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Abstract. A method for the solution of Poisson's equation in a rectangle, based on the 

relation between the Fourier coefficients for the solution and those for the right-hand 

side, is developed. The Fast Fourier Transform is used for the computation and its in- 

fluence on the accuracy is studied. Error estimates are given and the method is shown 

to be second order accurate under certain general conditions on the smoothness of the 

solution. The accuracy is found to be limited by the lack of smoothness of the period- 

ic extension of the inhomogeneous term. Higher order methods are then derived with 

the aid of special solutions. This reduces the problem to a case with sufficiently smooth 

data. A comparison of accuracy and efficiency is made between our Fourier method 

and the Buneman algorithm for the solution of the standard finite difference formulae. 

1. Introduction. In this paper we will develop a method based on the Fast Fouri- 
er Transform, FFT, for the numerical solution of Poisson's equation in a rectangle. 

The method will be analyzed in detail for the Dirichlet problem. We will also discuss 
the modifications necessary for the treatment of the Neumann case. 

In particular we will discuss Poisson's equation, Av = G, in the unit square. In 

addition, we have boundary conditions which we write as Bv = g. We will first con- 
struct a function w which satisfies the boundary condition, Bw = g. Thus, 

Au = F, Bu = 0, 

where u = v - w and F = G - Aw. This problem is then solved by approximating F 

by a linear combination of eigenfunctions to the Laplace operator. Thus, for the Di- 

richlet problem, we use sin(krrx) sin(h7ry), k, 1 = 1, 2, . . . , N - 1, while we use 

cos(k7rx) cos(h1ry), k, I = 0, 1, 2, . .. , N - 1 for the Neumann problem. The approxi- 
mation of F is achieved by the FFT, which amounts to replacing the 2-periodic exten- 

sion of F by its trigonometric interpolation polynomial on the mesh 

{(x,y)lx = i/N, y =j/N, i,j =0,+ 1, ?2,. . . 

An approximation to u is then constructed by dividing each Fourier coefficient to F by 
the appropriate eigenvalue of the Laplace operator. 

In Section 3 we will prove, under certain assumptions on the smoothness of F in 

the unit square, that the rate of convergence is O(N-2). Modified versions of the 

method will give an accuracy of order N-2p, p = 2, 3, . . . , for a sufficiently smooth 
F. The modifications are motivated by the fact that the periodic extension of F, in 

general, fails to be sufficiently smooth. The procedure amounts to the introduction of 
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special solutions to the Poisson equation. With the aid of these, the right-hand side F 
can be replaced by a function which has a sufficiently smooth periodic extension. 

The application of FFT to Poisson's equation has been used by Hockney and oth- 
ers in connection with finite difference techniques, see Hockney [4]. The system of 
equations which arises from finite difference approximations can in certain cases be 
solved by a direct method using FFT. This technique can be combined with one or 
several steps of a block cyclic reduction procedure. An alternative to Hockney's meth- 
od is the Buneman algorithm (see Buneman [1 ]), in which the block odd-even reduc- 
tion is continued until only one block remains. This requires that we have 2q - l 
meshpoints in one direction. This method has been described and analyzed by Buzbee, 
Golub and Nielson [2] and can be used whenever the problem allows for separation of 
variables. We have made a few numerical experiments in order to compare the effi- 
ciency and accuracy of our Fourier method with Buneman's algorithm. The results in- 
dicate that the two methods are equally good. One advantage of the Fourier method 
is that the number of points need not be restricted if an efficient mixed radix FFT is 
available. 

Since the first version of this report appeared, a report by Rosser [5] has come 
to our knowledge, in which Poisson's equation is treated by a method very similar to 
ours. The difference is mainly that Rosser divides the problem into one of finding the 
solution of Poisson's equation without considering the boundary conditions, and anoth- 
er of solving the Laplace equation with such boundary conditions that the sum of the 
two solutions is the solution to the original problem. Rosser's procedure can also be 
modified to handle discontinuous boundary data. 

Acknowledgments. I would like to thank Professor H.-O. Kreiss for proposing 
this problem to me and Professor 0. B. Widlund and Dr. 0. H. Hald for a detailed cri- 
ticism of an earlier version of this paper. Thanks are also due to Mrs. Ellen Morrison 
of Stanford, who made available an efficient Buneman-program for the nine-point for- 
mula, and to Dr. B. Fornberg for discussions on the FFT and for a fast program for 
the real transform. 

