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Optimal L. Error Estimates 
for Galerkin Approximations to Solutions 

of Two-Point Boundary Value Problems* 

By Jim Douglas, Jr., Todd Dupont and Lars Wahlbin 

Abstract. A priori error estimates in the maximum norm are derived for Galerkin ap- 

proximations to solutions of two-point boundary valud problems. The class of Galer- 

kin spaces considered includes almost all (quasiuniform) piecewise-polynomial spaces 

that are used in practice. The estimates are optimal in the sense that no better rate 

of approximation is possible in general in the spaces employed. 

1. Introduction. Consider the two-point boundary value problem 

-(a(x)y')'+ b(x)y' + d(x)y =f(x), x EI = (0, 1),y(O)=y(l) = 0, 

or, in weak form, the problem of fimding y C H1 such that 

(1.1) (ay', v) + (by', v) + (dy, v) =(f,v), vCzH. 

To seek an approximate solution to the problem (1.1), consider a piecewise- 

polynomial spline space M' ,-1 < k < r, defined as 

Mr {V C C (I): Vi E [r(Ii), d = 1,*,N}. 

Here, Ii = (xi- 1, xi), O = xO < x 1 < . . . < XNl 1 < XN =a 1, and d r(I) denotes 

the set of polynomials on Ii of degree not greater than r. It is assumed that, as the 

meshes vary, they are quasiuniform; i.e., with hi = xi-- x 1 there exists a con- 

stant co such that 

(1.2) max hh7l 6 c< . 

Let h = maxihi. 
The approximate solution Y to (1.1) is sought in the space 

0 
M = M r= M n f{v: v(0)= v(l) = o} 

according to the rule 

(1.3) (aY', V')+ (bY', V) + (dY, V) (f, V), Vc M. 

Here, it is assumed that 0 < k < r so that M C H1. 
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Assume throughout the remainder of the paper that 

(i) a(x) >c 1 > 0, x CZI 

(ii) a, a', b, b', d CzL.o, 
(iii) for all f E L2, there exists a unique y E H' satisfying (1.1). 

From these assumptions it follows that (1.3) has a unique solution Y E M for h suffi- 
ciently small (Schatz [5]; see also [3] for a proof). For h sufficiently small it is 
known (Nitsche [4]) that 

(1.4) Ily -Y 11 + h ily - YIH < C2hr+ IIY IIHr+ 1, 

where c2 depends on the LOO-norms of the functions specified in assumption (ii). For 
simplicity, we shall also assume that the particular y of (1.1) that we shall approximate 
is an element of WVj 1 fl H'. 

Under the assumptions above, our result for the error in the maximum norm is: 
THEOREM 1.1. There exists a constant c 

C = C(CO, Cl , C2 , Ilall Wl X llbllIH1, IIIL2) 

such that 

IIy YIIL chr+ 1 lly Iwr+I 1 

Theorem 1.1 was proved for k = 0, i.e.,continuous piecewise-polynomial splines 
in [6] and, in that case, without the assumption of quasiuniformity. 

Outline of the Paper. In Section 2, the notation used is defined, and a basic ex- 
tension lemma is proved. In Section 3, the problem is reduced to the special case 
when a(x) 1, b(x) d(x) 0. In Section 4, it is first noted that, in this case, the 
derivative of the elliptic projection W of y into Mr is the L2-projection of y' into 
Mr* 1 An estimate for the error in the L2-projection in the maximum norm is de- 
rived, giving an estimate for y' - W'. The proof of this estimate uses the extension 
lemma to prove that the L2-projection of a function of small support decreases rapidly 
outside that support. The estimate for y' - W' then gives an estimate for y - W via a 
duality argument. 

Remark 1.1. The result (4.4) below (stability in the maximum norm of the L2- 
projection) also gives estimates for the error in the maximum norm for smooth spline 
interpolation, see [1, Lemma 2.1]. 

2. Notation and an Extension Lemma. For an open interval J, let HS(J) and 

Wp(J) denote the closure of C(J) in the norms 

/ 2 s 

IIvIIHS(J) = 2 (J) WS(J) = E II 

respectively. When J = I = (0, 1), we drop the dependence on the interval in the 
notation. 

We note that 
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(2.1) IIvVIIL < 2/2 11IV Hl- 

Let Hs(J) denote the closure of Co(J) in the norm 11I then for v H', 

(2.2) IIVIIH1 < 2 IIV 2. 

