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Spectral Approximation for Compact Operators 

By John E. Osborn* 

Abstract. In this paper a general spectral approximation theory is developed for compact 

operators on a Banach space. Results are obtained on the approximation of eigenvalues 

and generalized eigenvectors. These results are applied in a variety of situations. 

1. Introduction. Recently, Bramble and Osborn [7] developed spectral approxima- 
tion results for a particular type of compact operator on a Hilbert space and applied 
them to obtain rate of convergence estimates for several Galerkin-type approximations 
for the eigenvalues and generalized eigenvectors of nonselfadjoint elliptic partial differen- 
tial operators. 

In this paper spectral approximation results are established for compact operators 
on a Banach space. These results are then applied in a variety of situations: Galerkin- 
type approximations for nonselfadjoint elliptic operators, approximation of integral 
operators by numerical quadrature, and an approximation by "homogenization" 
recently studied by Babuska [4], [5]. 

The main results of the paper are in Section 3. The development there is strongly 
influenced by the treatment in [7]. The results in [7] are formulated in terms of 

Sobolev space norms of negative as well as positive order, whereas the results in this 

paper are formulated just in terms of the norm on the underlying Banach space. Special 
features of this work are: 

1. Approximations for the generalized eigenvectors are obtained first and then 
used to obtain the eigenvalue estimates. 

2. In the case of a multiple eigenvalue (in general having different algebraic and 

geometric multiplicities), a weighted average of approximate eigenvalues is shown to be 

the "right" choice as an approximation. 
3. The results apply to any compact operator on a Banach space and thus, in 

particular, to nonselfadjoint operators on a Hilbert space. 
4. The results apply to a variety of approximation methods such as Galerkin-type 

approximation of elliptic eigenvalue problems and the approximation of integral oper- 
ators by numerical quadrature. 

Our results should be compared to the work of Vamnikko [18], [19], [20]. He 
proves a general theorem on the convergence of eigenvalues and generalized eigenvectors. 
Theorems 4 and 5 of Section 3 are analogous to his. He does not obtain a result of the 

type given by Theorem 3 of Section 3 (our main result). His strongest results are 
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associated with the approximation of an operator T by an operator P T where Pn is a 
projection whose adjoint can be calculated (cf. part (d) of Section 4). This calculation, 
which must be carried out for each application, does not appear to be simple and it is 
not clear how to put several of the applications mentioned in Section 4 into Vainikko's 
setting. 

2. Preliminaries. Let A: X -+ X be a compact operator on a complex Banach 
space X. We denote by a(A) and p(A) the spectrum and resolvent sets of A, respectively. 
For any complex number z E p(A), R_(A) = (z - A)-1 is the resolvent operator. a(A) 
is countable; nonzero numbers in a(A) are eigenvalues; and if zero is in a(A), it may or 
may not be an eigenvalue. 

Let ,u E a(A) be nonzero. There is a smallest integer c such that N((,u - A)Q) = 

N((p - A)'+ 1), where N denotes the null space; c is called the ascent of ,u - A. 

N((g - A)') is finite dimensional and m = dim N((i - A)') is called the algebraic mul- 
tiplicity of ,I. The vectors in N((j - A)') are called the generalized eigenvectors of A 
corresponding to ,I. The geometric multiplicity of ,I is equal to dim N(,I - A) and is 
less then or equal to the algebraic multiplicity. The two multiplicities are equal if X 
is a Hilbert space and A is selfadjoint. 

Throughout the paper we will consider a compact operator T: X X and a 

sequence of compact operators Tn: X - X such that Tn - T pointwise 

(limn+ooJITntf- Tf 11 = 0 for all f E X) and {Tn} is collectively compact, i.e., the set 

{Tnf: If II S 1, n = 1, 2, . .. } is sequentially compact. Clearly this is the case if 

Tn - Tin norm (limn II Tn -Tll = 0). 
Let Iu be a nonzero eigenvalue of T with algebraic multiplicity m and let F be a 

circle centered at ,I which lies in p(T) and which encloses no other points of a(T). The 
spectral projection associated with ,u and T is defined by 

E = E(p) = 
24ri IRz(T) dz. 

E is a projection onto the space of generalized eigenvectors associated with ,u and T. 
For n sufficiently large, r C p(Tn) and the spectral projection, 

En = En(U) =2ri zJR(Tn)dz, 

exists; En converges to E pointwise and {En} is collectively compact; and dim R(En(gA)) 
= dim R(E(g)) = m, where R denotes the range. En is the spectral projection associated 
with Tn and the eigenvalues of Tn which lie in F, and is a projection onto the direct sum 
of the spaces of generalized eigenvectors corresponding to these eigenvalues. Thus, 
counting according to algebraic multiplicities, there are m eigenvalues of Tn in F; we 
denote these by I, (n), . . . , ,um(n). Furthermore, if F' is another circle centered at 

,I with an arbitrarily small radius, we see that I, (n), . .,Am(n) are all inside of r' 
for n sufficiently large, i.e., limn+ooui1(n) = ,I for j = 1, . . , m. R(E) and R(En) are 

invariant subspaces for T and Tn, respectively, and TE = ET and TnEn = En Tn. We 
will also use the fact that {Rz(Tn): z E F, n large} is bounded. 