2. The One-Dimensional Case. We will begin by describing the algorithm in its 
simplest form, when applied to the problem 

(2.1) u"(x) = F(x), 0 < x< 1, 

u(O) = u(l) = 0. 

We extend u(x) and F(x) to be odd periodic functions of period 2. Assuming that the 
extension of u(x) is sufficiently smooth, we can expand it in a uniformly convergent 
Fourier series, 

u(x) =Euk sin(kiTx), 
k=1 

where uk 2 f u(x) sin(kirx) dx. This formula also defines the periodic extension of 
u(x). Throughout this paper, uk (or Ukl) will denote the exact Fourier coefficient, 
while i - (or kl) denotes the exact coefficient in the interpolating polynomial; and 
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uk (or ukl) denotes an approximation to 7k (or ukl)d Integrating by parts and using 
Eq. (2.1), we fInd that 

Uk = - JF(x) sin(kirx) dx = F 

Sampling the values of F(x) at xV = v/N, v = 1, . . ., N - 1, we apply the FFT-algo- 

rithm which corresponds to the usual sine-series to compute approximations Fk to 
Fk, k = 1, . . . , N - 1; see Cooley, Lewis and Welch [3]. The right-hand side is thus 
represented in the meshpoints by the trigonometric interpolation polynomial of the 2- 
periodic extension of F(x), 

N-1 

F(v/N) = E Fk sin(kffv/N). 
k=1 

Correspondingly, the differential equation has the approximate solution 

N-1 F 
t^(v/N) = E - 

k sin(kTv/vN). 
k=1 ir2k2 

This function is easily evaluated at xV = V/N, v = 1, . . ., N - 1, via an inverse FFT. 

We can now state the following result: 
THEOREM 1. Let F'(x) exist and be of bounded variation over the interval 0 < 

x S 1. Then the Fourier method gives an approximate solution in N - 1 inner points 
with the maximum error O(N-2). 

Proof. Let us express the exact solution u(x) in the points xV = V/N, v = 1, 
2, . .. , N - 1, by its trigonometric interpolation polynomial, 

N-1 

u(7vlN) = E uk sin(k7TvIN). 
k=1 

We intend to approximate u' by Fk /k2ir2. The difference between Fk and the com- 
puted Fk is due to the so-called aliasing error (see [3]), which appears because the high 
frequencies cannot be distinguished when the data is discretized. Thus, for Fk we 
find the following relationship: 

Fk = N F () sin(kTrv/N) 

= NE (A F, sin(pr7v/N)) sin (kr7viN). 

But sin(pfrv/N) = sin((2Nr + p) r/N) = - sin((2Nr - p) rrv/N), r = 1, 2, . We 

therefore obtain 
oo N-1 oo 

, Fp sin(prTv/N) = Fp + E (F2Nr+p -F2Nr-p) sin(pfv/1N), 

which by the orthogonality of the discrete sine series implies that 
00 

Fk = Fk + E (F2Nr+k -F2Nr-k). 
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In the same way we obtain 
00 

Uk = Uk + E (U2Nr+k - U2Nr-k). 
r=1 

Since uk = -Fk/k27r2, we can then express uk in terms of Fk. Finally, 

_ ^ _ / 
F2Nr+ k F2Nr-k 

Sk= Uk -_ Uk = -(2::) F? ) 
sk~ ~~r = Uk2 Uk 

r( 
f 2Nr + k)2 7T2(2Nr - k)2 

+ - 
E (F2Nr+k F2Nr-k). 

1r2k r=1 

The assumptions on the smoothness of F(x) enable us to integrate by parts and derive 

an estimate for Fk, namely, 

F =_ 2 ((1 1)kF(1) - F(O)) + ?(i). 

Using this expression for Fk, we find that Sk = c(k)/k, where lc(k)l 6 M/N2 and M is 

independent of N. The sum EN-l sin(kirv/N)/k is uniformly bounded for k, v and N. 

Using partial summation and the fact that lc(k + 1) - c(k)l = O(k/N4), we can finally 
conclude that 

(U2(v/N) - u(v/N)) = O(N-2) for v = 1, 2, .. ,N - 1. Q.ED. 

