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On Bairstow's Method 
for the Solution of Polynomial Equations 

By Kenneth W. Brodlie 

Abstract. We show that Bairstow's method is just one member of a family of similar 

algorithms for determining a quadratic factor of a polynomial. We suggest a way of 

choosing an appropriate member of this family for a particular problem. Numerical 

results indicate that our strategy compares favorably with the classical Bairstow al- 

gorithm. 

1. Introduction. Let P(z) = anzn + an_Izn-I + ... + ao be a polynomial with 
real coefficients. The complex roots of P occur as complex conjugate pairs, and so P 
has real quadratic factors. Suppose we wish to determine such a factor, say 

(Z2 + p*z + q*), given an approximation (Z2 + p(O)Z + q(O)), p(o), q(o) real. 
Bairstow [3] suggested the following method which involves only real arithmetic. 

Dividing P by the real quadratic (Z2 + pz + q), we can write 

(1.1) P(Z) = (Z2 + pz + q)(bn2 zn-2 +... +bo) + uz + v 

where (uz + v) is the remainder. On equating coefficients we have 

(1.2) bi = a,+.2 - pbi+ 1 - qbi+ 2 (i = n - 2, . . .,I 0), bn-I = bn = ?, 

and so the coefficients b1 can be regarded as uniquely defined functions of p and q. 
Furthermore, u and v are also functions of p and q and are defined, again from equat- 
ing coefficients, by 

(1.3) u(p, q) = a1 - pbo - qb1 = b_1, v(p, q) = ao - qbo, 

where b-1 is defined naturally by extending (1.2). Solution of the equations 

(1.4) u(p, q) = 0, v(p, q) =0 

yields p* and q* such that (z2 + p*z + q*) is a real quadratic factor of P. 
Bairstow suggested that Eqs. (1.4) be solved by Newton's method. Thus a se- 

quence (p(k), q(k)) is generated by 

F(k+l) 
I P(k) Falp aiq1u 

(1.,] [q 
;= 

[q v,k0, 1, 2, . . . 
q(k+ J av/ap [AJ L =p(k);q=q(k) 

Differentiation of Eqs. (1.2) yields a recurrence relation for the derivatives of b1. If 
we define di = ab1lap, then 

Received June 17, 1974. 
AMS (MOS) subject classifications (1970). Primary 65H05, 68A10, 12D 10, 26-04, 26A78, 

30-04, 30A08; Secondary 12DOS. 
Key words and phrases. Solution of polynomial equations, Bairstow's method, quadratic fac- 

tors of a polynomial. 

Copyright 0 1975, American Mathematical Society 

816 



BAIRSTOW'S METHOD FOR POLYNOMIAL EQUATIONS 817 

d. = -bq(X-n-301 

(1.6) li-pd+1 -i+lqd+2 (i=n-3,...,0,-l), 

d-2 =d-1 = 0. 

Moreover, it is readily shown that ab 1Iaq = abilap, and so derivatives with respect 
to q are generated by the same recurrence. Thus the iteration (15) becomes 

p(k+ I ) (k) d_ d 
_-1 

b-, 

[(;+:1 iq(k[; z - bo - L 0 -qbj p(k);q=q(k) 

that is, 

(k+1 [ p(rk b1,(qdl + bo) - do(ao - qbo) 
(1.7) = - 

q(k+ 13 Lq(k3_ qdob-1 + d1(ao -qb) =pp(k);qq(k) 

where J = qd2 - d_1(bo + qd,), the determinant of the Jacobian of Eqs. (1.4). 

Let us define the value of this determinant at the solution (p*, q*) by J*. Then, 
if J* 0 0, the theory of Newton's method tells us that the iteration (1.7) will converge 
quadraticaly to (p*, q*), provided the initial guess (p(o), q(O)) is sufficiently close. 
Thus today Bairstow's method is regularly used in conjunction with some other meth- 
od which has a larger domain of convergence but a slower rate, this other method be- 
ing used to set up a good initial approximation from which Bairstow's method can be 
put into operation. 