In the context considered here, namely, pointwise convergence of a sequence of 
collectively compact operators, these results can all be found in Anselone [1]. For the 
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case of norm convergence, they can be found in [9]. 
If ,u is an eigenvalue of T with algebraic multiplicity m, then ,u is an eigenvalue 

with algebraic multiplicity m of the adjoint operator T* on the dual space X*. The 
ascent of ,u - T* will be a. E * will be the projection operator associated with T* and 
u; likewise E,* will be the projection operator associated with Tn* and 1il(n), . . .I, 'm(n). 
If q E X and 0* E X*, we will denote the value of the linear functional 0* at q by 

[0, 4*] 
Remark. T* here is the Banach adjoint. If X = H is a Hilbert space; we would 

naturally work with the Hilbert adjoint, which acts on H. Then ,u would be an eigen- 
value of T if and only if i is an eigenvalue of T*. 

Given two closed subspaces M and N of X we define 8 (M, N) = 

SUPXEM,IIXII=ldist(x, N) and 5(M, N) = max[8(M, N), 5(N, A)]; R(M, N) is called 
the gap between M and N. The gap provides a natural way in which to formulate 
results on the approximation of generalized eigenvectors. We will need the following 
results. 

LEMMA 1. If dim M = dim N < oo, then 

8(N, M) (M, N)[1 - (M, N)1. 

For a discussion of this result and the result that 8(N, M) = 8(M, N) if X = H is 
a Hilbert space and 8(N, M) < 1, we refer to [10, pp. 264-269]. 

LEMMA 2 (LAY [13]). Let N, M1 and M2 be closed subspaces of X such that 
X = M1 ? N = M2 ? N and let Q1 and Q2 be the projections of X along N and onto 
M1 and M2, respectively. If III - Q2 118(M1, M2) < 1, then 

11IIQ211 III - Q211 8(M1, M2) 
11Q1 - Q211 6 1 - 1II- Q2 11 (M1, M2) 

Proof: Let d = SUPXEMl,IIXII=1IIX - Q2XII. Let 8 > 8(M1,M2), x EM1, llxii = 

1. Then by the definition of 8(M1, M2) there exists u E M2 such that llx - ull < 8. 
Since (I - Q2)u = 0, we have lIx - Q2xII = I1(I - Q2)(x - u)II < III - Q2 118. Thus d < 
III - Q2 11 for all 8 > 8(M1, M2) and hence d < III - Q2118(M1 I M2). 

Since R(I - Q1) = N(Q2), we have Q2 = Q2Q1. It is clear that IIY - Q2YII 6 
dlIlyll for all y E M1l. Hence for any x, 

IIQlxll < IIQlx - Q2QlxII + IIQ2QlxII < dllQlxll + IIQ2xII, 

from which we get IIQlxII 6 (1 - d)-l IIQ2xII. Thus, since d 6 11 - Q2118(M1, M2) < 1, 
we have 

III - Q2 11 IIQ2 11 8(M1, M2) 

IIQlX - Q2XII = IIQlX - Q2QlXII < dllQlxll 1 - III - Q2118(M1 , M2) 

3. Convergence Estimates. Let ,u be a nonzero eigenvalue of T and assume the 
ascent of ,u - T is az. We begin this section by showing how the generalized eigenvectors 
of T corresponding to ,u are approximated by the generalized eigenvectors of Tn cor- 
responding to Ml (n), . . . , mn(n). 

THEOREM 1. There is a constant C1 such that 
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8(R(E), R(En)) 6 C1 II(T - T)IR(E)II 

for all large n, where (T - Tn)IR(E) denotes the restriction of T - Tn to R(E). 

Proof For f E R(E) with 11 f 11 = 1, we have 11 f - En f 11 = II(E - Ej)Ef11 < 

II(E - En)EII, and hence 8(R(E), R(En)) 6 II(E - En)EII; for f E R(En) with IIf l = 1 
we have Ilf - Ef S1 < II(En - E)EnII, and hence 8(R(En), R(E)) < II(En - E)EnII. Since 

En )- E pointwise and {En } is collectively compact, both II(En - E)EII and II(E - En)E 
converge to 0 as n -+oo [1]. Thus limn 8+w(R(E), R(En)) = 0. 

