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Numerical Solution for Eigenvalues
and Eigenfunctions of a Hermitian Kernel
and an Error Estimate

By E. Rakotch

Abstract. New error estimates for eigenvalues of symmetric integral equations are ob-
tained. These estimates are applicable to a more general class of integration methods
and, in many cases, are better than those of Wielandt. For every eigenvalue, a numeri-
cal solution for the corresponding eigenfunction is also obtained. Whenever the exact
eigenvalue happens to be simple, an error estimate for the corresponding eigenfunction
is alsq derived.

1. Introduction. Let K(x, ¢) be a Hermitian kernel defined in 7 x I, where I =
[a, b), i.e., K(t, x) = K(x, t), such that

b
F(x)= fa IK(x, £))> dt is bounded in I;

then all the characteristic values u; of K(x, t) are real and there exists an orthonormal
set {y;(x)} of characteristic functions [5), i..,

6)) LbK(x, Ny @ dt = py;x),  Opy) =8y

where (4, v) = fPu(x)u(x)dx is the scalar product of two complex functions u(x),
u(x) € L,(I) = {z(x)I(z, z) <o}

Further, let S be a rule of numerical integration with weights w;, > 0 and nodes
X, €I, i=1,...,n,by which the approximation [ f(x) dx =~ T, w;, f(x;,) is
made.

To obtain a numerical solution for the characteristic values of K (x, ¢), Wielandt
[9] replaced the original problem by the sequence of eigenproblems

2 K®ym =y, v, KM =w, K, x,), Li=1,...,n,

with real u;, and # linearly independent eigenvectors yl("), for a class of integration
rules possessing the properties

lim ﬁ: W, f(x;,) = f bf(x)dx for every f(x) € C(J),

n—>oj=1 a

n
3 Wi, = b —a;

i=1
the eigenvalues u,,,, kK =1, ..., n, are then taken by Wielandt as approximations,
which also converge as n —> o, to the corresponding characteristic values of K (x, ).

To specify this correspondence, the following assumptions are made:
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Let V= {a;, ..., q,} be asubset of the set R of all eigenvalues of a square
matrix A or of all characteristic values of a kernel F(x, ) defined in I x I, and let W =
{z%1z € V}; then

(@) if o, . . ., o, are the m largest (smallest) real elements of R such that
o Za=>.. .2, (@ <o, <...<aq,),then every a; # a,, with multiplicity
r; > 1 occurs r; times in V,

() ifa,,...,aqa, are the m real elements of R the largest modulus such that
loy 1= loy| = . .. > loy, | and there are 7, real elements of R of modulus lo;l, then ev-
ery a? # a2, occurs 7; times in W.

The problem which arises now is what is the best error estimate for the eigenval-
ues ., of (2). In this context, and with the above assumptions, Wielandt obtained
for those integration rules, which we shall call convergent with respect to K(x, t)—i.e.
the sequence

4 n,(x, 1) = _il w;,, K, x;,)K(x;,, ) — LbK(x, 2)K(z, t)dz

of the error functions for f(z) = K(x, z)K(z, t) converges to 0 uniformly in / x I, the
following result:

Let uj, > pd, >...2uh >0> 4, >...>u;, > uj, be the r largest posi-
tive and the s smallest negative eigenvalues of (2), and let

uf Zuf = ozt >o0>u > 2L >
be the corresponding characteristic values of K (x, ¢); then

pf = lim ), o= limpg, i=1,...,r,j=1,...,s,
n—oo

n—>o

and this convergence is uniform in i/ and j, i.e.,

Okn = |/“kn _ukl <qn’ nl‘_lr)r:oqn =0,
where either

— o+ — o+ _ - — -
Men = Mgns Mg = Mg O My = Mgy Mg = My

Baker [2] obtained convergence properties of a similar type for simple characteristic
values of K(x, t). The best estimate obtained by Wielandt is q,, = 0(\/5,_ ), where

€, = max;y;In,(x, t)l and n,(x, ) is defined by (4), whereas that of Baker is q,, =
O(max w;,)). Other authors ([1], [3]) obtained better bounds, but only for the dis-
tance of every eigenvalue y, ,, to the nearest characteristic value of K(x, #). In this pa-
per improved estimates of the form (see Theorem 1 at the beginning of Section 4)