If J* = 0, Bairstow's method as it stands is unsatisfactory. The iteration (1.7) 

may fail to converge from an arbitrarily close starting point (see, for example, [10, p. 

1901); if it does converge the rate of convergence may be extremely slow; and in any 
case the method is likely to fail in practice due to diviision by a near-zero denominator. 
It is therefore important to isolate the cases where J* = 0. Henrici [6, p. 114] and 
Carrano [5] have between them proved the following result: if a1 i a2 are the roots of 
(Z2 + p z + q*), then Jt + 0 if and only if a1, a2 are simple, distinct roots of P(z), 
or real, equal roots of multiplicity two. Thus, in particular, if (Z2 + p*z + q*) is a 

quadratic factor of multiplicity greater than one, then J* 0. For this case Arthur 
[2] and Carrano [5] have independently suggested a modification which retains the 
property of quadratic convergence from a sufficiently close starting point, at some com- 

putational expense. 
In this paper we take a fresh look at Bairstow's method. In particular, in Sec- 

tion 2 we notice that Eq. (1.1) represents only one of a number of ways in which 
P(z) may be divided by (z2 + pz + q). These different divisions give rise to a family 
of similar methods of which Bairstow's method is one member. 

In Section 3 we discuss how to choose the "best" method in a particular situa- 
tion and the results of Section 4 show this choice to be quite effective. Indeed we are 
able to recommend a method which seems defimitely superior to Bairstow's method 
and only a little harder to implement. 

In Section 5 we discuss the related field of polynomial deflation, and there we ac- 
knowledge that the ideas of other authors in that field have contributed greatly to the 
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work presented here. We mention in particular the papers of Bingham [4] and Peters 
and Wilkinson [9]. 

2. Bairstow's Method from a Different Viewpoint. It is helpful to consider Bair- 
stow's method from a different angle. Suppose we ask that 

P(z) = (z2 + pz + q)(b-2 zn 2 +. . . +bo) 

for given p and q. This requires that the (n - 1) unknowns b, satisfy an overdeter- 
mined system of (n + 1) linear equations 

an bn2 
an-l Pn 

an-2 q 

(2.1) 

a. 

Lao \P 

These equations are only consistent when p = p* q q*. Suppose, however, that we 
introduce two new variables u and v; let us add u to the right-hand side of the last but 
one equation and u to the right-hand side of the last equation. The system of linear 
equations is now square: 

an-1 p b 
n-3 

an-2 q 

a2 
I _ 

I~~~~~ 

a0q1 

Furthermore the unknowns bi, u, v are explicitly available as functions of p and q by 
forward substitution. (The b, are generated by (1.2), and u and v are given by (1.3).) 
If we now solve u(p, q) 0, v(p, q) = 0 for p* q*, then this is precisely the strategy 
of Bairstow's method. 

Now it is clear that the new variables may be added to any pair of equations in 
(2.1) to make the system square. Then, provided the matrix of the set of linear equa- 
tions is nonsingular, the variables u and v can be found in terms of p and q. Thus it 
could be that Bairstow's method is only one member of a family of similar algorithms, 
and it is this idea which we pursue in this paper. 

First of all we remark that if u and v are added to a pair of consecutive equations 
then we are assred that the matrix of the resulting set of linear equations is nonsingu- 
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lar; indeed we shall see later that the solution for the unknown bi, u, v is then explicit- 
ly available. Moreover it is not difficult to construct an example in which u and v are 
added to a pair of equations that are not consecutive and the resulting matrix is singu- 
lar. Therefore in what follows we shall always suppose that the pair of equations are 
consecutive. 

