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Gershgorin Theory 
for the Generalized Eigenvalue Problem Ax = XBx 

By G. W. Stewart* 

Abstract. A generalization of Gershgorin's theorem is developed for the eigenvalue 

problem Ax = XBx and is applied to obtain perturbation bounds for multiple eigen- 

values. The results are interpreted in terms of the chordal metric on the Riemann 

sphere, which is especially convenient for treating infinite eigenvalues. 

1. Introduction. The object of this paper is to develop a perturbation theory for 
the generalized eigenvalue problem Ax = XBx that parallels the perturbation theory 
developed by Wilkinson [4, Chapter 2] for the ordinary eigenvalue problem. The theory 
rests on a generalization of the Gershgorin theorem, whose results are interpreted in 
terms of the chordal metric in the Riemann sphere. This approach has the advantage 
that it deals readily with multiple and infinite eigenvalues. 

Throughout this paper, we shall identify the (possibly infinite) eigenvalue X = cx/0 
with the point in the projective complex line defined by 

[o I] = O = {@,13)#(OIO):o113=X}. 

We shall equip the projective complex line with the metric X defined by 

/lal2 ? 1(32 &1v2 ? l 12 

The number X([a, 3], [&', 3']) is the chordal distance between the two points X = cx/0 
and X' = &'/f' when they are projected in the usual way onto the Riemann sphere. By 
abuse of notation, we shall let x(X, X') denote this distance, so that in this context X is 
the chordal metric for the set of complex numbers [1., p. 81]. 

The justification of the use of the chordal metric lies in the simplicity of the final 
results, in particular in the uniform treatment of large and small eigenvalues. To illustrate 
this, we shall begin with an application to first-order perturbation theory for a simple 
eigenvalue. 

Let A, B, E, and F be square n x n matrices with complex elements and let X be 
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a simple eigenvalue of the problem Ax = XBx with eigenvector x normalized so that 

llxll2 = 1. Let y be the left eigenvector corresponding to X, again normalized so that 

11Yll2 = 1 Let 

a = YHAx =yHBx, 

so that the point [oa, 1] is identified with X. It has been shown by the author [3] that, 
for sufficiently small E, and F, there is an eigenvalue X' satisfying (A +E)x' = X'(B +F)x' 
that can be identified with [oa + yHEx, 0 + yHFx] , except for terms of order IIEll2 and 

IIFI12. Thus, in our approach, the sensitivity of X to perturbations in A and B will be 
measured by 

X(X, X' X( [o, 13], [a + yHEX, 3+ yHFx]) 

JayYHFX -yHEXI 

l +2 1 -'2 + yHEx12 + 1 + yHFx12 

To obtain meaningful approximate perturbation bounds, let 

0 = tan-1' 1X, V = kxAal2 + 132, 

and 

/ = \IyHEX 12 + IyHFx12 

Then ca/v = sin 0 and 1/v = cos 0. Hence we have the approximate bound 

(1.1) ~(X, X') < cos 0IyHExI + sin 0lyHFxI 
X(X, V) < ~ 1) 

which is accurate up to terms of order e2. 

In the terminology of numerical analysis, the bound (1.1) says that v-1 is a con- 

dition number for the eigenvalue X in the sense that it measures how perturbations in 

A and B will affect X. If v is small compared with E and F, then one can expect large 

changes in X. It should be noted that ill-conditioned eigenvalues need not be large, 
and conversely a large eigenvalue need not be ill-conditioned. For example, the bound 

(1.1) can be quite small even when 1 = 0 and hence X = oo, which illustrates the utility 
of the chordal metric in dealing with this problem. 

The factors cos 0 and sin 0 appearing in (1.1) are a little unusual, but they make 

sense. For example, when 0 = 0, the eigenvalue X is zero and the matrix A is singular. 
The disappearance of the term sin 0 IyHFxI in (1 .1) then says that perturbations in 

B cannot affect the singularity of A. 
Although the above bound is quite satisfactory for practical work, it is interesting 

to relate v to the condition number for the ordinary eigenvalue problem. This may be 

done as follows. Suppose Bx # 0 (if Bx = 0, use Ax in what follows). Define 
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K IIBx112/1 31 sec Z (y, Bx) 

and 

p = IIAxII1 ? IIBxII2. 

Then v-1 = K/p. When B = I, the number K is the secant of the angle between the 

left and right eigenvectors corresponding to X, which is the condition number for the 

ordinary eigenvalue problem [4, Chapter 2]. The number p measures how nearly x is 

an approximate null vector of both A and B (when Ax = Bx = 0, det(A - XB) 0 

and any number X is an eigenvalue). When B = I and 1XI < 1, p < Wi and the bound 

becomes essentially the bound for the ordinary eigenvalue problem. If 1X1 ? 1, then the 

bound (1.1) deviates from the usual bound because of the distorting effects of the 

chordal metric outside the unit circle. 