Oxn = [max(lu, !, D170, 0, = O(e,),

are obtained, which generalizes Wielandt’s convergence theorems for all integration rules
which are convergent with respect to K (x, ¢) and satisfy (3). Moreover, the new result
enables application of integratidn rules, which are convergent with respect to K(x, ¢),

to kernels which exhibit singular behavior in 7 x I and for which, therefore, no solution
can be found within the scope of Wielandt’s and Baker’s papers (see Example 2 in Sec-
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tion 2). As a consequence, an error estimate for the numerical solution of (1), conver-
gent to O uniformly in I for every integration rule which is convergent with respect to
K(x, t), is derived. The new error estimates for eigenvalues are to be interpreted as
follows: our estimates are better than those of Wielandt for the first m,, eigenvalues
My, Such that max(lu,, |, lu,l) > CV/e, for some C > 0, where the sequence m,, tends
to infinity; for other eigenvalues both our and Wielandt’s estimates are of the same or-
der of magnitude, namely O(\/q ), and ours are not necessarily better.

2. Numerical Results. To illustrate the superiority of the new error estimates giv-
en by Theorem 1 in Section 4, two numerical examples are presented. To the second
of our examples Wielandt’s method does not apply.

In the tables of results given below, /J;';, and y;,, are the eigenvalues defined in
Theorem 2 near the end of Section 4, whereas y;,(x) and yj, (x) are the numerical so-
lutions for characteristic functions corresponding to ul",', and up,, respectively, obtained
by the procedure described at the end of Section 4. The improved error estimates are
those described in Section 5. The error estimates for y,",',(x) and y7,(x) are those ob-
tained by application of the remark concluding the discussion of Theorem 3 in Section 4.

Example 1. The integral equation is
1
J,, maxGe. )3 dt = ny).

Characteristic values and characteristic functions are, respectively:

R? and \/——%;%hs%, where R is the positive root of the equation z tanhz = 1;
V2 cos ryx
—r% and ~Z N N=1,2,...,where 0 <r, <r, <...are the positive

cos 7y .
roots of the equation ztanz + 1 = 0.

The integration rule S mentioned at the introduction is the trapezoidal rule.
To obtain o, , §, and v,,, as defined in (24), put

4,@=(r-Dz-[(rn-Dz], B,@=1-4,2), C,(2)=4,)B,0),

D,@)=4,&) ~B,(), h=(n-1)7', F,@)=1-z-C,)[3~hD,@);
then
h2 {3tCn(X) + Fn(t), x <t,

N(x, 1) = —
" 6 L3xC,(p) + F,(x), x>t

which after a simple, but lengthy, calculation yields
2 KNS (e 2
=2 3 " t{iG,(t) + hC,O)D, ()G, () + 0.31C, (O] + F@)} dt,
18 /= J(x—1)n

where G, (t) = 0.3t + F,(), and

1 *in 1
2 -
fo n3(x, x;,) dx = fo n2(x, x;,) dx + _[xmnf,(x, X;,) dx.
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Each of the above summands is evaluated by the closed Newton-Cotes formula with 7
points. The remark at the end of Section 4 is applied with p = L = 1.
For comparison with Wielandt’s results the error estimates for the negative eigen-

values up,, together with error estimates for the numerical solutions for characteristic
functions, are presented in the following table:

TABLE 1
Error Improved Error Actual maxi-
estimate error estimate | Actual error mal error Wielandt’s
Case 1| for u, by estimate for for uj,, for y,(kIN), | estimate
Theorem 1 for g, Vi) k=0,1,...,N
n =101 1| 734-1075 |7.34-1075 | 00067 | 126 -10~5 0.00011
2| 645-107* |351-107% | 0872 9.22 - 107¢ | 0.000466 0.00539
N=1200( 3 | 0.00153 8.15-107% 8.72 - 10~ 0.00104
n=201 | 1| 1836 1075 | 1.836 - 1075| 0.00167| 3.14 - 107¢ | 2.77 - 1075
N = 1000 2] 161-10% [878-10"5 | 02073 | 2.306 - 1076| 1.17 - 1074 0.00269
h 31375-107% |204-107% 2.18 - 1076
4| 685107 |3.66-107% 1.628 - 1075

It is to be noted that as the initial error estimates for the eigenvalues y;,, tend to

grow with [, they are better than those of Wielandt only for some first eigenvalues. To

obtain a comparable error estimate unobtainable by Theorem 1 for other eigenvalues,
the bound q,, defined by (26) with the optimal C = 4/0.5(1 ++/5) can be taken.
Example 2. The integral equation is

Jo @+ iVE =iV ) dt = uya).