For example, we could add the new variables u, v to the right-hand side of the 
filrst two equations of the system (2.1). This corresponds to writing 

(2.2) P(z) = (q + pz + z2)(Co + c1z + .. + Cn-2zn2) + uzn + vzn-1, 

that is, dividing "backwards". We have written the quotient polynomial with coeffi- 
cients c,, since these will differ from the coefficients of the quotient polynomial in 
(1.1) except when p = p*, q = q*. The system (2.1) is extended to: 

an 1 ]lp\ u 

a2 1 

a1 

La 0 j I qj n 

showing that the unknowns c,, v and u are generated as functions of p and q by back 
substitution. We have 

Ci = (a pci-p I - ci-2)/q (i = 0, . . * , n - 2), C1 c2 = 0, 

(2.3) u = an- Cn-2 

V = an-l -Pcn-2 - Cn-3 = qcn-I - 

Solution of the equations u(p, q) = 0, v(p, q) = 0 again yields p* and q* such that 
(z2 + p*z + q*) is a real quadratic factor of P. 

The general case where variables u, v are added to the right-hand side of any con- 
secutive pair of equations from (2.1) can be described as follows. Suppose we add new 
variables ur and vr to the (n - r)th and (n - r + I)st equations, respectively, for some 
r, 0 < r < n - 1. This is equivalent to leaving a remainder of the form (Urzr 1 + 
vrzr) on dividing P by (z2 + pz + q). In this case the quotient polynomial has coeffi- 
cients which are either coefficients of the quotient polynomial of (1.1), or coefficients 
of the quotient polynomial of (2.2). To be precise we have 

P(z) = (z2 + pz + q)(bn-2 zn 2 + ... + brzr + Cr1 Zr-l + .. .c0) 

(2.4) r 
rr + UrZr+1 +VrZ. 

The system (2.1) is extended to 
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an- I '\& \I I 