The above theory has two drawbacks. First, although the bound is asymptotically 

accurate, the theory does not provide a bound on the remainder. Second, the theory is 

not applicable to multiple eigenvalues. It is the object of the next two sections of this 

paper to remedy these defects. In Section 2 we shall develop a generalization of 

Gershgorin's theorem and in Section 3 apply it to develop a perturbation theory for 

multiple eigenvalues. 

Throughout the paper, we shall use Householder's notational conventions [2]. We 

shall use the symbols 11ll Ip (p = 1, 2, oo) to denote the usual Htilder vector norms. 

2. Gershgorin Theory. Let A and B be matrices of order n. Set 

ail (atil ' t,i-1 X ?ti, i+l ' ?hi,n 

that is, a'H is the vector formed from the ith row of A by deleting its ith component. 

Define the vectors bi similarly. The following theorem generalizes the Gershgorin ex- 

clusion theorem [2, pp. 65ff]. 

THEOREM 2.1. Let X be an eigenvalue of the problem Ax = XBx. Then X lies 

in the union of the regions Gi defined by 

Gi {[-ii + as 'x, psi + b' x]: ll'll < 1}, (i = 1, 2, * * *, n). 

Proof. Let Ax = XBx and suppose that the ith component of x is largest in 

absolute value. Since x # 0, we may assume without loss of generality that ti = 1. 

Form xZ from x by deleting its ith component. Then 1I ll oo < 1 and 

a..i + aff 'x' = 
X(Oii + bff Y", 

which says that X G1. G ? 

In stating Theorem 2.1 we have used the usual identification of the complex pro- 

jective line with the Riemann sphere. The proof of the theorem in addition exhibits 

the region in which X must lie; namely the region corresponding to a maximal compo- 
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nent of the eigenvector. When B = I, the regions Gi become the disks in the complex 
plane defined by 

Gi = {X: IX - aiiI < lai1111}, 

which are the usual Gershgorin disks. 
As they are defined, the sets Gi are not convenient to work with. Instead we 

shall work with neighborhoods, defined in terms of the chordal metric, that are generally 
larger. Specifically, we have 

X([QU1, psi]X [a11i + ai X, i+ b? 

lot V'ax- -?a'I x It | 
=~~~~~~~~~~~~~~~~ 

IIa1bf - Of311a 1 1I 

la~i2l + a + Ji3J2 +Q + 
lloeibi - iai 1ll 

Pi, 

where 

a1i = max {O, laii I - 11ai 111 } 

and 

f= max {O, Ipi I - I1bil1 .}- 

Hence if we set 

G= {X: X(a1/o, X) < Pi}, 

the eigenvalues of Ax = XBx lie in the union of the G'. Note that if B = I and the 
elements of A are less than unity, then the G' give a fair approximation of the usual 
Gershgorin disks. 

The utility of the Gershgorin theorem in its applications to the eigenvalue problem 
is enhanced by the fact that we can often localize a specific number of eigenvalues in a 
union of some of the Gi. The same is true of our generalization. 

THEOREM 2.2. If the union of k of the Gershgorin regions is disjoint from the 
remaining regions and is not the entire sphere, then exactly k eigenvalues lie in the 
union. 

Proof Suppose, without loss of generality, that the regions in question are Gl, 
G2, * * *, Gk. Write A = A1 + A2 where A1 = diag(al, 1a22 *..., a,nn) and, simi- 
larly, write B = B1 + B2 where B1 = diag(Jl1, I 22' ... ' '3nn). For 0 < e < 1, set 

A(e)=A1 +eA2 and B(e)=B1 +eB2, 
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and let G#(e) be the corresponding Gershgorin regions, which of course satisfy Gi(e) C Gi. 
Now the hypotheses of the theorem insure that the characteristic polynomial 

p,(X) = det(A(e) - XB(e)) cannot vanish identically; for otherwise any number X would 
be an eigenvalue and U q=1 Gi would be the entire sphere. This means that the eigen- 
values of A(e)x = XB(e)x must vary continuously in the sphere, or, what is equivalent, 
there are continuous functions Me(c) (i = 1, 2, , n) such that X1(c), X2(), I 

M,je) comprise all the eigenvalues of A(e)x = XB(e)x. We may choose Xi(O) = aiil/i . 
Then since X(O) U,1 Gj(O) (i = 1, 2, * **, k) and U 1G#(e) nU'n=k+l(e=0 
we must have VI() C Ul Gj(l) for (i = 1, 2, * , k) and X1(1) E UL=klGI(1) for 

(i= k +l, ,n). O 

3. Perturbation Theory. In [4], Wilkinson has applied the Gershgorin theorem to 

produce a perturbation theory for the eigenvalue problem. The heart of his theory is a 

technique in which off diagonal elements of order e are reduced to order e2 by diagonal 

similarity transformations. In this section, we shall show that the same technique can 

be applied to the generalized eigenvalue problem. Since it is the technique rather than 

its specific applications that is of chief interest, we shall confine ourselves to one of the 

several cases treated by Wilkinson, the case where the problem has a complete set of 

eigenvectors. 