The exact solution is unknown.

The integration rule, which is derived by the transformation u = z2 for the inte-
gral [3K (x, 2)K(z, t) dz and application of the Gauss quadrature with weights w;, and

nodes §;,, i =

1, ..., n,is defined by

winzzwingin’ xinEEI?n’ i=1...,m
therefore, using our definition (4) [7, p. 48],
a2n 2 2
n,(x, t) = 2c, uk (x, u*)K(u*, 1)
au2” u=¢§
_ 2(2n)'c, [ Vx =i B Vit +i ]
Vx-VE =2 LE -V P (- -t

where ¢, = [3")*(2n + 1)!]7! and 0 < ¢ = &(x, ) < 1, and consequently

I, Gx, 1)l <<2nn>_2(2n + D'V +x +V/1T+0).

The error estimates, with those for y,*,’,(x) obtained by application of the remark

at the end of Section 4 with p = % and L = 1, are given in the table below:
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TABLE 2

7 Error estimate for u;';, Improved error | Error estimate
" by Theorem 1 estimate for ufh, | for yih,(x)

1 2311077 2311077 881077
6|2 1015 - 1075 508 -107¢ 0.00383

3 2.12 - 107% 1.033 - 107%

1 9.1 -107t° 9.1 -10710 341-107°
8|2 4-10"8 2-1078 147 - 1075

3 8.15 - 1077 4,08 - 1077 0.11

The approximations for n = 9 rounded to 10 digits are:

ut, ~ 09543482459, uf, ~ 00434068611, u3, ~ 0.0021321407.

3. Numerical Solution for a Characteristic Function. Since the new results, pre-
sented in Section 2, refer also to an error estimate for the corresponding characteristic
function, an appropriate definition of the approximate solution for a characteristic
function, which converges to the corresponding characteristic function, is to be given.
To obtain such a definition, observe first that by the similarity relation between the
matrix K of (2) and the Hermitian matrix H with H; =K (C7N xin)\/w,7v;-;, ij=
1, , 1, the eigenvector y(”) is related to the corresponding eigenvector z, of H by

g} \/7 , i=1,...,n. Further, define a new scalar product (u, v), of two
vectors u, v in C,—the n-dimensional complex Euclidean space—and a new norm Iuln
in C,, by

) (u, v), = Z W0y lul, =/(u, u),,
and denote by lIfl =+/(f, f) the norm of a complex function f(x); therefore, if the ei-
genvectors z,, k=1, ..., n, of H are chosen so as to form an orthonormal set, then
(6) (y("),y(”))n =8pq0 Pq=1,...,n

For every eigenvector y(") of (2) with u,,, # 0, define now the numerical solution
Yin(x) for a characteristic function generated by y(") which also satisfies y, ,(x;,) =
(") 1
Yir, i=1,...,n,as

Q) Vien(®) = usz nqu K (x, x Xjn)-

It is natural to expect the difference between the two sides of (1), with u, and
¥, (x) replaced by u,,, and y, ,(x), respectively, to be expressible in terms of the error
function (4). In fact,

b
BenYien(®) = fa K@, 1)y, (0)dt = typ Z Wiy N, (%, X;,),

®)

where 1, (x, ) is defined by (4).
Let, further, {y% (x)}, m =1,...,r, form an orthonormal base of all characteristic
functions of K(x, t) corresponding to u, ; then for every n with w,, # 0, there exist
coefficients cgc';,),, m=1,...,r,such that the error function
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r

en() = Va0 = X T ym ()

m=1
is of minimal norm. In fact,
cg:,), =rm V) m=1,...,n
and, consequently,
(9) (exn»>y) = O for every characteristic function y(x) of K(x, ¢) corresponding to u,.