We will now show how this method can be modified to give better accuracy for 

more regular functions F(x). The essential matter is to obtain a good estimate for the 

Fourier coefficients Fk. We introduce the following notation: 

f(P) apf(x) and f(p,q) _a q(, y)= 

aXp axPayq 

Let us assume that F E C2P-1 (0, 1) and that FOP) is integrable. Repeated partial in- 

tegration gives 

Fk = - (F(1)(-1)k -F(O)) + 2 (F(2)(1)(_1)k -F(2)(O)) 
kir~~~~~ 

+ + -2()P (F(2p-2)(1)(- 1)k -F(2P-2)(0)) + ? 

From this expression, we can derive an error estimate, 

(a(v/N) - u(v/N)) = O(N-2P), 

when F(2s)(1) = F(2s)(0) = 0, s = 0, 1, .. ., p - 2. 

As an example, let us consider a function F(x) which is smooth enough to per- 
mit an error estimate O(N-4) had F(O) and F(1) been zero. If F(x) differs from zero 

at x = 0 and/or x = 1, we proceed as follows. Let 

F(x) = xF(1) + (1 - x)F(O) + F. (x). 
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where F1 (0) = F1 (1) = 0. Consider the two boundary value problems 

u (x)F1 (x), < x < 1, 

(2.2) u1(O)= u1() = 0, 

and 

v7(x)=x, 0<x<l, 

(2.3) (O) = 1) 0. 

The solution to the original problem (2.1) is then obtained as 

u(x) = ul(x) + F(l)vl(x) + F(0)vj(1 - x). 

The Fourier method applied to (2.2) gives a solution with the accuracy O(N-4); and 
for (2.3), we have the explicit solution vl(x) = x(x2 - 1)/6. 

In a similar manner, we can obtain a sixth order method for any right-hand side 
F(x) which is smooth enough. Starting with F(x), we construct F1(x) as above. Then 
we write, 

F1(x) = F2(x) + F"(l)x(x2 - 1)/6 + F"(O)(1 - x)((l - X)2 - 1)/6. 

Thus, F2(x) is sufficiently smooth and has the desired properties F2(0) = F2(1) = 

F2'(0) = F2'(1) = 0. This implies that the error estimate for the problem 

u"(x) = F2() 0 <x < 1, 

u2(0) = u2(1) = o, 

is O(N-6), when it is solved with our Fourier method. A fifth-degree polynomial v2 
can easily be found which satisfies 

vI(x) =x(x2 - 1)/6, 0<x 1, 

V2(0) = v2(1) = 0. 

Thus, we obtain the solution as 

u(x) = F(l)vl(x) + F(0)vj(1 - x) + F"(l)v2(x) + F"(0)v2(1 - x) + u2(x). 

From this discussion, it should be evident how the procedure can be continued to give 
any accuracy provided F(x) is sufficiently smooth. 

3. The Two-Dimensional Case. We consider the problem 

Au=F inQ2, 

(3.1) u = O on aQ, 

where Q is the unit square and aQ is its boundary. We assume that F(2,0), F(0'2) and 
F(1,1) are of bounded total variation. The Fourier method can be described as follows 
Let us extend u(x, y) and F(x, y) to be odd, 2-periodic functions in both x and y. 
F(x, y) can be represented as a Fourier series, 

00 00 

F(x, y) = E E Fkl sin(k7rx)sin(lry), 
k=l l=l 
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where Fkl = 4ff F(x, y) sin (kirx) sin (liry) dx dy. 
This formula also defines the periodic extension of F. Integrating by parts and 

using Eq. (3.1), we find 

22Fkl = 4 ffu(x, y) sin(kirx) sin(lhry) dx dy Uki. 

We define the solution as 
00 00 

U(X, Y) = E Ukl sin(kfrx) sin(liry), 
k=1 1=1 

which is a uniformly convergent series if F is smooth enough. Via the FFT, we compute 

approximations Fkl to Fkl, k, 1 = 1, . .. , N- 1, sampling the values of F(x, y) at 

x = XV = v/N, y = y =/N, v, , = 1,.. ,N - 1. Thus, the right-hand side is re- 
placed by its trigonometric interpolation polynomial, 

N-1 N-1 

F(v/N, gIN) = E2 E2 Fkl sin(kiwv/N) sin (lir,/N). 
k=1 1=1 

The differential equation has the corresponding approximate solution 

N-1 N-1 Fkl 
uQ-P/N, MI/N) = 1: 1 - sin (kffviN) sin (lrrg/N), 

k=1 1=1 1r2(k2 + 12) 

which is evaluated at the meshpoints (v/N, ,IN) by an inverse FFT. We can now state 
a result which is analogous to Theorem 1. 

