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Polynomial Interpolation 
to Boundary Data on Triangles 

By R. E. Barnhill* and J. A. Gregory 

Abstract. Boolean sum interpolation theory is used to derive a polynomial interpolant 

which interpolates a function F E CN(T), and its derivatives of order N and less, on 

the boundary aT of a triangle T. A triangle with one curved side is also considered. 

1. Introduction. Boolean sum interpolation theory** was first used on triangles 
by Barnhill, Birkhoff, and Gordon [1] to derive rational functions interpolating the 
boundary data. The general theory of Boolean sum interpolation is briefly discussed in 
this paper and a polynomial Boolean sum interpolant is presented, which, for any posi- 
tive integer N, interpolates a function F E CN(T), and its derivatives of order N and 
less, on the boundary iT of a triangle T. The case N = 0 corresponds to an interpolant 
constructed by other means by Nielson [6]. The interpolant requires that certain deriv- 
atives of F be compatible at the vertices of T, but these conditions can be removed by 
adding suitable rational terms. The theory is generalized for a triangle with one curved 
side. 

The interpolant can be used to defme a piecewise function which is CN(92) over 
a triangular subdivision of a polygonal region Q2. This has applications to computer 
aided geometric design and finite element analysis. Finite dimensional, piecewise defined, 
CN(i) interpolants can be derived by taking the boundary data to be functions inter- 
polating discrete data along the sides. Alternatively, the blending function can be incor- 
porated with finite elements so as to match exactly a given boundary function on Q2; 
see, for example, Marshall and Mitchell [5], who interpolate over a polygonal region Q2. 
The general theory of interpolation to boundary data for a triangle with one curved 
side, presented in Section 5, permits essential boundary conditions to be satisfied exactly. 

2. Boolean Sum Interpolation Theory. This section considers conditions which 
are sufficient for the application of Boolean sum interpolation theory. These conditions 
motivate the formulation of the projectors considered in Section 3. The interpolation 
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of the function F is first discussed, and this is then generalized to the interpolation of 
the function F and its derivatives. 

THEOREM 2.1. Let rF and r2 be two subsets of R n, and let F be a function 
defined on r u r2. Let P1 and P2 be two interpolation projectors such that PF = F 
on rF, and PiF is defined on rl Ur2, i = 1, 2. Then the Boolean sum function, 

(2.1) (P1 ?3 P2)F = (P1 + P2 - P1P2)F, 

(i) interpolates F on F1, 
(ii) interpolates F on r2 - rl if P1 F on r2 - r is a linear combination of 

function evaluations on r2. 

Proof. (i) Since I - P1 is null on IF, where I is the identity operator, it follows 
that 

F - (Pi e P2)F (I - P1 )(I - P2)F 

is zero on F1. 

(ii) Also, since (I - P2)F = 0 on F2, 

F - (PI1 @ P2)F (I - P2)F - P, (I - P2)F 

is zero on r2 -r if P1 on r2 -r is a linear combination of function evaluations on 
r2. Q.ED. 

In practice, Pi F usually involves F only on ri. The hypothesis of Theorem 2.1 
then becomes that P1F on r2 -r is a linear combination of function evaluations on 
r1l nr2, where it is a necessary condition that rF fl r2 is not null. 

Remark. If the dual hypothesis holds for (P2 e) P1)F, that is, P2F on F1-r2 
is a linear combination of function evaluations on rF, then 

(P1 E P2)F= (P2 G P1)F on rFUF r2 

and hence 

P1P2F=P2P1F onFr U F2. 

We thus have sufficient conditions that the projectors satisfy the definition of weak 
commutativity of Gordon and Wixom [4]. 

The generalization of Theorem 2.1 to the interpolation of function and deriva- 
tives on rF U r2 is the following: 

THEOREM 2.2. Let P1 and P2 be two interpolation projectors such that D'PiF 
=D"F onri and D"PiF is defined onFr Ur2, i=1, 2, for all Jul S N, where 

a-=(a1'***'aCin) and D= ax 1 .. . 

Then 
(i) Da(P1 ) P2)F = DaF on rl for all lal S N, 

(ii) D-(P1 ) P2)F = DaF on r2- F1for all IaIl S N if DaP1F on r2- r is a 
linear combination of function and derivative evaluations on r2 which are interpolated 
by P2F. 



728 R. E. BARNHILL AND J. A. GREGORY 

Proof. The proof is an extension of the proof of Theorem 2.1. The only compli- 
cation is on 12 - rI where 

DF - D'(P1 a P2)F D'(I - P2)F - DOP1(I - P2)F 

is zero for all lal 6 N if and only if D'-P1 (I - P2)F = 0. A sufficient condition for 
this to hold is that D?P1 on 12 - rF is a linear combination of function and derivative 
evaluations on F2. For Jul > 1 some of these derivatives may be of order greater than 
N and thus we require that these be interpolated by P2. Q.E.D. 