The functions e, ,(x) and ¥, (x) = y; ,(x) — e,,(x) are called the error function and
the characteristic function, respectively, associated with y, ,(x). Now, if the approxi-
mate numerical solution y, (x) for a characteristic function is taken to be of norm 1,
ie., yi,x) = Iy, 7'y, ,(x), it can be shown that the characteristic function Y,,(x)
of norm 1 corresponding to u, such that the error function ef,(x) = y§,(*) = Y, (%)
is of minimal norm, assumes the form

R;rlt-;;kn(x)’ Rkn #0,

Ykn(x) = .

yx) withy =u,, Ry, =0,

where R,,, = 7, ,Il. Also, since by (9) ly,,I? = RZ, + le,,I?, we have
epn®) = 1y, e () = (ygnll = Ry Yie (0]

(10

_ leg, 12
= Wil feen®) = g Yin )|
4. Error Estimate and Convergence. For the sake of conciseness of presentation,

the following definitions are introduced:
My and pp,, k=1,...,r,are the r largest (smallest) characteristic values

1 of K(x, t) and the r largest (smallest) eigenvalues of (2), respectively, such
( that i, >y Sy and gy 200 Wy SBipg ), i= 1,000,
r—1.
In the following, F(x, t) is a kernel defined in I x I.
U(F) and U, (F) are the set of all characteristic values of F(x, t) and the set
(12)  of all eigenvalues of the matrix F™ with Fi(j") = anF(xi"’ x,-,,), iLj=1,
.., n, respectively.

A (F) and N, (F) are the kth real elements of U(F') and U, (F), respectively,

@13)
in the ordering determined by that of the u, and the y,, in (11).

M (F) and M, (F), k=1, ...,r,are the moduli of the r elements of U(F)
(14)  and U,(F), respectively, of largest modulus, such that M;(F) = M, ,(F) and
My(FY> My f(F), i=1,...,r—1.

@15) oF uy= | > fabF(x, Du()iux)dx dt,

n
(16) 0,(F, u) = izl WinWinF (815 X )05,
!l=
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a7 V(F) = {Yl [ abF(x, HY(@)dt = NF)Y (), 171 = 1},
Viu ) = 2IF™z = N\ (F)z, lzl,, = 1}, where
(13)
F(”) =w; nFCins X ~,,), iyjj=1,...,n, and lzl, is defined by (5).
(19) 8,(F, x, )= fn‘_, Wi FCx, X)) F (x5 1) — fabF(x, 2)F(z, t) dz,
i=1
(20) D,(F, u) = fab f:sn(F, x, Du(x)u(t) dx dt,
1) D (F u) = Z Win 1n5(F Xin> In)
i,j=1
n %
@2)  A,,(F)= [maxgzwm [ 8,(F, x, x,,)u) dx ‘e Vk(F)Q
i=1 a
n 2 Y2
(23) B (F) = [max%fa” ;Wm 8,(F, x,,,x)| dxlu € V,m(F)ﬂ ;

o, [ff I, Cx, DI dxdt] s By —[Z Win Win 1, (%05 X .n)|2]%,

i,j=1

(24) n b . 1%
T = lel.n fa In,(x, x;)I*dx| , p, =max(x,,B,),
=
where 1,,(x, t) is defined by (4).
(25) Yin(x) and e, (x) are, respectively, the function (7) and the error

function associated with it as defined in Section 3.

The new error estimates for the eigenvalues obtained in this paper are now sum-
marized in the following two theorems:

THEOREM 1. If, with Definitions (11) and (24), v, = max(l,|, lu, ) = Vo,
for some C > 1, then

@ g, — ! SvRh(r, + o)1 —ve2e,17" <vpi(r, + o)1 - CTA7H,

(b) Il“ln - ”l 7n[Vln - pn]—-l/2

THEOREM 2. Let pf, >pu = ... 2} >0, u7, <u, <...<pg, <0,bde
the r largest positive and the s smallest negative eigenvalues of (2), and let ui* >
u; =Z...=2 ur >0>ug = ... 2u,; =y be the corresponding characteristic values
of K(x, t).
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If the integration rule S is convergent with respect to K(x, t) and satisfies (3),
then

: + _ .+ . - - . P .
'}l_rflu,',,—u,-, "lgnwuj,,—ui, i=1,...,rj=1,...,8
and the convergence is uniform in i and j, so that for every C> 1,

lut -t <q,, I, — wl<q,, i=1,...,nj=1...,s

(26) g, =max{C, [C? - 117", +»,, where Y, and p,, are defined by (24).

Theorem 2 is a generalization of Wielandt’s results.
The error estimate for the approximate numerical solution of (1) is given by:
THEOREM 3. The error function defined by (25) satisfies (see Definitions (4),
(11) and (12))

ley,, OO < Itz gz (")l[m?xlnn(x, x| + qknlin\/F(x)]

+ lug, —ulen(x)i,
where

F(x) = fab K, 6)%dt, G,(x)=[F(x) + n,(x x)]%,

(27) Qin = sup{li, — NTHINE UK), X # ),

b 1)
N = [fa In,, Cx, xin)lzdx:l

This bound for e,,(x), and consequently that for the function ef, (x) defined by (10),
are improvements, by a factor of O(n“/’), of a similar error estimate obtained in [4].