THEOREM 2. The Fourier method gives an approximate solution to Poisson's 
equation with homogeneous boundary data with an accuracy of O(N2) in the mesh- 
points if 

F(2,0)(X, 1), F(2,0)(X, 0), F(? 2)(1, y) and F(0'2)(O, y) 

are of bounded total variation over 0 < x 6 1, respectively, 0 < y < 1, and if F(, 1) 
is of bounded total variation over 0 < x < 1 for every fixed y, 0 < y < 1, and if, fi- 
nally, f F(1,1 )(x, y) cos krrx dx is of bounded total variation, 0 < y < 1. 

Proof. The exact solution is given at the meshpoints by 

N-1N-1 

u(v/N, ,u/N) = E EUki sin(kiTv/N) sin (irp/N), 
k=1 1=1 

where Ukl 
= 

Ukl + Ikl(U) + Ilk(U) + IIkl(U) and 'ki and llki are defined by 
00 

Ikl(g) E2 (g2Nr+k,l g2Nr-k,l), 
r=1 

and 

Ilkl(g) E E (g2Nr+k,2Ns+I 92Nr-k,2Ns+l g2Nr+k,2 Ns-I + g2Nr-k,2Ns-1). 
r=l1S=l 

This relationship is derived in the same way as the corresponding relation between uk 

and Uk in the proof of Theorem 1. The Fourier method corresponds to approximating 
Ukl by 
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Ukl Fkl/lr(k ? 12), 

where Fkl =Fkl + Ikl(F) + Ilk(F) + IIkl(F). 

The exact relation between Ukl and Fkl is known and, therefore, Ukl can be ex- 
pressed in terms of Fkl. The difference, 6k1 = Ukl - Uki, can then be estimated if the 
rate of decay of Fkl is known. Integrating by parts, we find 

Fkl =- (F(O, 0) - (- 1)kF(1, 0) - (- 1)'F(O, 1) + (- 1)k+lF(l, 1)) kl 
klir2 

4 lS (F(2'0)(x, 0) - F(2'0)(x, 1)(- 1)') sin kirxdx 

(3.2) 

-_ 2 10 f(F(0 2)(O ,y) - F(0'2)(1 y)(- 1)k) sin liry dy 

+? f fF(1 1)(x, y) cos(liry) cos(kirx) dy dx. 

If a function g(x) is of bounded total variation, one can show that 

J0 g(x) sin(kirx) dx = 2 0 

Similarly, if g(x, y) for every fixed y is of bounded total variation, then hk(y)- 
f g(x, y) cos(kirx) dx = c(y)/k + 0(1/k2) and if also hk(y) is of bounded total varia- 
tion, then 

S0 J g(x, y) cos(kirx) cos(liry) dx dy kl 

Therefore, 

Fkl = 1(Al ? A2(- 1)k + A3(- 1)' ? A4(- 1)k+1) 

+ 1 (B1(k) + B2(k)(- 1)') ? -(Cl(l) + C2(1)(- 1)k) + 0 
k31 k13 k1 

where A., P = 1, 2, 3, 4, are bounded constants and B1, B2 and C1, C2 are uniformly 
bounded functions of k and 1, respectively. Let us insert gkl = 1/kl in Ikl(g). We ob- 
tain 

kl(g) = 

l I ( 2Nr + k 2Nr - k) I rlr 4N2r2- k2 

which gives - (r2 /9) k/iN2 < Ikl(g) < -( 2/12) k/iN2. Using partial summation and 
the fact that IN-1 (sin kaw/N)/k is uniformly bounded, we can conclude that 

N-1iN-1 klg 
_ E * sin kav/N sin 1r/N 0(-=). 

k=1 1=1 (k2 + 12) N2 

Analogous calculations for the other terms that contribute to bkl show that 

(u(v/N, ,u/N) - u(v/N, ,u/N)) = 0(1/N2). Q.E.D. 
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This estimate can be improved if the coefficients Fkl decay faster. Let us assume 
that F(2,2) exists and that F is zero on the boundary. The three first terms in (3.2) 
would then be zero and the last term could be integrated once more to give 

4 F(2,)ri Fkl= 2 lF(22 )(x, y) sin k7rx sin lTry dx dy. 

If F(2,2) satisfied the conditions imposed on F in the statement of Theorem 2 we 
would be able to prove an error estimate O(N-4). Let us assume that F is sufficiently 
smooth to allow an accuracy O(N4) but that F is not zero on the boundary. We then 
proceed as follows. Let us consider 

F(x, y) = F1(x, y) + xyF(l, 1) + x(l -y)F(l, 0) 

+ (1 -x)yF(O, 1) + (1 -x)(1 -y)F(O, 0). 