Note. Since P2F interpolates D-F on r2 for all Jul < N, then, assuming its exis- 
tence, 3IlasI(DaF) is also interpolated on F2, where a/as is any derivative along the 
set F2. Such derivatives, assuming any necessary compatibility to allow change of order 
of differentiation, frequently include those required by Theorem 2.2. 

Example of Rational Interpolation on Triangles. Consider the standard triangle T 
with vertices at V1 = (0, 1), V2 = (1, 0), and V3 = (0, 0), where the side opposite the 
vertex Vk is denoted by Ek. Rational Hermite projectors on T are defined by 

(2.2) T1F= E pj('l _Xy((-y)Fs0(0, y) + E(1 - y)Fi0(1 -y,y) 

(2.3) T2F = E pi Y F(1-X)Fo,i(x, 0) + 2 ( 1 - xF,i(x, 1 - x), 

xa 
T3F= foit + (x + Y)i(a a-F(O,x + y) 

? , iN \)x ? y)( Fax ay ? 

i <N x YJ \ax ayF(X j, ) 

where the (p1(t) and 4i (t) =(- 1)1epi(l - t) are the cardinal basis functions for Hermite 
two point Taylor interpolation on the interval [0, 1]. Boolean sum interpolation using 
these projectors was first considered by Barnhill, Birkhoff, and Gordon [1]. Applica- 
tion of Theorem 2.2 gives the following theorem. 

THEOREM 2.3. The Boolean sum functions, (Ti ? TJ)F = (Ti + T, - TiTi)F, 
i $ j; i, j = 1, 2, 3, interpolate F C CN(T) and its derivatives of order N and less on 
aT, provided that F satisfies the compatibility conditions 

(2.5) /(X) (Vk)= asasm )(Vk) m, n N; m + n > N, 

where Vk is the vertex with adjacent sides Ei and E, and a/as, denotes differentation 
along the side E,. 

Proof. By affine transformation and symmetry, it is sufficient to consider the 
case (T1 6e T2)F. T1F and T2F interpolate on = E2 U E3 and r2 = E U E3, 

respectively. With reference to the hypotheses of Theorem 2.2, DaT1F, Jul S N, on 
172 - P. = F2 involves linear combinations of 



POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 729 

( In _~~~~~~~~ 
(2.6) - 0 n a a ?'F (1Q )~ O?<m ,n <N. aynaxm) 0) and L ax 

The latter derivative is interpolated by T2F, since tangential derivatives along the side 
are automatically interpolated. Also, T2F interpolates Fo,n(x, 0) and hence interpolates 

( axmnaynfO)( O < m, n S N. 

Thus the hypotheses of Theorem 2.2 are satisfied if F E CN(T) and satisfies the com- 
patibility conditions (2.5) at the vertex V3 = (0, 0). Q.E.D. 

Precision. The precision set is the set of polynomials for which the interpolant is 
exact and is important in that it indicates the order of accuracy of the interpolant. The 

precision set of the Boolean sum operator P1 ED P2 is at least that of P2 since 

I -(P1 QDP2)=I -P2 -1( -PV 

and I - P2 is null on the precision set of P2. Thus the Boolean sum operator P1 @ P2 
has at least the interpolation properties of the projector P1 and the precision set of the 

projector P2. 

3. Polynomial Interpolation on Triangles. By affine invariance it is sufficient to 
consider the standard triangle T defined above. Projectors P1 and P2 are considered, 

which satisfy the conditions of Theorem 2.2 and which respectively interpolate F E 

CN(T) and its derivatives of order N and less, on the hypotenuse rP = E3 and on the 
x and y axes P2 = E1 U E2. These projectors involve suitable combinations of the 

Taylor projectors which interpolate F and its derivatives on the sides of the triangle T 
along parallels to the x and y axes. Explicitly the Taylor projectors are defined by 

Tx2F= ? x(i)Fiso(0,y) 
i<N 

T3F = E2 (x + y - 1)(i)Fi, o(l- y, y), 

(3.1) iAN 
Ty= y(1)F0 j(X,O0), 

j<N 

T3F = :2 (x +y - l)(0)F0,j(x, 1 -x), 
jSN 

where xi) = xi/i! and T2 denotes the Taylor projector across the side E2 along the 
line through (x, y) parallel to the x axis etc, 