Error estimates for the eigenvalues in special cases are given in Section 5.

An immediate consequence of Theorem 2, analogous to the one which follows
from the convergence theorem in [1], is:

If the integration rule S is convergent with respect to K(x, ¢), then e, ,(x) and
ex,(x) converge to 0 uniformly in I.

Remark. If K(x, 1) satisfies a Lipschitz condition of the form K(u, #) - K(, )| <
Llu—vlP, 0<p<1,inI x I, then (see Definition (4))

leg, G < lugie! %luk IE (")I[m?xlnn(x, Xl + qknlinVF(x)]

max (xm+1,n - mn) Z kal jl%

+ lug, —ukl{maxlyfcml + 1o max

where x,, =a and x,,,; , = b.

Since the estimate for e, ,(x) involves an estimate for g, ,, it can be found only
if the multiplicity of u, is known. Such an estimate is obtainable, for instance, when
Uy is a simple characteristic value and in this case we deduce by Theorem 2, Eq. (38)
of [6] and Lemma 1 in Section 6:
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COROLLARY 1. If u, is a simple characteristic value of K(x, t) and the integra-
tion rule is convergent with respect to K(x, t) and satisfies (3), then for some choice
of eigenvectors y,(c") such that |y,(c") = 1 (see Definitions (5) and (7)),

Vin(X) = y, . (x) uniformly in I, and so does also Iy, 17y, ,(x).
kn kn

In

By (7) it follows that

n
Winl® = . 20 i3 PP GG 310)
L=
where

G(x, 1) = f :K (z, x)K(z, ) dz = f:K(x, 2)K(z, 1) dz.

In the case where G(x, t) cannot be determined exactly, an approximation ¢,
of lly,,|l is found by applying some quadrature formula for determining G(x, ¢) at the
points (x;,,, xin); the approximate solution for a characteristic function is then taken
to be ¢}y, ,(x), and the error estimate is

Cen®) = legt v, () = Rih Vi, ) < It = 1y 17D, Gl + leg, (o

= Crn Vi) e = WDy, Gl + leg,, Col,
where e}, (x) is given by (10).

5. Improved Error Estimates for Simple Characteristic Values and for Positive-
Definite Kernels. An error estimate for a simple characteristic value can be improved if
the approximate eigenvalue y, , satisfies the inequality (see Definition (11))

I,  — | <minly, ,, — ul.
My n k itk kn i

If the integration rule S is convergent with respect to K(x, ¢) and satisfies (3),
and . is a simple characteristic value, then by Theorem 2 there exists an integer N
such that the above inequality holds for » > N, and by Lemma 5 (stated in Section 6)

g — el = inf{lu,, — A INE UK)} < g iy, 17 Yy,

An error estimate for a positive-definite kernel is obtained from the following
theorem:

THEOREM 4. Let W, € U, (K) and i), € UKK), k=1, ..., n, such that
Wen! = My, (K) and 10| = M (K) (see Definitions (12), (14) and (4)). Then

W2, -2l <M,(n,) +M,,m,), k=12,...,

where U, = 0 for k > n.

COROLLARY 2. If K(x, t) is positive-definite and (see Definitions (11) and (12)),
Mgn > —min{AIX € U,(K)}, then, \uz, — il <M,(,) + M,;,(n,).

We also obtain

COROLLARY 3. ly, | <V/M (), k=1,2,....

6. Discussion of the Theorems. To obtain the final results presented in Theorems
1—4, the following lemmas are necessary using the definitions introduced at the begin-
ning of Section 4:
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LeEMMA 1. Let u, = (u,,,...,u,,)and A, = (a(")) be, respectively, sequences
of vectors and n x n matrices with complex elements. Then (see Definition (5))

(@) lu, 12 = 22_ (u,, 2,),1* = Z¢_, (24, u,), | for every sequence z,, k =
1, ..., n, satisfying
(28) (p’ q) pq’ prq=1>"'sn'

(b) If the integration rule S satisfies (3), then

lim max lu,,;| = 0 implies lim Z Wiyt = lim Z Wi, ka, u,;l =0,
n—oo | n—oo j—1 n—>o j=
k=1,2,...,
and