Then F1 is zero at the corners. The solution u(x, y) to Eq. (3.1) is obtained as 

U(X, y) =u1 (x, y) + v1 (x, y)F(l, 1) + v1 (x, 1 - y)F(l, 0) 

+ v1(I - x, y)F(O, 1) + v1(I - x, 1 -y)F(O, 0), 

where u1 (x, y) is the solution to the problem, 

Aul = F1 in Q, 

u1 = 0 on as, 
and v1(x, y) is the solution to 

Av1 =xy in Q, 

(3.3) v= 0 on MQ. 

The Fourier coefficients of v1 are known explicitly. If v1 is approximated by a partial 
sum of its Fourier series, the truncation error is O(N-2). Below we will propose a 

modified version of our method for the solution of the special corner problem (3.3). 
However, the main point is that v, is independent of F and can therefore be comput- 
ed once on a much finer mesh and then be stored on the coarser mesh. 

The next step is to decompose F1 as a sum of a function F2, which is zero on 

the entire boundary, and a function h(x, y) which depends in a simple way on the 

boundary values of F1. Let 

h(x, y) = xF1(1,y) + (1 - x)Fl(0,y) +yF1(x, 1) + (1 -y)Fl(x, 0). 

We can then write F1(x, y) = F2(x, y) + h(x, y), where F2 is zero on 32. To find 

ul, we must solve two new problems 

Au2 = F2 in Q, 

(3.4) u= 0 on an, 

and 
Av2 = h in Q, 

V2=0 onan. 

The solution u1 can be written as u1(x, y) = u2(x, y) + v2(x, y). The function F2 is 
as smooth as the original function F. It is zero on Asf, and therefore the analysis above 
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shows that the Fourier method applied to (3.4) gives an accuracy of O(N-4). The 
function h(x, y) is a sum of functions xh1(y), (1 - x)h2(y), yh3(x) and (1 -y)h4(x), 
where h,(O) = h,(1) = 0, s = 1, 2, 3 and 4. Let us consider the problem, 

(3.5) A/w(x, y) = xh1(y) in Q2, 

W(X, y) = O on U2, 

which we call a boundary problem. The function hl(y) can be extended to be an odd, 
2-periodic function with a uniformly convergent Fourier series 

hi (y) = Eh sin(liry), 
1=1 

where 

hi = 2 h 1 (y) sin (1iry) dy. 

Make the Ansatz w(x, y) = I' s1(x) sin (lry). We obtain a boundary value problem 
for each S1(x) which has the solution, 

S1(X) = (sinhl(lrx)/sinh(lir) - x)= -(T(l, x) - x). 
12IT2 12 r2 

The function h1(y) is as smooth as F and furthermore h1(O) = h1(1) = 0, which en- 
sures that the coefficients h, decay like 1/13. The factor (T(l, x) - x) is uniformly 
bounded. Therefore, the error estimate for the truncated series is O(N-4). When we 
use the approximate h, as computed by FFT instead of hP, the error in each coeffi- 
cient is O(IN-4), and thus the total error is still O(N-4). The construction of h(x, y) 
thus allows a decomposition into four simple problems, which depend only on bound- 
ary values of F, and for each of which the solution is obtained to an accuracy of 

O(N-4). 

This procedure can be extended in the following way. Assume that F(2p,2p-1) 

and F(2p-1,2p) are continuous, piecewise differentiable in the unit square and that 
F (2p2p) is integrable. Integrating by parts, we obtain an expansion for Fkl in powers 
of 1/k and 1/1, 

A1 + A21 A12 A33 A2p-1 2p A2p 2p-1 c 
Fkl - kl k21 k12 k313 k2 p-112p k2pl2p-1 k2pl2p 

where Ann depends on the corner values of F(n-l ,n-1), An+ 1 ,n depends on the 
boundary values of F(n+1 ,n-1) and An n+1 depends on the boundary values of 
F(n-l,n+1). If F(2s,2s) s = 0, 1, . . . , p - 2, all are zero on the boundary, the er- 
ror estimate is O(N2p). Modifying the original procedure, we are able to construct a 
method with an accuracy of O(N-2p) for any sufficiently smooth function F. 