Let 

P2F= (Tx2 Ty')F X x')Fi1 0(0,y) + E y(i)F01(x, 0) 

(3.2) j<N 

- x(i)y(I) ( iaiiF(0 0). 
iTJ<N ax xaie 

Thn t s asl shown hatMfr_ F - CN,(T) the codtosouTerm22araife 
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for the Boolean sum of the projectors T 2 on E2 and T on E1 if 

(3.3) a+F\ (a (s ?) M, n 6 N, m + n > N 
(3.3) axiny nfO'O ) \aynaxrn(m ) mn N ? > 

(in which case the Taylor projectors are commutative). Thus for F satisfying the com- 

patibility condition (3.3), P2F interpolates F and its derivatives of order N and less on 

F2 = El U E2. The precision set of P2 is the union of those of the two Taylor pro- 

jectors T2 and T , namely 

{ O,i?N forallj, 

(3.4) x ,; 
0O?j?N foralli. 

A projector P1 is required which interpolates F and its derivatives on I" = E3 

and which satisfies the conditions of Theorem 2.2, namely that DaP1F on F2 is a linear 

combination of function and derivative evaluations on F2 which are interpolated by 

P2F. This is accomplished by taking a suitable combination of the two hypotenuse 

Taylor projectors. 
Linear Case. (Nielson's interpolant.) Let 

(3.5) P1F = yF(x, 1 -x) + xF(l -y, y), 

then P1F interpolates F on F` = {x + y = 1}. Also, on x = 0, P1F = yF(O, 1) and, 

on y = O, P1F = xF(l, 0). Thus P1F on F2 is a linear combination of function evalua- 

tions on F2, and these are interpolated by 

(3.6) P2F = F(O, y) + F(x, 0) - F(O, 0). 

The conditions of Theorem 2.1 are thus satisfied and 

(Pl ? P2) F = yF(x, 1-x) + xF(l -y,y) + F(x, 0) + F(O,y)-F(O, 0) 

(3.7) -y{F(O, 1 -x) + F(x,0) - F(O, 0)} 

-x{F(O, y) + F(1 - y, 0) - F(O, 0)} 

interpolates F on the boundary a T of the triangle T. This is a Boolean sum derivation 

of Nielson's polynomial interpolant. 
If we let 

F(x, 0) = (1- x)F(O, 0) + xF(l, 0), F(O, y) = (1 - y)F(O, 0) + yF(O, 1), 

and F(x, 1- x) = F(x, 1 - x), then 

(3.8) (P1l P2)F = yF(x, 1-x) + xF(l-y, y) + (1-x - y)F(O, O) 

is an interpolation function which is linear on two sides of the triangle, whilst matching 

the function F on the other side. This interpolant could be incorporated with piecewise 

linear finite elements on a triangulated polygon so as to satisfy given boundary condi- 

tions exactly. 
General Case. Let 
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i EN ai'i(X' Y)(a - - F)(0, 1) 

'.NJ<N(X Y )$ ax ayF(1 
(3.9) E+ fi3i,(X, Y) (1,0) 

<N ax ax a / 
Ia'+iF 0 

i,j i ' 
, 

N a iY'/ 

where .i J, f3 j, and zY j are the appropriate cardinal functions, be the polynomial inter- 

polant over the 3(N + 1)2 dimensional set of polynomials which are of degree 2N + 1 

along parallels to the three sides of T. The case N = 1 is the tricubic polynomial inter- 

polant of Birkhoff [3] and, for general N, the existence of this interpolant is implied 

by Lemma 4.1 of Barnhill and Mansfield [2]. Then ao00(x, y) + f30,0(x, y) + 

O,0(x, y) = 1 and 

(D t,o)(E = (D30,0)(E2) = (D yo,o)(E3) = 0 for all tcil ?N, 

where (Dao,o)(El) represents D'ca0 0(x, y) evaluated on the side E1 etc. Hence 

(3.10) (c'0,0 + 30,0)(E3) = 1 

and 

(3.11) (D[a'0,0 + 300])(E3) = 0, 1 < I! <N. 

Thus 

P1F = a0,0(x, y)T3F + 30,0(x, y)Tx3F 

(3 .12) = a0,0(x, y) (x + y - 1)(G)F ,/(x, 1 - x) 

(3.12)~ ~ ~ '010(X, y) E X+y )i)iol ,y j<N 

is a projector which interpolates F E CN(T) and its derivatives of order N and less on 

rP = E3. Also, for all lal < N, DaP1F on y = 0 involves the derivatives, 

(LI?Ilaa+ \(l,o), 0 m,n6<N. a x ayjax7 

P2F defined by Eq. (3.2) interpolates these values provided that F e CN(T) satisfies 

the compatibility condition, 

Jr a ~a lamF\ __ama_ 
(3-13) ([ ax + a- a.-.1 ? F)(1, 0), (3.13) ax ayJax axm,/a'x 

m, n < N; m + n > N. 