n-2 qIbr 

I I 

* ~~~q 1P Cr.. 
a2 1 

a, I I I C~~~0 

from which it is clear that the coefficients bn-2, .. ., br are generated by forward 
substitution (1.2), and the coefficients co, . . ., cr.I by backward substitution (2.3). 
Furthermore ur and vr are found as 

(2.5) Ur(p, q) = br_i -Cr-Ic Vr(p, q) = q(cr -br) 

with, of course, br.I being generated by (1.2) and cr by (2.3). Solution of the equa- 
tions 
(2.6) Ur(p, q) = 0, Vr(p, q) = 0 

yields the coefficients of a quadratic factor of P. 
Thus we have a choice of n pairs of simultaneous nonlinear equations that we 

could solve for p* and q*, corresponding to values of r = 0, 1, . . . , n - 1. The ques- 
tion of selecting the "best" pair to solve is considered in Section 3. Notice, however, 
that the case r = 0 yields the classical Bairstow method, while the case r = n - 1 cor- 
responds to the "backward division" method described earlier in this section. 

We carry out the solution of Eqs. (2.6) by Newton's method. An iteration of 
the method can be written as 

F(k+1)] p(k) Fau /ap au /aql-[u] 
(2.7) - -II I_ 

(k+1) (k) Vr/ap aVr/a V p=p(k);q=q(k) 

The partial derivatives of b1 are given by the recurrence (1.6). Partial derivatives of 

c, are obtained by differentiating Eqs. (2.3). If we define e = acl/ap, then 

e, = (-ci-I -pe1.1 - ei.2)Yq (i = 1, 2, . .. , n), eo = e_ = 0. 

Since ac_1 /aq = aci/ap, one recurrence again generates derivatives with respect to 
both p and q. 

Thus the iteration (2.7) becomes 

p(k+1) [(k) d_-e_d, , u 

(k+ 1)] Lq(k) [q(er- dr) (Cr-br) + q(er+ -dr+ d L Vr]p-p(k);q q(k) +~~~r 

Writing Yi = di - ei, and noting that vr = - qur+ I, we have 

(k+ I P(k 
qur+ iYr Ur(Ur+i + qYr+ I1 (2.8)L(+)-LqJ- L j_ ()q() 
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where Jr = qY2 - Yr)i(Ur+1 + qyr+ 1 the determinant of the Jacobian of Eqs. (2.6). 
Let us define the value of Jr at the solution (p*, q*) by Jr*. If Jr* i 0, the it- 

eration (2.8) will converge quadratically provided (p(O), q(?)) is sufficiently close to 

(p*, q*). If Jr* = 0, the iteration will very likely fail. Thus we are interested in iso- 
lating the circumstances under which Jr* is zero. Let P(z) = (Z2 + p*z + q*)Q(z) 
and let the roots of (Z2 + p*z + q*) be al, a12. Then some algebra shows Jr* = 

Q(aC )Q('2)I(q *)r. Thus Jr* is nonzero if and only if cal, I2 are simple distinct roots 
of P(z), or real equal roots of multiplicity two. Notice that this result is independent 
of r, and so each algorithm of the family behaves similarly in this respect. Presumably 
an extension of the family of algorithms, similar to the Arthur-Carrano extension of 
the classical algorithm, could be devised to handle multiple quadratic factors. However, 
this is not considered here, and from now on we suppose that Jr* i 0. 

If the value of r is given, the computational effort required to carry out the itera- 
tion (2.8) is on a par with that required to carry out the iteration (1.7) of the classical 

Bairstow algorithm. In fact an operations count shows that (4n + 3) multiplications/ 
divisions are required to carry out either iteration. Thus if we can find an effective, 
and computationally inexpensive, criterion for choosing r, we should hope to improve 
the Bairstow algorithm-perhaps by decreasing the number of iterations required to 
achieve convergence, or perhaps by increasing the likelihood of the iteration converg- 

ing at all from a given starting point. 

3. Choice of Which Equations to Solve. In this section we turn to the task of de- 
termining which pair of the possible n pairs of nonlinear equations we should solve. 
Notice that the particular choice of equations can be varied as the iteration (2.8) pro- 

ceeds; that is, the value of r need not be fixed ab initio, but may depend on k if de- 
sired. 

To begin with we shall ignore any consideration of the computational effort re- 

quired to make our choice. Consider the equations Ur(p, q) = 0, Vr(p, q) = 0. Solu- 
tion of these equations by Newton's method is effected by making first-order approxi- 
mations to ur and vr at the current point (p(k), q(k)), and then solving the resulting 
linear system. Some measure of the error of these approximations is given by the sec- 
ond-order terms in the expansions of ur and vr at (p(k), q(k)). So let us define by 

Pur(p(k), q(k)) the spectral norm of the matrix of second derivatives of ur evaluated 
at (p(k), q(k)), with a similar definition Of Pvr (p(k), q(k)). Then an appropriate choice 
of equations to solve might be given by the value of r which minimizes the expression, 