We have shown how to construct a function which is zero on the boundary for 
the case p = 2. This construction led to one special corner problem and to four 
boundary problems. Assume that we know how to construct a function F , such that 
Fn and its even derivatives up to the order 2(p - 3) are zero on a2. The next step is 
to decompose Fn into a function Fn+1 such that F(2p-4,2p-4) is zero at the corners. n + 1 ~n + 1 
This is achieved by the introduction of a function q(x) such that q(2s)(1) = q(2s)(0) - 

0 for s = 0, 1, . .. , p - 3, q(2p-4)(0) = 0 and q(2P-4)(1) = 1. This function plays 
the role played by x in the first step (p = 2). The function values at the corners used 
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in the first step are now replaced by the values of F(2P-4 ,2p-4) at the corners. The 
new corner problem can be solved with our Fourier method with an error O(N-2P+2) 
but is independent of the function F. From Fn + 1, a function F,,+2 is constructed 
such that F(2P-4'2P-4) is zero at the boundary. Again x from the first step is re- 
placed by q(x) and the boundary values of F1 are replaced by the boundary values of 

n2+1 4'0)etc. The boundary problem can be solved with an accuracy of O(N2P) if 

we apply the method proposed for Eq. (3.5). The remaining problem with Fn+2 as 
right-hand side can be solved with our Fourier method to an accuracy of O(N-2p). 

Let us now return to the first corner problem. We propose a special method si- 
milar to the method we have introduced for the boundary problems. The problem is 
defined by 

Av(x,y)=xy inQi, 

v(x,y)=O ona . 

The solution can be written as 

00 0 + 

v(x, y) = E E -- 4(- 1) sin(k7rx) sin(lry). 
k=lIl= kl(k2 + 12)7r4 

The truncation error is O(N-2) if we take a partial sum with k, I = 1, 2, . .. , N - 1. 
We notice that this problem is of the same kind as (3.5) only that we have replaced 
h C(y) by y. Therefore, we may also write 

v(x, Y) = 2(- (T(l, x) - x) sin(l1ry). 

Recognizing 2(- l)'/137r3 as the Fourier coefficient for (y3 - y)6, we put 

V(X, y) = x(y3 -y)/6 + E - 2( T(l, x) sin(lry). 
1=1 1X 

Furthermore, x and y may be interchanged everywhere. We can thus write v(x, y) in 

a symmetric form. The truncation error of this series is still O(N-2). However, we 

are able to improve this considerably at least for some values of x and y if we estimate 

T(1, x) more carefully. The function T(l, x) = sinh(h7rx)/sinh(l7r) decays like e(x-l )li, 

0 < x < 1. Thus, we can save computing time by using different values of N for dif- 
ferent values of x. As an example, let us assume that we want the solution with an 

error of less than 10-6 for x = v/32, v = 1, 2, . . ., 31. For v < 28, we can estimate 

the truncation error by N-2eCN,18/1T3, which for N = 32 is of the order 10-9. For 
v = 29, 30, 31, we should use N= 64. 

We conclude the discussion of the Dirichlet problem with the construction of a 

function w, which satisfies the boundary condition w = g on MQ. If g is known ana- 

lytically, we can simply take 

W(X, y) = (1 - x)g(,y) + xg(l, y) + (1 - y)g(x, 0) + yg(x, 1) 

and 

Aw(x,y) = (1 -X)g_0'2)(0,y) + xg(0'2)(1,y) + (1 -y)g+20)(x 0) ?yg(2'0)(x_ 1). 
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When g is known only pointwise, we use trigonometric interpolation. Let us consider 
g(O, y). We write 

g1(0, y) = g(0, y) - (1 - y)g(O, 0) - yg(0, 1) 

and we then compute the coefficients (2g), in the trigonometric interpolation polyno- 
mial for g1(0,y), 

N-1 

g, (O, N)= E g l)sin QapJN). 
1=1 

Trigonometric interpolation polynomials are constructed in a similar way for the other 
boundaries. The function w(x, y) can now be written as 

w(x, y) = (1 - x)(1 - y)g(0, 0) + (1 - x)yg(0, 1) + x(l - y)g(1, 0) + xyg(l, 1) 

+ (1 - x)gl (, Y) + xgl (1, y) + (1 - Y)gl (x, 0) + yg1 (X, 1). 