Similarly on x = 0 we require that 
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(3.14) (Ea - aaI] anF)(O 1) = (Fn [ -( 1), 

m, n < N; m + n > N. 
The conditions of Theorem 2.2 are then satisfied and with (3.3) we have: 

THEOREM 3.1. Let F E CN(T) and satisfy the compatibility conditions, 

/'m+nF \/ n+mF\ 
(3.15) fla,jk) = a Vk), m, n <N; m +n >N, 

at each vertex Vk with adjacent sides Ei and E,, where alas, denotes differentiation 
along the side E,. Then the polynomial Boolean sum function, (P1 G3 P2)F = 

(P1 + P2 - P1P2)F, where P1 is defined by (3.12) and P2 is defined by (3.2), inter- 
polates F and its derivatives of order N and less on the boundary aT of the triangle T. 

The precision set of the interpolant is that of the projector P2; see (3.4). 
Examples. (i) For N = 0, 

(3.16) a00,0(x, y) = y and 00, (x, y) = x, 

giving the linear case (3.5). 
(ii) For N = 1, 

(o. o)(X (xy) = y2[3 - 2y + 6x(1-x - y)] and 

(3.17) 0,0(x,y) = X2 [3 - 2x + 6y(1 - x -y)]. 

This case is discussed further in Section 4. 

4. Removal of Compatlibility Conditions. The compatibility conditions (3.15) of 
Theorem 3.1 can be removed by adding suitable rational terms to the Boolean sum 
interpolant (P1 ? P2)F. We consider the rational Hermite projectors on the standard 
triangle T defined by Eqs. (2.2)-(2.4). 

Firstly, since T3 interpolates F on E1 U E2, the projector P2, defined by (3.2), 
can be modified to 

(4.1) P2F= P2F + T3(F - P2F) 

where T3(F - P2F) is a rational compatibility correction term. We consider now the 
modified Boolean sum interpolant, 

(P1 (9 P2)F= (P1 E P2)F + (I-P1)T3(F-P2F), 

where P1 is defined by (3.12). This interpolant requires the compatibility conditions 
(3.15) at the vertices V1 = (0, 1) and V2 = (1, 0). Then F - (P1 ? P2)F has com- 
patible derivatives at the vertex V3 = (0, 0) and can thus be interpolated by either of 
the rational Boolean sum operators T1 ?) T2 or T2 ? T1. Thus 

(4.2) (P1 ? P2)F + (T1 ? T2)[F - (P1 ? P2)F] 

interpolates F E CN(T) and its derivatives of order N and less on aT, where (T1 ?' T2) 

[F - (P1 ? P2)F] is another rational compatibility correction term. The rational 
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terms are zero if the compatibility conditions (3.15) hold. 
Example. For N = 1, the average of (3.2) with the dual expression for (T' ? T2)F 

gives the symmetric projector, 

P2F = F(O, y) + xF1 0(0, y) + F(x, 0) + yFO 1(x, 0) 

4.3) -F(O, O) -yF0,l(0, 0) - xF1,o(? 0) 

xA/aa2FF\ 
Then _ YAIa(x O a ) + (0, 0)+. 

Then 

(4.4) T3(F - P2F) = xy(x - y) a/F(O, F ) /a2F (0, 0)\ 2x+ y) axay) 
(, -kayax 

and the projector 

(4.5) P2F = P2F + T3(F - P2F) 

interpolates F E CN(T) on r2 = E1 U E2. Now 

P1F = y2 [3 -2y + 6x(1-x - y)] [F(x, I-x) + (x + y - l)Fo,1(x, I-x)] 

(4.6) + x2 [3-2x + 6y(1-x - y)}[F(I-y, y) + (x + y-l)F1'0(l-y, y)]. 

and the Boolean sum (P1 (D P2)F = (P1 + P2 - P1 P2)F can be determined from 

Eqs. (4.3)-(4.6) where 

P1P2Fuy2[3-2y + 6x(l -x-y)] 

*[i(P2F)(x, 1-x) + (x + y-l)(a )(X, 1-x)] 

(4.7) 
+ x2 [3 - 2x + 6y(I - x - y)] 

[(P2F)(1 -y, y) + (x + y - 1)Q I) y, Y)]. 