{Brpu(p(k), q(k))}2 + {CrPv (p(k), q(k))}2, 

for r = 0, 1, . . ., n - 1. Here Br, Cr are weighting factors, appropriate choices of 
which will be discussed later. 

Unfortunately, however, such a selection scheme requires computation of the or- 

der of five or six times the computation required to carry out the iteration itself once 
r has been selected. Indeed this scheme will not be considered further since it was 
found in practice to be no more effective than the following more simple selection 
scheme. 
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In this next scheme we choose r as that value which minimizes in some sense the 
residuals of the equations at the current point, in particular, that value which minimiz- 
es the expression, 

{Br lUr (p), q( ))I ? Cr IVr (p(k), q(k)), 1 

for r = 0, 1, . . ., n - 1, where Br and Cr are again positive weighting factors. The 
following argument suggests an appropriate choice of Br and Cr. Rearranging Eq. (2.4), 
we have 

(z2 + pz + q)(bn-2zn-2 + ... + br_zr + C r r-l ? ... + c0) 

= anzn + . .. + ar+2z r+2 + (ar+ 1 - Ur)Zr+l + (ar - Vr)Zr 

+ arl Zr1 + . . . + ao 

which can be regarded as a perturbation of the original polynomial P(z). So, if ur and 
vr are regarded as perturbations to ar+ 1 , ar, then appropriate values of the scaling fac- 
tors are 

1 
Par+ #0 , 1 

!00 
Br= lar+ 1 I r+ C - ar rO 

00, ar = ?' ??, ar = . 

This yields the test expression, 

lur (P(k) , q(k)/a?r+ 1 l + lr(p(k), q(k))/aril ar , ? ar+ 1 , ?' 

too, otherwise, 

defined for r = 0, 1, . . . , n - 1. This choice of scaling factors ensures that compari- 

sons of a(r) for different values of r may justifiably be made. 
If r is selected as that value which minimizes a(r), then the iteration (2.8) re- 

quires (8n + 3) multiplications/divisions-roughly twice that for the classical Bairstow 
algorithm. Hence even this simple selection scheme seems rather expensive in terms 
of computer operations. Thus it may only be practicable to select r on this basis at 
the first iteration, and keep its value fixed thereafter. In the next section we report on 
some numerical testing of these ideas. 

4. Numerical Results. In this section we examine the relative performance of three 
methods: first, the classical Bairstow algorithm (Method 1); second, an algorithm based 
on iteration (2.8) which selects r at each iteration on the basis of the test expression 

a(r) (Method 2); and third, an algorithm which selects r on the basis of a(r) at the 
first iteration only, and then keeps r fixed thereafter (Method 3). This third algorithm 
involves twice the computation of the classical algorithm at the first iteration, but no 
extra in later iterations. 

Six polynomials were used in the numerical experiments. The first four polyno- 
mials, I-IV, of degrees 4, 6, 10 and 18, were used as test problems by Henrici and 
Watkins [7]. Respectively, they are Problems 8, 23, 27 of Table 1 and Problem 12 of 
rable 2 in that paper (see also [11]). Polynomial IV is notable in having 13 of its 18 
roots with moduli in the interval [0.98, 1.03]. 
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Polynomial V was chosen as one with roots of widely differing magnitude, namely 
the polynomial, 

p(z) = z6 + l.lz5 + 112.1 1z4 + 121.21z3 + 112.1 1z2 + 11.lz + 1 

= (Z2 + 1OZ + 100)(Z2 + Z + 1)(Z2 + 0.1Z + 0.01). 
Polynomial VI is of some historical interest. In his investigations into the stabil- 

ity of the aeroplane in 1914, Bairstow [3] required to find roots of the polynomial, 

P(Z) = Z8 + 20.4z7 + 151.3z6 + 490z5 + 687z4 + 719z3 + 150Z2 + 109z + 6.87. 

Bairstow remarked that "the solution presented some difficulties". 
The three methods were asked to find each quadratic factor of the six polynomi- 

als, starting from three different initial guesses. For the first starting point, p(o) and 
q(O) were taken to have an error of i5%; for the second the error was 10%; and for the 
third it was 20%. 

Convergence was assumed when both 

|Pk) 6* < 10-6 and q q | 10-6 
p ~~~~~~~~q* 

Obviously this is not a suitable criterion for practical purposes (one would use instead 
the stopping criterion of Adams [1], e.g.) but it is adequate for comparison of differ- 
ent methods. A method was supposed to have failed if convergence was not achieved 
in 12 iterations. 

The following tables summarize the performance of the algorithms on the test ex- 
amples. In Table 1 we show the number of problems successfully solved by the differ- 
ent methods. The figures are also broken down by the different initial guesses (Table 