We now apply Lemma I with M = R(E) and N = R(En). This yields 

(3.1) 8(R(En), R(E)) S 8(R(E), R(En)) [1 - 8(R(E), R(En))I-1 . 

Since lim SO(R(E), R(En)) = 0, (3.1) implies that 8(R(En), R(E)) S( C5(R(E), R(En)) 
for some constant C and hence that 

(3.2) 8(R(En), R(E)) S (1 + C)Q(R(E), R(En)). 

Now for f E R(E) we have 

ll f-Enf 11 = IIEf-Enf 1= [Rz(T)=--Rz(Tn)] fdz j 

=7r y ~fRz(Tn)(T- Tn)Rz(7)fdz | 

R(E) is invariant for T and thus for Rz(T). Hence 

(3.3) If - Entf < ? length(r) sup IIRz(Tn)ll II(T - Tn)IR(E)II supIIRZ(I)I lIf II. 

Since Tn -+ T pointwise and {Tn} is collectively compact, supzerllRz(Tn)ll is bounded 

in n. Thus from (3.2) and (3.3) we have 

5(R(E), R(En)) < C1 II(T - T)R (E)II, 

where 

C1 = (1/27r)(1 + C) length(F) sup IIRz(Tn)ll supIIRz(T)II. 
n,zEEr zEr 

Although each of the eigenvalues ,l(n), . . . ,,um(n) are close to , for large n, 
their arithmetic mean is generally a closer approximation [7]. Thus we define 

lm 

(n) = - ,u i,(n). 

In the terminology of [11] this is the weighted mean of the ,u-group. See also Kreiss 

[12]. Our next theorem gives an estimate for ,u - ,i(n). 
THEOREM 2. There is a constant C2 such that 

lu - 2(n)j < C2 II(T- Tf)IR (E)II 

for all large n. 
Proof. For large n the operator En IR (E): R(E) R(En) is one-to-one since 

(E -E)EII -0 and En f = , f e R(E) implies Ilf 11 = IIEf-En f 11 6 II(E -E )EII 
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11f11 andE~ 'R(E) is onto, since 
dimR(E,) 

= dim R(E) = m. Thus 
(E,,R(E)F1 

R(En) R(E) is defined; we write En-' for (En IR (E))* For n sufficiently large and 
fE R(E) with Ilfll = 1, we have 

1 - IIEEnf 1 = IlEf 11 - IIEnf S1 ? II(E - En)EII 6 ? 

and hence IlEnf II > ?. This implies IIEn-,1 61 2 for large n, i.e., IIEn-1 11 is bounded in 
n. We note that EnE,- is the identity on R(En) and E,-'En is the identity on R(E). 
Now we define T = E,,- TnEn IR (E): R(E) --R(E)- 

Using the fact that R(En) is invariant for Tn, we see that a(tn) = {jl(n), ... 

gm(n)} and that the algebraic [geometric] multiplicity of any ji(n) as an eigenvalue of 
T,n is equal to its algebraic [geometric] multiplicity as an eigenvalue of Tn. Letting 
T = TIR (E) we likewise see that u(7) = {,}. Thus trace P = myu and trace = 

mli(n), and since P and Tin are defined on the same space, we have 
" 
m(n) trace(T - Tn). 

The use of the operator %n was suggested by Atkinson [2]. 
Let 01, . . . , m be a basis for R(E) and let c/, ... , cm be the dual basis to 

l ,** Om . Then 

(3 4) J' -p2(n) = 1 trac(T- TO) = [(T- Tn)41, 4)7]. 

Here each 0)7 is an element of R(E)*, the dual space of R(E), but we may extend each 

0,* to X as follows. Since X = R(E) G N(E), any f E X can be written as f = g + h 
with g E R(E) and h E N(E). Define [f, q5,] = [g, 4*7] . Clearly 07*, so extended, is 
bounded, i.e., 07 E= X*. Now [f, (u - T*) 7i*] = [(t - T)f, Oj] . If f E R(E)= 
N((p - T)'?), this vanishes and if f E N(E), this vanishes since N(E) is invariant for ,u - 
T. Hence [f, ('y - T*)'O4*] = 0 for all f E X, i.e., (j - T*)'O4) = 0. Thus we have 
shown that the 07 are generalized eigenvectors of T* corresponding to M. Although 
this particular choice for the extension of 0,* plays no role in this theorem, it is central 
in the theorems which follow. 