) =0 impli (n) =
lim max lgj)l = 0 implies  lim Z Win Wiy = 0.
n—oo ij n—o jj=1

LEMMA 2. If N, = N (F) = N\ (F), where F(x, t) is a Hermitian kernel defined
in I x I, then (see Definitions (13), (22), (17) and (20))
A = A (F)) < Ay, (F) [1 -2 max D,(F, u)ﬂ_%
Vi(F)
LEMMA 3. If N, = N, (F) =\, ,(F), where F(x, t) is a Hermitian kernel de-
fined in I x I, then (see Definitions (13), (23), (18) and (21))

NenNien = M (F)) < B,m(F)[ ~ N max 1D, u)]

This lemma is a consequence of Weyl’s theorem [8, p. 445]:

LEMMA 4. Let D(x, t) = F(x, t) — G(x, t), where F(x, t) and G(x, t) are Hermi-
tian kernels defined in I x I, then (see Definitions (13), (15) and (16))

(a) if Q(D, u) = 0 for every u(x), then Ny (F) 2 N (G), k=1,2,...;

®) if 0,,(D, u) =0 for every u € C,, then N ,(F) = 7 ,,(G), k=1,...,n

The next and last lemma is used to obtain the improved error estimates for sim-
ple characteristic values mentioned in Section 5.

LEMMA 5. With Definitions (11), (12), (7) and (24),

Dy, = inf{l,, = NI\ € UK)} < lug iy, 171 y,-

This is a slight improvement of the result obtained in [3].

The proofs of Lemmas 1, 4 and 5 are straightforward ([6, Lemmas 1, 5 and 2,
respectively]), whereas those of Lemmas 2 and 3 require some special devices ([6, Lem-
mas 3 and 4, respectively]).

The first four lemmas are used to establish part (a) of Theorem 1 by the follow-
ing steps:

1. Application of Lemma 2 and part (b) of Lemma 4 to obtain (see Definitions
(11), (22), (17) and (20))

_ ~
(29) Bt = ) S Ay (D) [1 = 157 max 1D, u)ﬂ ,
V(L)

where
k-1

(30) L(x, ) =K(x, 1) - 21 (1, = 1)y, )y, (0).
o=
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2. Application of Lemma 3 and part (a) of Lemma 4 to obtain (see Definitions

(11), (23), (18) and (21))

_ %
€2)) HMicn(Micn ~ M) <Bkn(Ln)[l ~ g max DI, “)[I .
Vin(Lp)
where
k=1
(32) L(x, )=K(x, 1) - El Hpn = Brn)Y pn(®)Ypn(@).
p_—

3. Bounding of 4, (L), max{ID,(L, )| lu € V, (L)}, B,(L,) and
max{IDy(L,, u)l lu € V,,(L,)} in terms of v, and p, defined by (24), which is a
matter of pure manipulations.

Theorem 2 follows from Lemma 1 and Theorem 1.

Theorem 3 is a consequence of (9) and the Parseval equality (equation of closed-
ness [S, p. 10]) for the function e, ,(x).

For the full proof of the above theorems the reader is referred to [6].

Finally, we come to the proof of Theorem 4, which terminates our discussion.

Proof of Theorem 4. The degenerate kernel

n n
G,(x, t)= glme(x, X)) K (x5 1) = ;lwinK(x,,,, x)K(x;,, t),
is Hermitian and G, (x, t) = G(x, t) + 7,(x, t), where
b
G(x, 1) = fa K(x, 2)K(z, 1) dz,
therefore the characteristic values v, of G, (x, t), where v, , 2v,, > ...2v,, 2
Vot1n = ---=0,are related to those of G(x, t), which are 12, by the inequalities
[8, p. 445]:
(33) W, —#2 <M@,), k=1,2,....
The v,,, k = 1, . . ., n, are exactly the eigenvalues of the matrix L, =
(Win G(x;5 X;)), which is similar to the Hermitian matrix A defined by

A(n) =VWinWin G(x;ip» x/n) = VWinWin (Cnins Xjn) = N> Xjn)]-

Now, a procedure similar to that described in [8] for characteristic values of ker-
nels leads to the inequalities

02, — venl SMy,(n,),  K=1,2,...,
where I}, = 0 for k > n, which together with (33) yields
Wy, — Wzl <M(n,) + M,,(,), k=1,2,..
Corollary 3 follows from (33).
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