Let (v, w) denote f , v(x)w(x)dx, and for i, 1, m z Z, let 

I(i 1, m) = (Ii-I UIi_+l U * * UIi+m)fn I, 

where , I_ 2' I- J, IO, IN+ 1, * * * are arbitrarily defined. 
The letters c and C will denote constants, not necessarily the same at each occur- 

rence unless indexed. 
The rest of this section is devoted to the proof of the following lemma, which allows 

us to construct appropriate piecewise-polynomial extensions. 
LEMMA 2.1. Given rand k, -1 < k < r, and Mr subject to (1.2), there exist con- 

stants n = n(k, r) E Z and c = c(co, k, r) such that, given VE [Hr(Ii), there exists a func- 
tion fi e Mr such that 

fi = V on Ii; supp fi C I(i, n, n); 'fi "L2 6 CIIVIIL2(I2)V 

Proof The case k = -1 is trivial, since we can set fi = 0 outside Ii. Assume 0 S k 
< r. We consider the problem of extending V to the right of Ii to fulfill the conditions of 
the lemma. Let (k + 1)/(r-k) = n-, where n is an integer and 0 S a < 1. Put s= 
a(r - k). Assume for simplicity that i + n < N. 

Define f e Mr (x,, 1) (in obvious notation) by the requirements 

(2.3) f 0 outside Ii +n 

(2.4) fP()(xi) = V(')(xi), 1 = O, * *, k, 

(2.5) f (')(Xi +n) = O, I = O, * * -, k + s. 

We must show that these requirements determine f on (xi, 1). Let 

r 

f1im = x,m(X xmi) 1, m=i + 1, ,i + n. 
j=o 

We have n(r + 1) coefficients to determine and the requirements 

(2.6) I!f1,i+ 1 - V(')(xi), 1 = O, * *, k, 

r 

F, j( - 1) 
... 

(j -I1+ l)fj,m (XM -Xm_) - d-I -fi'm + = o 

(2.7) i=n 
I 0,***, k; m =i+ 1 , ***,i+ n- , 

r 

I 1(17- 1) * (I - 1 + 1)fj,i+n(xi+n - Xi+n- ? 

(2.8) j O 
1=n...k + s 
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to fulfill. These requirements total 

k + 1 + (n - 1)(k + 1) + k + s + 1 = n(k + 1)+ (k + s +1) 

= n(r + 1) + n(k - r) + k + s + 1 = n(r + 1), 

since s = a(r-k) = n(r-k)-(k + 1). 
Hence, it suffices to show that if V(')(xi) = 0, 1 = 0, * * *, k, then f-0. for this, 

consider the continuous function fgk): This function is a piecewise polynomial of degree 
not greater than r - k. On each of Ii+2,* Ii'+n- 1 wheref(k) 0, it has at most 

r - k roots. Similarly, if f(k) # 0 on the open interval Ij+ 1, it has at most r - k - 1 
roots there, and on li+n, it has at most r - k - s - 1 roots. Altogether, on subintervals 
where f(k) # 0, it has at most 

(n- 2)(r - k) + r - k - 1 ? r - k - s - =n(r - k) - 2 - s 

= (n - a)(r - k) -2 = k - 1 

roots not coinciding with xi or xi+ n . Hence, we can find a polynomial p(x) of degree 

k - 1 such that 

f(k)(X)p(X) > 0, xi 6x -Xi+n, and f(k)(x)p(x) > j if f(k)(x) : 0. 

However, by repeated partial integration, we find that, since f{-)(xi) = P)(xi+n) = 0, 

1 6k, 

fx:+ngfk)P = 0. 
Thus, f(k) 0, and f 0. Hence, (2.3)-(2.5) determine f M'(xi, 1). 

To establish the norm inequality of the lemma, multiply (2.6)-(2.8) by hm +1 

(hm + 1 = Xm + 1 - Xm). The corresponding linear system of equations for the quantities 

gj,m =f ,mhm is: 

(2.6)' 1!gli+l = V(l)(Xi)hl), g 0, og , k 0 

(27) i=o- 0 - 
hm, 

,' l 

I = O,. , k; m = i + 1, . ,i+ n-1, 
r 

(2.8)' E j( - 1) (1- 1+ 1)gi,i+n =O, 1 =0, ,k +s. 
j=0 

Since the determinant of this system is never zero, and since, by (1.2), hm + l/hm varies 

over a compact interval, it follows that there exists a constant c = (co) such that 

max Ihjimhj I 6 c max I V()(xi)M+ 1 I. 