Using the facts that TnEn = EJTn and En-'E, is the identity on R(E),we see that 

I[(T- 7n)tjX, 4] I = I [T4), -En TnEn,i4 ?)]I 

= I[En 1En(T-Tns)j, 0P7]I ? 1IEEn 11 II(T- Tf)IR(E)II II'jI 1?I II*I 

for each j. IlEn II is bounded in n since En E pointwise. Thus from (3.4) and (3.5) 
we get 

~ 1 m 
1 (n)l msu pk IIEkII E llI 110)711 Il(T - Tn)lIR(E)11- 

This gives the desired result. 
For the remainder of the paper, except where the contrary is explicitly pointed 

out, we assume Tn converges to T in norm. Then T* converges to T* in norm. Under 
the assumption of norm convergence we can obtain a refined estimate for i, - ,u(n)I. 

THEOREM 3. Let 41, . . , Om be any basis for R(E) and let ?1,... , 'm be 
the dual basis (chosen as in the proof of Theorem 2). Then there is a constant C3 
such that 
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l m 
1u,(n)1 6 m 1[(T- Tn)j (t)j* II + C311(T-TO IR(E) 11 Tn*)IR(E*) 

Proof. From (3.5) we have 

[(iT- n)i, ?] - [(En 1En)(T- Tn)0j), q7] 

(3.6) = [(T- Tn)Oi, (En lEn)*bi*] 

= [(T-TTn)5,, q0*] + [(T-Tn)Oi, (En En)*0j*- 0j*] 

Let Ln = En-'En. Ln is the projection on R(E) along N(En). Thus L* is the projection 
on N(En)' = R(En*) along R(J' = N(E*). Since, as shown in the proof of Theorem 2, 

* IE N((p - T*)') = R(E*) we have L *07 - 07 = (L * - E*)q5*. Thus from Lemma 2 

with N = N(E*), M1 = R(En*) and M2 = R(E*) as subspaces of X*, 

(3.7) ITLOi - *1Il < IIE*II III - E*II 8(R(E*), R(En*))I4 
n1II 1 1 _ V_E*1 8(R(E*), R(En*)) 

Note that Theorem 1 (applied to T* and {Tn*}) implies that limn-+ -(R(E*), R(En*)) = 

0, and hence Lemma 2 is applicable. From (3.7) and Theorem 1 (again applied to T* 
and {Tn*}), we have 
(3 .8) IILn*k7*- k711 6 C311(T* - Tn*)IR(E*)Il 

for some constant C3. Now, combining (3.4), (3.6) and (3.8), we obtain 

1 m 
ly (n)I S< - 

2 1[(T - Tn)Oi, )i*] I + C311(T- Tn)lIR(E)II 11(*- Tn*)IR(E*)Il. m i=l 

In addition to estimating ,u - ,i(n) we may estimate ,u - ,ji(n) for each j. 

THEOREM 4. Let ct be the ascent of , - T. Let 01q . . . , Om be a basis for 

R(E), and let 1,*... , O* be the dual basis. Then there is a constant C4 such that 

l, - g,(n)l' S C4 I[(T-Tn)ci, i)7*]1 + II(T-Tn)IR(E)II II(T*-Tn*)IR(E*)II 

Proof. For each n, g1(n) is one of the eigenvalues of Tn. Let T w) = w 

IIwn11 = 1. We can then choose wn* E N((p - T*)') in such a way that [wn, W*] = 1 
and the norms IIw*II are bounded. First, using the Hahn-Banach Theorem, choose w* 
E R(E)* such that [wa, w*] = l and IIw*II = l and then extend w* to all of X as in 
the proof of Theorem 2. w*, so extended, will be in R(E*) and satisfy IIw*II < I?ElI. 
Now, noting that (T - Y)wn = 0, we have 

|ii - ii(n)Il = I[ - ,j(n))awn, wn] I I I [((U,-(n)) -U - )wn, Wn*] I 

= - [iy @-pM(n)) iU- 7a-i(g(n) 
- 

)wn, Wn*? 

a-1 
6 I,u-u(n) iI [(pj(n) - )wn, ( - T*)c- 1 -iwn* 

j=O 

a- 1 

I I g-g(n) II. max I [(ii(n)- OWn, q* ? / ] - T* 1l"uIIw*II- 
j=O '~~~~~~~~~~~~~~~~~ 
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For any q* E R(E*) with JJ0*JJ = 1, 

I[%((n) - 7)wn, 4*] I i - T)wn, = I [En 1En(Tn -)wn, *] 1 

(3.10) i [(Tn 7)wn, ?* I i+ iI[(Tn-7)wn, Ln 

? I[(Tn -)wn), *] I + CGI(T- Tn)iR(E)li II(T*- T*)iR(E*)ii. 