It can then be shown that 

(Ti (E) T2)[F - (PI Q3 P2)F] 

(x +y - 1)2x2y(3 - 2x)$(a a 1a T(, 
x-l Lax ayj axf' 

(4.8) _ (a [ ~~~~~~~~a -a ]F)(1, 0) (4.8)xax 
y 

+ (x +y - 1)2xy2(3 - 2y) a aF (O 1) 

y - ax (aray ai 

- ay aX + a ]F (0, 1); ayLax y)} 

givng he omatily orrctditerolat,(PD e D2) +C (T ?r Tin [ -r (PD ? PD)F] 
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5. Triangle With One Curved Side. By affine transformation, it is sufficient to 
consider the triangle with vertices at V1 = (0, 1), V2 = (1, 0) and V3 = (0, 0) and two 
straight edges along the coordinate axes. We assume that the third side E3 opposite the 
vertex V3 is defined by the one-to-one functions, 

y = f(x) and x = g(y), 

where g is the inverse function of f. The Taylor projectors on E3 are now 

(5.1) T3F [x - g(y)] (iF W Y), 
i<N 

(5.2) T3F y - f(x)]I1XF0,j(x, f(x)). 
j<N 

The cardinal functions ao0o(x, y) and 00 0(x, y) of Section 3 have the properties, 

[0o,o(l- f(x), Y) + 3o,o( - f(x), y)](E3) = 1 

and 

[D ito,o(l f(x), y) + D:300,(l - f(x), y)](E3) = , 

for 1 < lal S N. Thus 

(5.3) P1F = 0,0(1 - f(x), y)T3F + p00,(1 - f(x), y)Tx3F 

is a suitable projector on E3. The dual projector is 

(5.4) P1F = ai0,o(x, 1 -g(y))T,3F + 00,0(x, 1 -g(y))Tx3F 

or alternatively an average of these two can be considered. 
The Boolean sum function (P1 CD P2)F, where P2 is defined by (3.2), gives a 

blending function interpolant on the curved triangle. 
Examples. For the case N = 0, (5.1), (5.2), (5.3) and (3.16) give the projector, 

(5.5) P1 F = yF(x, f(x)) + [1 - f(x)] F(g(y), y). 

From (3.2) 

(5.6) P2F = F(0, y) + F(x, 0) - F(O, 0), 

so that 

(P1 ? P2)F = yF(x, f(x)) + [1 - f(x)]F(g(y), y) + F(O, y) + F(x, 0) 

(5.7) - F(O, 0)- y[F(O, f(x)) + F(x, 0)- F(O, 0)] 

- [1 - f(x)] [F(O, y) + F(g(y), 0) - F(O, 0)]. 

For the case N = 1, (5.1)-(5.3) and (3.17) give the projector, 

(5.8) P1F = ,,o(l - f(x), y){F(x, f(x)) + [y - f(x)]F0 l(x, f(x))} 

+ 3o,o(l - f(x), y){F(g(y), y) + [x - g(y)]F1,0(g(y) y)}, 
where 



POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 735 

9 o1 (- f(x), y) = y2[3 - 8y + 6f(x) {1 + y - f(x)}] and 

13o,o(1 - f(x), y) = [1 - f(x)]2[1 + 2f(x) + 6y{f(x) - y}]. 

From (3.2), 

(5.10) P2F = F(O, y) + xF1 0(0, y) + F(x, 0) + yFo 1 (x, 0) 

-{F(0, 0) + yFO 1 ( 0) + xF1,0(0, 0) + xyF1 ,(, 0)}. 
Hence 

P1 P2F = co0 (1 -f(x), y){F(0, f(x)) + xF1 0(0, f(x)) + F(x, 0) + f(x)FO, 1(x, 0) 

- [F(O, 0) +f(x)FO,1 (0, 0) + xF1 0(0, 0) 

+ xf(x)FI, I (0, 0)] 

+ [y - f(x)] [F0,1(0, f(x)) + xF1,1(O,f(x)) 

(5.11) + Fo, 1(x, 0)- Fo,1(0, 0) - xF1 (,( 0)f]} 

+ 3o,o(l -f(x),y){F(O,y) + g(y)Fl,o (O,y) + F(g(y), 0) + yFo I(g(y), 0) 

- [F(O, 0) + yFo0 (O, O) + g(y)F1 0(0, 0) 

+yg(y)F,1l(0, 0)] 

+ [x -g(y)] [F1F0(0, y) +F1,0(g(y),0) 

+ yF 1(g(y), 0)-F1,0(0, 0) -yFl 1 (0, )]1} 

Equations (5.8)-(5.11) completely define the Boolean sum interpolant (P1 G3 P2)F= 

(P1 + P2 - P1 P2)F. 
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