Specifically, we shall be concerned with the case where there are nonsingular 

matrices X and Y such that 

YHAX = diag(oal, a2 
... 

I an) and YHBX = diag 3 1 * *2, Xn) 

For definiteness we shall take X and Y to have columns of 2-norm unity. Of course 

the eigenvalues of Ax = XBx are Xi = cxi/i (i = 1, 2, , n). We shall suppose that 

the first p eigenvalues are equal and distinct from the remaining q = n - p eigenvalues, 

and we shall apply the Gershgorin theory of the last section to obtain perturbation 

bounds for this set of multiple eigenvalues. 

Let E and F be matrices of order n and let e be an upper bound on the elements 

of the matrices YHEX and YHFX. Then yH(A + E)X and yH(B + F)X have the 

generic forms (n = 5) 

/1+ e e e e e \ /91 +e e e e e\ 

e a-2 + e e e e l 6 2 + \ 

e a-3 ?t3+6 6 6 e e f3 t 32+ 

( e +e ~<e oa4+e e4+/ 

\ e e ~~e e a-5 + e \ 6 6 6 5 +/ 

If e is small enough, the first p Gershgorin regions will be disjoint from the others, and 

their union will contain exactly p eigenvalues which are necessarily near X1. However, 

we can obtain an even better result. 

Let r # 0 be given. The eigenvalues in question will be unchanged if the last 

q columns of YH(A + E)X and yH(B + F)X are multiplied by T. If this is done, the 
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new matrix yH(A + E)X has the form (n = 5, p = 2) 

Oils + e e TE TE TE \ 

012 + e TE TE TE 

( e +)T(3 + ) TE TE 

iTE T(a4 + E) TE 

\ e e TE TE r(c5 + e) / 

and yH(B + F)X has a similar form. We shall attempt to choose r 6 1 so that the 

first p Gershgorin regions are disjoint from the others. 

Let 

6 = min{X(XWi, X): i= 1, 2, ,p; j = p + 1, ,n}. 

Let 

V= 0Ic2 
- 

Ii3l2 (i = 1, 2, ... , n) 

and 

v-min {v: i = 1, 2, ,n}. 

Then the first p Gershgorin regions are contained in the disk whose center is X1 and 
whose chordal radius is 

loail + lil (p ? Tq)e ?+ Tq)e 

vi - /(p + rq)e v - 2(p + Tq)e 

Likewise the remaining q regions will be contained in disks whose centers are Xi and 

whose chordal radius is N/2(p + Tq)C/(rv - V2(p + Tq)e). Thus, if we can find r satis- 

fying 0 < T < 1 such that V2(p + Tq)e/(Tv - \/2(p + Tq)e) ? 6/2, the appropriate 

Gershgorin regions will be disjoint. This will surely be true if 

(3.1) T-df/2 
ne (2 +6)< 1. 

1) 6 

Thus we have shown that if (3.1) is satisfied, there are exactly p eigenvalues in 

the region defined by 

X(X1, X) 6 \.2(p + Tq)e/(vi - N/2(p + Tq)e), 

where vi = min {vi: i = 1, 2, - - 
*, p}. For small e, this radius is asymptotic to a/27pe/v, 

which shows that V,ip/1v is a condition number for the multiple eigenvalue X1 . 
When X1 is simple and (3.1) is satisfied, then the perturbed eigenvalue must lie in the 

disk defined by 

a +y1fX Ex (Il1 I + 13, I + 2e)rqe 

\f31 ?jfFx1 / V1 [v1 -X2(1 + Tq)e] 
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This bound approaches zero quadratically with e, which makes rigorous the observations 
of Section 1. 

The treatment sketched above, of course, does not exhaust all possible cases. Various 
defective cases can be treated by applying the Gershgorin theorem to canonical forms, as 
has been done by Wilkinson for the ordinary eigenvalue problem. Alternatively one can 
use the techniques of [3] to split off a set of multiple eigenvalues and treat these separately 
by means of the Gershgerin theorem. With either approach, the generalized Gershgorin 
theorem is required to deal with multiple eigenvalues, and the use of the chordal metric 
simplifies the final results. 
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