There is a constant C' such that 
m 

I[(Tn - )wn, <* E I [(Tn-Tf,f 
i,j=1 

for all Wn E R(E) and q* E R(E*) with llwnll = 110*11 = 1. Thus, using (3.9) and (3.10), 
we obtain 

m 
L- II(n)i' S C4 i I[(T- Tn)q5)i q57] I + II(T-Tn)lR(E)II Il(T*-T*)iR(E*)Ii 

Finally we consider the approximation of eigenvectors in R(E) by eigenvectors 
in R(En)- 

THEOREM 5. Let ,u(n) be an eigenvalue of Tn such that limn,.(n) = ,. Sup- 

pose for each n that wn is a unit vector satisfying (j(n) - Tn)kwn = 0 for some 

positive integer k < a. Then, for any integer I with k < I S et, there is a vector un E 

R(E) such that ()u - l)'un = 0 and 

||un wnII<SCr,II(T-Tn)IR(E)II - 

Proof Since N((p - 7)') is finite dimensional, there is a closed subspace M of 

X such that X = N((p - T)) () M. For y E R((Q - 7)) the equation ( - 7Tx = y 
is uniquely solvable in M. Thus (j - 7YIM: M > R- - T)' is one-to-one and onto. 

Hence (j - T)'11: R(p- 7))1 M exists and by the closed graph theorem is bounded. 

Thus there is a constant C such that Ilf II 6 C1I( - 7f I I for all f E M. 
Set un = Pw1 where P is the projection on N((; - 7)) along M. Then ( - 7)un 

=0 and wn -Un E M, and hence 

(3.11) ||wn - Unll 6 CRYW - 7(Wn uJI-l 

By Theorem 1 there are vectors un E R(E) such that 

IIwn - 11 || 6 C II(T- Tn)IR (E)II. 

Hence there is a constant C' such that 

11 K- ' - ( -Tn)'] wn 11 

(3.12) = 11 - T )i(T- Tn)(i- 7)'iI [(wna n) + ?n 

6 CFII(Tn - IR(E)11 
Since k 6 1, 
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II-Tn = n (i) - ( 4(n))'(g(n) - Tn)'"iwnhI 

(3.13) i=T 

j= l,k+ (')P - g(n))VQ(n) 
-TO_W 

< c Ft 
u - jU(n) il-k + 

for some constant C ". 

Now, combining (3.11), (3.12) and (3.13), we obtain 

llwn -Un II < CI@ - T)'wn II 

= Cll( 1 P-V- (; -Tn)'1 Wn + (P - VWnl 

< C{C'II(T- Tn)lIR(E)II + C"t p-(n)ilk+ 1}. 

The result follows immediately from Theorem 4. 
We return now to the case where Tn -* T pointwise and {Tn} is collectively 

compact. Theorems 1 and 2 have been proved under this hypothesis and provide the 
main results on the approximation of generalized eigenvectors and eigenvalues, respect- 
ively. Corresponding to Theorem 4, we have the following 

THEOREM 6. Suppose Tn -> T pointwise and {Tn} is collectively compact. 
Let ai be the ascent of , - T. Then there is a constant C6 such that 

I- g(n)I' < C611(T - Tn)IR (E)I11 

Proof. Formula (3.9) in the proof of Theorem 4 is valid in this context. The 
result thus follows from the fact that 

I[(l(n)- O)wn, I = I[En 7En(Tn - )Wn, q*] I 

< supIIEn 1EnII II(Tn -)IR(E) n 
for all wn E R(E) and q* E R(E*) with llwnII = 110*1 = 1. 

Finally we note that Theorem 5 is valid in this case also; the proof is exactly the 
same as that given for Theorem 5 except that at the end we use Theorem 6 instead of 
Theorem 4. Theorem 6 is essentially the same as the main result in Atkinson [2]. 

Thus we see that the eigenvector estimates are the same for norm convergence as 
for pointwise convergence of a collectively compact sequence but the eigenvalue estimates 
differ. The appearance of the expression II(T - T)IR (E)II II(T* - Tn*)IR (E)II in the 

estimates in Theorems 3 and 4 as opposed to the expression II(T - TO)IR (E)"1 in 
Theorems 2 and 6 is a consequence of the fact that IIT - TnII -O 0 implies IIT* - Tn*II 

0. If Tn T pointwise and {Tn} is collectively compact, it may happen that Tn* 
does not converge to T* pointwise and that {Tn*} is not collectively compact (cf. [1]). 
We note also that Theorems 3 and 4 hold under the assumption that Tn T and 

Tn* T* pointwise and both {Tn} and { *} are collectively compact. 
We remark again that if X = H is a Hilbert space, we then let T* and Tn denote 
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the Hilbert adjoints. In the proof of Theorem 2 in this context we would let 01, 

.. 'fm be an orthonormal basis for R(E) and let = E* n. T , . . . , * E 

N((j - T*)a) and trace(Ti- Tn) = T7 ((T! - Tn)o/,p, 0b7), where (-,) denotes the inner 
product on H, and with only minor modifications all the results of this section are 
valid. 