We also need Aw so we must compute, for example, g(0,2)(o, y). Term-by-term dif- 
ferentiation of the trigonometric interpolation polynomial for gj(0, y) gives 

N-1 
^,o 02)(Q pIN) = - l2ir2(l )g sin (lrp/N). 

1=1 

By construction, g, (0, 0) = g, (0, 1) = 0 and the Fourier coefficients for g, (0, y), 
therefore, decay at least like 1/13 and those for g(0,2)(o, y) decay like 1/1. The differ- 
ence between - 127T2(g1)1 and the exact coefficient in the interpolation polynomial for 
g(0,2)(o, y) is 0(1/N2). The influence on the solution can be shown to be 0(1/N2), 

i.e., this construction maintains the second order accuracy. To obtain fourth order ac- 

curacy we need a better approximation of the boundary values g. This requires infor- 
mation about the second derivatives of g in the corners. 

4. Neumann Boundary Condition. We will briefly discuss the application of the 
Fourier technique to the Neumann problem 

Au=F inQ, 

(4.1) au/an = O on 3s2. 

The arguments in this case are similar to those for the Dirichlet problem if we replace 
the sine-expressions with cosines. Let us extend u and F to be even 2-periodic func- 
tions. Then we may write 

u(x, y) = E : ukl cos(kirx) cos(l1ny), 
k=01=0 

where 

Ukl = 4f J u(x, y) cos(kirx) cos(l17y) dx dy. 

Integrating by parts and using Eq. (4.1), we find 

_-(k2 ? 12)lr2ukl = 4J JF(x, y) cos(kirx) cos(l1ry) dx dy Fkl. 

Green's identity implies that Fo0 = 4f 1f 1 F(x, y) dx dy = 0. As (4.1) only determines 
u modulo a constant, we can in addition prescribe u at one point and use u00 to ob- 
tain that particular solution. Let us represent u(v/N, ,u/N) and F(v/N, ,u/N), v, pu = 0, 
1, . , N - 1, by their trigonometric interpolation polynomials 
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N-1 N-1 

u(v/N, pIN) = E E uki cos(kTrv/N) cos(hTrplN) 
k=O 1=0 

and 
N-1 N-1 

F(v/N, p/N) = ? E PkI cos(kTrv/N) cos(7rTp/N). 
k=O 1=0 

Generally, the coefficients gkl in the trigonometric interpolation polynomial for g(x, y) 

using only cosines are related to the Fourier coefficients gkl as 

gkl = gkl ? Ikl(g) + Ilk(g) + IIk1(g), 

where 

Ikl(g) E (g2Nr+k,l + g2Nr-k,l) 

and 

IIkl(g) E X (g2Nr+k,2Ns+l + g2Nr+k,2Ns-I 
r=l s=l 

+ g2Nr-k,2Ns+l + g2Nr-k,2Ns-)d 

We intend to approximate Uki by -Fkl/(k2 + 12)ir2. The error we make can be ex- 

pressed in terms of Fkl. Assuming that F is smooth enough, we integrate by parts and 

obtain for k 0,1 0l 

Fkl = 45 J0 F(x, y) cos(kirx) cos(liry) dx dy 

- 2 ff lo F( 1 )(x, y) sin(kirx) sin(liry) dx dy, 

from where we can continue as in (3.2). For k $ 0, 1 = 0 we obtain 

Fko = 4f JF(x, y) cos(krx) dx dy 

= 4 f 
)(( 1)kF(1 ?)(1, y) - F( l)(0( y))dy 

k 2 r20 

J- 
fT 

1 F(2sx, y) cos kirx dx dy. 
k2r 

The estimate Fkl = 0(1/k212) (0(1/k2) or 0(1/12) for I or k zero) gives an error esti- 

mate 0(1/N2k212) in each coefficient (0(1/N2k2) respectively 0(1/N212)). Since 

ENl cos kirx/k2 is uniformly bounded, we can conclude that the total error is O(N-2). 
If F is regular enough, more accurate solutions can be achieved by procedures, similar 

to those described in Section 3, involving special solutions to corner and boundary 

problems. 