Since 

ltIf 2 ((xXi+n)) ch /2max Ifj m hi I 
and 



OPTIMAL ERROR ESTIMATES 479 

max I V(')(xi)h < chT /211 V1L2 (Id) 

it follows that 

(2.9) l"f IIL 2 (xi, 1) < c VIL 2 (Ii)V 

Apply the analogous construction leftwards; this concludes the proof. 

3. Comparison of Different Elliptic Projections. We shall consider three different 
elliptic projections, Y, Z, and W, of the solution y of (1.1) into M = Mk. Here, Y is 
given by (1.3) or, equivalently, by 

(3.1) (a (y' -Y'), V) + (b(' - Y'), V) + (d(y- Y), V) = O, ve M, 

and Z and W are given by 

(3.2) (a(y'-Z'), V)= O, VeM, 

(3.3) (y'-W',V')0=, VeM. 

Since the bilinear forms corresponding to (3.2) and (3.3) are positive definite on 
M, Z and W are defined. We shall prove that the three elliptic projections defined above 
differ in H' by O(hr + 1). 

LEMMA 3.1. There exists a constant c, 

C = C(c1, C2, lib iH1, IldlIL2), 

such that 11 Y ZllH1 < cIIY Y IIL2- 

Proof (cf. [6]). We have 

0= (a(y' - Y'), V') + (b(y' - Y'), V) + (d(y - Y), V) 

= (a(Z' - Y'), V') + ((y - Y), dV- (b V)'). 

Choosing V = Z - Y, we obtain 

C1lz L 2< IIY - YIIL2(IldIIL21 - ?IL +ib IL . IIZ' - Y'IIL2+11b IIL2IIZ - IL) 

< (ld IIL 2 + lIbIL oo + 11b11 L2))ly YIIL2IIZ' - 
Y"IIL2 . 

LEMMA 3.2. There exists a constant c, c = c(co, c1, Ila 1 1), such that 

IIZ-WlHl1 < chlly-WIIH1. 
Proof. Let i = Z - W. From the definitions of Z and W, we see that for 

X E M, 

clIl IIL2 < (ad', ') = (a(y - W)', ') = (y' - W', ad' - X) 

Since y' - W' has zero average value, we can use instead of X' any v ? M* = Mrk-1. 
Thus 

(3.4) 11 I112 < cIly - WII1 inf 1Ial V-IIL2- (3.4) ~ ~~~~~L2HIv M 
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In order to prove the result, it suffices to show that for V E M* 

(3.5) inf IIaV - 2 chI V 2 

In order to establish (3.5), we first remark that there is a constant c such that, if 
W ECk (I) and WI1. E Hr(I1), i = 1, ,N, then 

/N Y;12 
(3.6) inf 11W - vll < chhrI W(r)IIL2 = W W(r) 112 / 

This is easily seen by adding a function v1 E M* to W so that W + vi E Hr and 
then noting that 

inf 11W-vI1L = inf IIW+ v -vllL2 VC-M* 2VC-M*2 

?chrll(W + v )(r)IjL2 = chIIW(r)IIL2. 

Next, note that there exists a function 4 E M* such that 

(3.7) Ila - L. < C 11 aI11 L h 

and 

(3.8) II()I LO < clla a' Lh 1 = 1, 2, o *, r- 1; 

this is easily seen by modifying a and applying an estimate like (4.1) of the next 
section. 

Thus, from (3.6), (3.7) and (3.8), we see that for V E M* 

inf llaV- XIIL < II(a -P)VIIL 2 inf lI4VXIl2 
XG M L2 2 xC&M* 

r- 1 
< chil V IIL2 + chr ll1,llLjlVr IlL2 

I1= 

<1Ch 11V IIL 2' 

where we used the quasiuniformity of the mesh to estimate the terms Ilv(r-)ll 

4. Proof of Theorem 1.1. It is sufficient, as a consequence of the reduction of 
the last section, to prove Theorem 1.1 in the case a 1, b d 0. We begin by 
summarizing the approximation-theoretic properties of the space Mls, -1 < 1 < s, that 
we need. 