Finally, we note that if we were given a family {Th}O<h<1 of compact operators 
such that Th * T pointwise as h - 0 and {Th}<h 1 is collectively compact, or 

Th * T in norm, then all of the results in this section (with certain obvious modifica- 

tions) hold. 

4. Applications. We outline in this section several applications of the results in 
Section 3. 

(a) We consider first the approximation of eigenvalues of nonselfadjoint 2nd order 
elliptic partial differential operators by Galerkin-type methods. 

Let Q2 be a bounded domain in RN with boundary M which will be assumed to 
be of class C '. Hs(92), for any real s > 0, will denote the usual Sobolev space and 
the norm on HS will be denoted by 11 I1* H?(Q2) = L2(2) and the inner product on 
L2 will be denoted by (,). H1(92) is the subspace of H1(92) consisting of those func- 
tions which vanish on M. 

Let L be defined by 

N aa\ N au 
Lu = - . 0 aja- + E: bi x + C 2: ax ~~~ax1 

where ai1, bi and c are in C (2). We assume L is uniformly strongly elliptic, i.e., there 
is a constant ao > 0 such that 

N N 
Re a aj(xl)tj > ao 

iJ;-1 1=1 

for all real t, . .. . tN and x E Q2. Associated with L is the sesquilinear form on 

HI(P) defined by 

Nau a5' N a 
B(u,v)= | a dx + b Aa Vdx +? CUV. 0~ ax1 ax1 1=1 

Let b = max1 <i<N;xe 1bi(x)I. We assume without loss that Re c > a0/2 + b2/2ao 
since adding a constant to c only shifts the eigenvalues. Under this assumption B is 
coercive on H' (&2), i.e., 

(4.1) Re B(u, u) > %a0jjuIj2 

for all u E H1( i2). The boundedness of the coefficients of L implies that B is continu- 
ous on H1 (Q2), i.e., there is a constant a, such that 

(4.2) IB(u, v)l < a, lIull 1 livil 

for all u, vEHI(n). 
Given a closed subspace V of H1 (Q2) with Ho(2) C V we can formulate a boundary 

value problem associated with B as follows: Given f E L2(Q2) find u E V such that 
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(4.3) B(u, q) = (f, 4) 

for all 0 E V. Under our assumptions this problem always has a unique solution which 
we denote by Tf. If V = Ho(Q2) this is the weak formulation of the Dirichlet problem 
associated with L and if V = H1 (Q2) it is the Neumann problem. By the Rellich com- 
pactness theorem T is a compact operator on L2(E2). We now suppose V is either 
Ho1(Q2) or H1 (Q2). In addition, T satisfies the following regularity estimate: 

(4.4) 117-f 11~~Ttls+ 2 <- Csllf Ils 

for all f E Hs(S2) for some constant Cs (cf. [4] ). The L2(92)-adjoint T* of T satisfies 

B(q, T*4) = (q, 1) for al 0 E V and, as for T, the regularity estimate 

(45) 11 T*f 11s+ 2 < Csll f Ils 

for allfEHs(92). 
An eigenvalue corresponding to this boundary value problem is a complex number 

X such that 

(4.6) B(u, q) = X(u, q) 

for some nonzero u E V and all 0 E V. Clearly X is an eigenvalue satisfying (4.6) if 

and only if , = 1/X is an eigenvalue of T. If X and u satisfy (4.6), then, because of 
the smoothness assumptions on a2 and the coefficients of L, Lu = Xu in Q2 and u = 
0 [au/av = 0] on a2 if V = Hb(Q2) [V = H1 (2)] where alav is the conormal deriva- 
tive. 

Let {Sh }O <h a be a one-parameter family of finite dimensional spaces. For 

given integers k and r with 0 < k S r we say that {Sh}o<h 1 is of class Sk r if Sh C 

Hk(2) for each h and if there is a constant C independent of h and v such that 

k 
(4.7) inf E hillV - X11j < ChtIIvIIt 

XESh j=O 

for all 0 < h < 1 and v E Ht(Q2) with k < t < r. We define the class Sk,r to consist 
of those families {Sh}o<h,1 such that Sh C Hk(Q) for each h and (4.7) is required 
to hold only for v E Ht(Q2) n H(2). Many examples of such families have been 

studied recently. Each of the usual sets of trial functions used in the finite element 
0 

method is of class Sk,r [Sk,r] for some k and r. 

