Lh([u] )' the stability may easily follow. This technique is very close to that used by 
R. B. Simpson in [8]. Finally, the technique devised by H.-O. Kreiss is perhaps most 

powerful; see, for example, [5]. Here, since L(u) does not have the eigenvalue zero, 

Kreiss shows that {L([u] h)} must have eigenvalues bounded away from zero. This 

assumes the consistency of Lh([u] h) with L(u) and employs a contradiction obtained 

by using an appropriate map from Bh to B of the normalized solutions of Lh([u] )ON 

= 0 which can be slhown to converge to 0, a nontrivial solution of L(u)o = 0. 

4. Nonlinear Two-Point Boundary Value Problems. We assume the nonlinear two- 

point boundary value problem 
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(a) Ny(t) y'(t) - f(t, y(t)) = 0, a < t < b, 
(4.1) 

(b) g(y(a), y(b)) = 0, 

has an isolated solution, y(t). That is, the linear problem 

(4.2) (a) L [y] 0(t) -'(t) - A(t)0(t) = 0, a <t <b, 

(b) B [y] 0 Bao(a) + Bbq(b) = 0, 

where 

af(t, y(t)) __g_y(____y____ (4.2) (c) A(t) ay ; B ag(y(a)a y(b)) 

has only the trivial solution, 4(t) 0. We shall apply the previous theory to justify 
some fairly general difference schemes for approximating this solution of (4.1). 

A family of nets is considered of which the general one is 

(a) to =a: tj = tj1- + hi, 1 < j < J; tj = b, 
(4.3) 

(b) h-max h. < X min h., 

where X is a fixed constant and on which h 0 in some manner. For each such net, 
a difference scheme, determined by the coefficients {aik(h), fjk(h)}, is defined by: 

J 

(a) Nhvi _ 2 {ajkVk - fjkf(tk, vk)} = 0, 1 ?j ? J; 

(4.4) k=0 

(b) g(vO, vj) = 0. 

(4.5) Our main assumption on the numerical method is that: The family of 
schemes (4.4a), with vo = uo, is consistent of order p and stable for all sufficiently 
smooth initial-value problems of the form: 

(4.6) u' =F(t, u), a<t <b; u(a)=u0. 

For example, to satisfy (4.5), the scheme (4.4a) could be a one-step scheme such 
as Euler's method, centered Euler or the trapezoidal rule. It could equally well be some 
standard multistep scheme on a uniform net including a prescribed starting scheme on 
a refined net (to maintain uniform accuracy). Our present formulation does not include 
Runge-Kutta or implicit Runge-Kutta schemes, but this is essentially a notational sim- 
plification as we shall show later. 

To apply the theory of Section 3, we introduce the family of Banach spaces Bh 

B h En(J+1) and, say, 7- Cp + 1 [a, b], 32 Cp[a, b]. Then we require that 
f(t, z) E Cp [[a, b] x En] and F(x) = 0 represents the boundary value problem (4.la, b) 
with x y(t). For xh {vA}J, the family of problems Fh(Xh) = 0 represents the 
family of difference equations (4.4a, b). The mapping [ ] on Bh , into Bv is defined 
by [y]h = {y(t1)}J0 
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We now easily get the basic 
(4.7) THEOREM. Let (4.1) have an isolated solution y(t) E Cp+ 1 [a, b]. Let 

f(t, z) E Cp([a, b] x En) and g(z, w) E C1, Lip(En x En). If the scheme (4.3)-(4.4) 
satisfies (4.5), then for some po > 0, ho > 0 sufficiently small and all h < ho: 

(i) The difference equations (4.4) have a unique solution {vj}j in llv1 - y(tj)ll S 

P0. 

(ii) liv, - y(tj)ll S MhP, 0 < j S J. 
(iii) The difference solution can be computed by Newton's method which con- 

verges quadratically for any initial iterate { 9}J in IIv9 - y(t )tI ? pl, provided p1 ? po 
is sufficiently small. 

Proof. For (i) and (ii), we need only verify the hypothesis of Theorem (3.6). 

Clearly, by (4.5), the scheme (4.4) is consistent of order p with (4.1). It remains to 
verify (a) and (b) of Lemma (3.5) with zh = [y] h. The linearized difference operators 
obtained from the nonlinear difference operators in (4.4) are, say, applied to Oh 
{0j}J: 

(a) Lh(vh)qj- E [ Ik y(tk, Vk)]qk, 1 j j J; 

(4.8) k=0 - 

(b) Bh(vh)kh -V(v Vj)q0 a? (VO , VJ)qJ. 