5. Results. Numerical experiments were carried out to demonstrate the order of ac- 
curacy of our Fourier method. Comparisons were made with the Buneman al- 

gorithm for the standard five-point formula and a fourth order accurate nine- 

point formula to obtain some information on the efficiency of the Fourier method. As 
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a test example, we chose the equation 

Au(x, y) = - 2a 2rr2 sin(air(x + y)) 

with Dirichlet boundary data and the solution u(x, y) = sin(apr(x + y)). The solution 
has rapidly growing derivatives for large values of ot, which is directly reflected in the 
maximum error when finite differences are used. The solution with the Fourier method 
also shows an increasing error with increasing a. However, the rate of increase seems 
to be somewhat less than for the finite difference solution. In the tables below, N de- 
notes the number of meshpoints (including one boundary) in each direction. 

N a Second order Five-point Fourth order Nine-point 
Fourier method formula Fourier method formula 

1 7.8 - 10-4 4.0 - 10-4 8.5 10-7 1.2 - 10-7 

32 5 1.6 10-2 2.3 .10-2 4.5 10-4 1.8 10-4 
9 5.2 10-2 7.6 10-2 4.7 *10-3 1.8 10-3 

1 2.0 - 10-4 1.0 *10-4 5.6 - 10-8 7.8 - 10-9 
64 5 4.6 - 10-3 5.7 - 10-3 3.1 - 10-5 1.1 - lo- 

9 1.3 .10-2 1.9 *10-2 3.0 *10-4 1.2 10-4 

TABLE 1. The maximum error for the solution to the equation, 
Au = - 2a2 r2 sin(arr(x + y)). Two second order methods and 
two fourth order methods were used. 

In the example above, the solution is very well behaved, and we need not worry 
about any corner problems because the function values are zero at the corners. Let us 
also consider the first corner problem, 

Au = xy in 2, 

u= 0 on MQ. 
The solution was computed to an accuracy of 10-12 in 32 x 32 meshpoints. We com- 

pare the results obtained with different methods using N meshpoints. 

Second order Five-point Special Nine-point 
N 

Fourier method formula method formula 

32 8.4 10-5 2.5 10-5 1.1 10-7 1.4 . 10-6 
64 1.8 10-5 6.4 10-6 7.6 10-10 8.5 - 10-8 

TABLE 2. The maximum error for the solution to the equation, 
Au = xy in Q2, u = 0 on Mi. The error is measured 

in 32 x 32 points (also for N = 64). 

The special method refers to the method proposed at the end of Section 3 for the first 
corner problem. The error estimates given there are seen to be too pessimistic. The 
use of the fourth order Fourier method would mean the use of the tabulated solution, 
and thus, give an error of less than 10-12 in this case. 
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With homogeneous boundary data, the solution of the finite difference equations 
is about 20% faster than the solution with our Fourier method. For inhomogeneous da- 
ta, the Fourier method requires additional work. The nine-point program which was 
used also requires a considerable amount of overhead to handle the data. We have 
therefore chosen to give the time estimates both for the "equation solver" without 
overhead and the total time with everything included. We give the average time in sec- 
onds. We believe that these numbers are correct to within 5%. 

Second order 
N Seoui metho Five-point formula Fourier method 

Eq. solver Total Eq. solver Total 

32 0.72 1.10 0.60 0.74 

64 3.50 4.75 2.90 3.24 

TABLE 3. Time in seconds for the second order methods. 

Fourth order 
N .Fourieroeth Nine-point formula 

Fourier method 

Eq. solver Total Eq. solver Total 

32 1.10 2.25 0.96 2.60 

64 5.45 9.70 4.50 12.00 

TABLE 4. Time in seconds for the fourth order methods. 

One should note that the most expensive part of the fourth order Fourier method 
is the final FFT, which is used to compute the solution of the boundary problem in 
every point given the series expansions, 

N-1 N-1 

E sl,'IN) sin(l2rpIN) and E sk(p1/N) sin(kmTv/N). 
1=1 ~~~~~k=1 

One of these must be performed by itself while the other one can be incorporated with 
the straightforward Fourier solution for the smooth problem. This additional FFT ac- 
counts for the 50% increase in time between the second and fourth order "equation 
solvers". For higher order methods there are several contributions from boundary 
problems, but they may all be computed with the same FFT and the additional work 
increase is comparatively small. All test runs have been made on the IBM 370/155 
computer at Uppsala University Data Center, using the FORTRAN II GI compiler. 

The main advantage of our Fourier method is perhaps the simple algorithm for 
the straightforward second order solution. The method is efficient if an efficient FFT 
subroutine is available. Higher order methods require much knowledge of the bound- 
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ary data. The fourth order methods only involve the function values of the right-hand 
side and, therefore, seem to be realistic to use. 
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