If V= H1(92) we assume we are given a family {Sh} of class Si,r with r > 2; if 
V = Ho(Q2) we assume we are given a family of class S01r with r> 2 and assume, in 

addition, that Sh E H(Q2) for each h. We now consider the approximate eigenvalues 
defined by the Galerkin method with trial functions given by {Sh }, i.e., the complex 
numbers X(h) satisfying B(w, q) = X(h)(w, q5) for some nonzero w E Sh and all 0 E Sh. 

These will be approximations to the eigenvalues of (4.6). For f E L2(92) let Thf be 
the unique element in Sh such that 

(4.8) B(Thf ?)= (f ?) 

for all 0 E Sh . It is easily seen that T.w = (1/X(h))w. Thus the eigenvalues p(h) of T. 
are reciprocals of the Galerkin eigenvalues X(h). The eigenvalues of (4.6) are thus char- 
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acterized as the eigenvalues of the compact operator T and the approximate eigenvalues 
are characterized as the eigenvalues of the compact operators Th. 

In order to apply the results of Section 3, we need to obtain estimates for T - Th. 
Let f E Ht-2(2) for some t with 2 < t < r. From (4.3) and (4.8) we have 
B((T- Th)f, ) =Ofor all qE S,. Hence, using (4.1), 

II(T - Th)f 112 < - IB((T- T)f, (T - Th)f)I 

2 
=-IB((T - Th) f, Tf - X)I 
a0 

for any X E Sh. Thus, using (4.2), (4.7) and (4.4) we have 

(4.9) II(T -Th)fIIl ? C inf IITf XII Cht I1ITfIIlt Cht IlfIlt2 
XE-Sh 

for an appropriate constant C. Now let G E Hs with 0 < s < r - 2. Then 

((T - Th)f, ,) = B((T - Th)f, T*O) = B((T - Th)f, T*0 - X) 

for any X E Sh. Thus, using (4.2) and (4.9), we have 

I((T- Th)f, P < C Ct1 Ilf Ilt-2 inf IIT*0i - x111. 
XE-Sh 

Using (4.7) and (4.5), we get 

(4.10) I((T - Th)f, iP)1 < Cht+sllf Ilt2 IIIIS. 

The argument leading to (4.10) is due to Nitsche [13]. 
From the estimate (4.10) we can obtain all of the estimates needed to apply the 

results of Section 3. (4.10) with t = 2 and s = 0 yields I((T - Th)f, P)I < 

Ch2IIlfI10IIiPII, and hence 

II(T- Th)f 110 = 1((T- Th)f ,01 < C?211fII10 

for all f E L2(Q2). This shows that T. -> Tin norm, and hence that all the results of 
Section 3 apply. Now we estimate II(T - Th)IR(E)II. Toward this end let f E R(E). 
Under our assumptions the eigenvectors and generalized eigenvectors of T (or L) are in 
Ht(Q2) for any t > 0. Thus from (4.10) with t = r and s = 0 we get 

1((T - Th)f 0l)1 < Chr llf 11 r-2110110l 

and hence 

II(T - Th)IR (E)II feR (E), LL sup I)((T 
- Th)f =) fER (E),iPe2 (M2);fII10= IhP 11 0= 1 

(4.11) 
1 SU IIflr-2 < Chr. 

feR (E) ,Ipf 11 0 = 1 

Next we estimate II(T* - Th*)IR(E*)Il. The generalized eigenfunctions of T* are also in 
Ht for any t > 0. Thus, using (4.10) with s = r - 2 and t = 2, we find 

I(f, (T* - T,*)O)l = I((T - Th)f, VP)I < ChrfllIfoII1pII2 
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which yields 

(4.12) II(T* - Th*)IR(E*)I| ? Cli. 

Finally we consider ET 1 1((T - Th)qj, 0)*)1. It follows immediately from (4.10) with 
t = r and s = r - 2 that 

m 
(4.13) I((T-Th)0, j*)j <Ch2r-2. 

j=1 

Let X be an eigenvalue of algebraic multiplicity m satisfying (4.6) and let Iu = 1/X. 

Then the eigenvalues ,il(h), . . .(, Mjh) which converge to ,u as h * 0 are computed 
as the reciprocals of certain eigenvalues X, (h), . . ., Xm(h) of the finite dimensional 
eigenvalue problem 

B(w, 4)) = X1(h)(w, 4)), 

for nonzero w E Sh and all 4 E Sh. Thus using (4.11), (4.12) and (4.13) we see that 

Theorem 3 yields the estimate 

(4.14) X -(Am 1 /)(h)) !?ch2r2. 