Now let us apply the difference scheme of (4.4) to the linear problem (4.2). This yields 

J 

(a) E [ltkI PikA(tk)] Ok = 0, 1 j< < J; 

(4.9) k=O 

(b) BaOo + BbsJ = 0. 

Recalling (4.2), it follows from (4.8) that (4.9) is just 

(4.10) (a) Lh([y] )hj = 0, 1 < j 6 J; (b) Bh([y] )IO = 0. 

However, Corollary (3.13) of [4] states essentially that: if (4.2) has a unique 
solution, then the (linear) difference scheme (4.10) is stable and consistent for (4.2) if 
and only if (4.10a) with 00 = c is stable and consistent with (4.2a) and ?(a) = c. But 
the latter part follows from the assumption (4.5). Thus, since y(t) is isolated, and 
hence (4.2) has a unique solution, the scheme in (4.10) is stable. Hence, (a) of Lemma 
(3.5) is established. (We point out that the operator corresponding to Lh([y] h) of 
(3.5) is just that represented by the coefficient matrix of the difference equations in 
(4.10a, b). Stability of this scheme is shown in [4] to be equivalent to the uniform 
boundedness of the inverses of these coefficient matrices for all h < ho.) 

From the Lipschitz continuity of the first derivatives of f(t, y) and g(y(a), y(b)), 
it follows, using (4.6b), that (b) of Lemma (3.5) with zh = [y] h holds for the scheme 
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in (4.10). Thus, (i) and (ii) of our theorem are established by an application of 

Theorem (3.6). 
To establish (iii), we need only apply Theorem (3.7).0 
We now show how to extend the above result to more general difference schemes, 

say including all Runge-Kutta and implicit Runge-Kutta types. Thus, in place of (4.4), 

we consider: 

(a) Nhv - - 131kf (t1kX E = 0, 1 6 < J; 

(4.1 1) k=? 1=0 

(b) g(vO, Vi) = 0. 

We again impose (4.5), now with (4.4a) replaced by (4.1 la). The consistency require- 

ment in (4.5) implies that for all sufficiently smooth functions u(t): 

(4.12) Iu(tik)- E: jklU(tl) < C(u)h, 1 < j J, 0 < k < J. 

Note that this is also a restriction on the choice of the points tik. 

The linearized difference equations obtained from (4.11) are: 

(4.13) 

(a) 

Lh(vh)0jP 

E 

t?{kI E3 

s ay 

(tiS) 

E 

jslVl)7isk}Ok =0, 
(b) 

Bh(vh)ph 
= 

0. 
However, when applied to the linear problem (4.2), our more general difference scheme 

(4.1la) yields 

J J 
(a) Lh([Y] 0)P1 E OtjkI A fj(tjs)7jskf Ok = 0, 

(4.14) k=O s=O 

(b) Bh([y]Yh)h 
= 0 

Since y(t) is isolated and (4.1 la) is stable and consistent for initial-value problems, it 

follows, by the above cited Corollary (3.13) of [4], that the linear difference scheme 

in (4.14) is stable. Now use (4.12) to observe that IIL,([Y]n) - Lh(LY]h)J = 0(h), 

provided af/ay and y(t) are sufficiently smooth. From the Banach lemma, it easily 

follows that the linear difference scheme in (4.13) is also stable. Thus, with no diffi- 

culty, we see that Theorem (4.7) goes over for difference schemes of the form (4.11). 
The analog of Theorem (4.7) for implicit Runge-Kutta schemes has previously 

been demonstrated in [11] by R. K. Weiss. In place of Lh([y]h) given by (4.14a), 
Weiss employs the centered Euler (Box scheme) whose stability was demonstrated in 

[1]. It is a bit more involved to show the "consistency" of the Box scheme with 

Lh([Y] h) 
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The analog of Theorem (4.7) for "gap-schemes" has been illustrated in [12] by 
A. B. Wh-ite. These are high-order accurate two-point difference schemes in which the 
local truncation error has leading term 0(h2m), and the higher-order terms proceed in 
higher powers of h2. The lowest-order part of these gap-difference schemes is just that 
obtained from the trapezoidal rule, and the corrections are bounded perturbations of 
order h2. Thus, the stability proof could easily be obtained as above by showing con- 
sistency with the (stable) trapezoidal scheme. 
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