LEMMA 4.1 (DE BOOR [2]). There exists a constant c such that, if u E 
and v E W2 fl H1 there exists x EMs and 4 E Ms such that 

(4.1) U-X IIL < chs+ 1 11 U 11 WS +, 

(4.2) IIV-4 II1 ? ch 1vlIIw2. 
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Let Pu denote the L2-projection of a function u E L2 into M, - 1 s 1 < s, de- 
fined by 

(Pu-u, V) = o, V E M. 

LEMMA 4.2. There exists a constant c = c(co) such that, given u E Ws+ 1 

IIPU -UII?csI s+i. IIPU-U S Chs + 1 11 U W +1w 

The proof of this lemma is postponed until the end of this section. 
Remark 4.1. It is easily seen by duality using Lemma 4.2 that P gives optimal 

approximation in the L 1-norm. It then follows from interpolation that P gives optimal 
approximation in any Lp -norm, 1 S p S . 

W 
LEMMA 4.3. There exists a constant c = c(co) such that, given y z W0j' fl H1, 

and with W defined by (3.3), 

Ily - WIIL chr+ llyllwr+1. 

Proof. Since (y' - W', 1) = 0, (3.3) implies that W' is the L2-projection of y' 
into MZ- 1 . By Lemma 4.2, it follows that 

(4.3) Ily - WIL ? chr Ily, wr 

We now apply a duality argument [4]. Given g z L1, let G be such that G" = 

-g, G(O) = G(1) = 0. Then 

(y-W,g)= (y'- W',G')= (y'- W',G' -X'), xeM. 
By Lemma 4.1, X can be chosen so that 

I(y - W, g)I < ch Ily' - IILtO,1 g L 
and it follows from (4.3) that 

Ily - WIIL 1 sup (vy - W, g)l < chr+ lly Iwr+1. 
lIgIgL1= 1 00 

Proof of Theorem 1.1. We have (cf. (3.2), (3.3)) 

11 - Y IIL y < 11 - WIIL o + 11 Y- ZIIL o + iZ - WlLoo. 

Using (2.1), Lemmas 3.1, 3.2, and 4.3, and (1.4) and its counterpart fory - W, the 
theorem follows. 

It remains to prove Lemma 4.2. 
Proof of Lemma 4.2. Let X be as in (4.1). Since PX = X, we have 

IIPu - U-XL < IIU - + 11 P(u - X) IIL oa, 

and hence it suffices to show that there exists a constant c such that 
(4.4) IIPU IIL S C IIUIL L u E Lcx 

Let u = -1 ui, where 

(u(x), x?I; 
ui(x) = , io 
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Consider Pui on Im, m < i. By Lemma 2.1, there exists hi,m E Ml which agrees with 

Pui on In' and satisfies 

ilfi, m IIL 2 <- C 11 PUi "L 2 (Im ) 

Since the L2-projection Pui minimizes the L2-norm of the difference V - ui for V in 

Ml, and since u1 = 0 outside Ii, it follows that Pui minimizes the L2((0, X_1))-norm 

of elements of Ms agreeing with Pui on Im. Thus, 

lIlpUi112(om-) < Ilfi, m 112< C lipUi 112() m S i. 

Hence, with Pi, m = I1PUI 12(I), we have 

(4.5) E Pi, c C4Pi, m ?1. 

From this it follows that 

(4.6) Pi' > c- i(l + c- 1)m-q-l O S q < m < i, 

which we proceed to show by induction. Assume that (4.6) holds for q, m such that 
O < q < m < L. (Note that for L = 1, i.e., m = 1 and q= 0, (4.6) is immediate 
from (4.5).) For any q < L + 1, we then obtain by (4.5) and the induction hypoth- 
esis 

Pi, L + 1 > C_ , Pi"< > c- Pi, ce + Pi, q) 
ce<L q < ce L 

zc4 Pi,q( c-j(1 ? C-1)a-l ? 1) 
q < c L 

= 4 lPi,q(1 
+ C4 l(+)q 

This establishes (4.6). 
A similar result holds for intervals to the right of Ii, and, taking m-i in (4.6), 

we find that there exist positive constants c and C, depending only on co, such that 

(4.7) I Pui IIL2 (Iq) S Ce q I i1PU i IIL 2 (Ii) 

Since Pu is a polynomial of fixed degree on Iq, we have 

11PO IIL .(Iq) chq IPUIL 2 (Iq) 

Using this, (1.2), (4.7), and the fact that IIPuL IIU IIL2' we have, for any q, 
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This proves (4.4) and establishes the lemma. 
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