Using Theorem 1 we have 

(4.15) 8(R(E), R (En)) SChr 

for the generalized eigenvectors. 
The estimates (4.14) and (4.15) were obtained by Bramble and Osbom [7]. The 

results of Section 3 also apply to several other methods for constructing approximations 
to the eigenvalues of the eigenvalue problem associated with L and the Dirichlet bound- 

ary conditions: the least squares method of Bramble and Schatz [8], methods of 
Nitsche [16], [17], and the Lagrange multiplier method of Babuska [3]. In addition, 

the results of Section 3 apply to the approximation of Steklov eigenvalues as studied 
in [6]. For a more complete discussion of all of these methods, see [7]. 

(b) Let (Tf Xx) = 4oK(x, y) f(y) dy where K(x, y) is continuous for 0 < x, y < 1. 
T is a compact operator, on C [0, 1]-the Banach space of continuous functions with the 

supremum norm. Let {T,,} be a sequence of approximations to T defined by numerical 

quadrature, i.e., let 

n 
(Tnf)(x) = E WnjK(X, Ynj)f(Yn) 

j= 1 

where 0 < Yn? 1 and the weights wn1 are real or complex and we assume that 

Sn1 w,*g(yn.) -> f g(x)dx for each g E C [0, 1]. Then it is known (cf. [1]) that 

Tn T pointwise and {Tn} is collectively compact. 
Thus Theorems 1, 2, 5 and 6 apply to this type of approximation. A complete 

discussion of approximation by numerical quadrature can be found in [1]; compare 
also [2]. 

(c) Let a(x) and c(x) be periodic functions of period 1 which are defined by 



724 JOHN E. OSBORN 

(Pl, -% X <0, fql, -% x < , 
a(x) = <, < c(x) = < 

(P2, O?x<X, 1q2 O?x<X, 

where P1, P2, ql, q2 are positive constants, and let ah(x) = a(x/h) and ch(x) = c(x/h) 
where h is a small parameter. Recently Babu'ka [4], [5] has studied the eigenvalue 
problem, 

(4.16) dx (h dx) XhChUh, O <X <1, 

together with the boundary conditions, 

(4.17) u(O) = u(l) = 0 

or 

(4.18) u(O) = du(l)/dx = 0. 

As h 0 the problem (4.16), (4.17) [(4.18)] "tends" to the "homogenized" problem, 

(4.19) x (aOd) =XcU, O < x <1, 

where a-1 = ?l l + p-1) and c0 = ?(q1 + q2), together with the boundary condi- 
tions (4.17) [(4.18)]. The problem (4.19), (4.17) [(4.18)] is considered as an approx- 

imation to (4.16), (4.17) [(4.18)] for h small. 
Computational experiments show that with the boundary conditions (4.17) the 

eigenvalue error is proportional to h2, whereas with (4.18) the eigenvalue error is pro- 
portional to h. The higher order convergence with the boundary condition (4.17) can 
be explained as follows. 

Let T and T. be the inverses of the differential operators defined by (4.16), (4.17) 
and (4.19), (4.17), respectively. The eigenvalue problems (4.16), (4.17) and (4.19), 
(4.17) are selfadjoint and for their first eigenvalues Xl and Xl, we have from Theorem 
3 the estimate 

(4.20) IXo - Xl < C{((T -Tn)4, P) + II(T T-n)0q12}, 

where k is the unit eigenvector of (4.19), (4.17) corresponding to 'Xl. Since 0 E 

H2 [0, 1], we will have II(T - Th)4oIo < Ch. Now BabusGka has shown that (T - Th)o 
can be expressed in the form (T - Th)X = h2u + hv where v is odd with respect to 
x = %. Since 0 is a multiple of sin x, we see that (v, 0) = 0 and thus ((T - Th)b, q) = 

h2(u, 0). Hence from (4.20) we have IXl - Xhl I < Ch2 . 

It follows from Theorem 1 that the eigenvector error is of the order h for both 
types of boundary conditions. Thus, with this type of approximation, the eigenvalue 
error is not always of higher order than the eigenvector error. 

(d) Given a compact operator T, a common way to define an approximating 
sequence of operators is to let Tn = PnT where {Pn} is a sequence of projections which 

converge pointwise to the identity. Then Tn -> T in norm. 
Thus Theorems 1, 3, 4 and 5 apply to such projection methods. We limit our- 

selves to pointing out that the estimate in Theorem 2 yields 
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m 

lu-,i(n)l < I[(T-PnT)yj, 0*1 ? + C311(T- Tn)lR(E)II II(T* -Tn*)IR(E*)Il 
j=1 

m 
= , I[(I-P j)2T'P, pi*] I + C3 11(T- T)IR (E)II II(T* -Tn*)IR (E*)II 

1=1 

m 
< II(T-Tnj)1IIII(I-Pn*I*ll + C3 11(T -Tn) IR(E) 11(T* - Tn*) IR(E*) 11. 

1=1 
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