2). The first figure denotes the number of problems successfully solved by the particu- 
lar method; any figure which follows in parentheses indicates the number of further oc- 
casions on which the method converged, but to a factor which was not that closest to 
the initial guess. 

Method 1 Method 2 Method 3 

58(2) 71 72 

TABLE 1. Number of problems successfully solved out of 78 attempted 

Error in initial 
Method 1 Method 2 Method 3 

guesses 

5% 24 25 26 
10% 19(1) 24 24 
20% 15(1) 22 22 

TABLE 2. Number of problems suqcessfully solved out of 26 attemoted for 
each error in initial guess 

In Table 3 below we show the average number of iterations taken to achieve con- 
vergence for the different methods. So that a fair comparison may be made, the aver- 
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age is taken over the 58 test problems on which all three methods were successful. 
Again these figures are broken down by the different initial guesses (Table 4). 

Method 1 Method 2 Method 3 

4.66 3.43 3.38 

TABLE 3. Average number of iterations required to achieve convergence on 

problems on which all methods were successful 

Error in initial Method 1 Method 2 Method 3 
guesses 

5% 4.04 2.83 2.92 

10% 4.63 3.37 3.37 

20% 5.67 4.47 4.13 

TABLE 4. Average number of iterations required to achieve convergence on 
problems on which all methods were successful-breakdown by 
different errors in initial guesses 

The results show clearly that the new methods, Methods 2 and 3, improve the 
likelihood of convergence from a given initial guess. It is encouraging that the inexpen- 
sive Method 3 is just as successful in this respect as Method 2; apparently a careful ini- 
tial selection of r is quite adequate. A point worth mentioning is that any problem 
which caused failure of either of the new methods also caused failure of Bairstow's 
method, Method 1. 

When all three methods converge, the new methods tend to converge rather fast- 
er than the classical Bairstow algorithm. In the case of Method 2, this is more than 
offset by the extra computation required. However, for Method 3 the position is more 
favorable. On the average the classical algorithm required 4.66 iterations for conver- 
gence, while Method 3 required 3.38 iterations, a saving of 1.28 iterations. If we allow 
one iteration for the extra computation required by Method 3 to select r at the first it- 
eration, then Method 3 still has an advantage of approximately one quarter of an itera- 
tion on the average over the classical algorithm. Moreover, this status is retained for 
each of the different initial guesses. Again it is encouraging that Method 3 converges 
just as quickly as Method 2. 

It was consistently observed that the classical algorithm found difficulty with 
roots of large modulus, while the new methods were quite successful. This is akin to 
the situation in the related subject of polynomial deflation, a point which is taken up 
in the next section. 

5. Polynomial Deflation. The idea of dividing a polynomial P(z) by a quadratic so 
as to leave a remainder of the form (urzr+l + vrZr), where r may take any value be- 
tween 0 and n - 1 and not just 0, is by no means new. It was suggested by Bingham 
[4], and also by Peters and Wilkinson [9], in the context of polynomial deflation. 
There we have found a factor (z2 + pz + q) to maximum possible accuracy and wish 
to determine the quotient polynomial of P(z) and this factor, so that further factors of 



BAIRSTOW'S METHOD FOR POLYNOMIAL EQUATIONS 825 

P may be found. Thus p and q are assumed to be very close to p* and q*, and any 
remainder on division will generally be small. This is in contrast to our situation here 
where (Z2 + pz + q) is often a rather crude estimate of a factor, and remainders on di- 
vision can be large. 

It would appear, however, that the relative behavior of the different division algo- 
rithms is fairly independent of how close p and q are to p* and q*, in the following 
sense. Wilkinson [12, pp. 66-67] has pointed out that "forward deflation", that is de- 
flation based on the forward division algorithm (1.2) and leaving a remainder uoz + vo, 
can be disastrous if the roots of the quadratic factor are large in modulus compared 
with the remaining roots of P. Now forward division is the basis of the classical Bair- 
stow method, and it was quite noticeable in our numerical tests that the method found 
great difficulty with roots of large modulus. 

Both Bingham and Peters and Wilkinson suggested a "composite deflation" meth- 
od in which the division leaves a remainder of the form (urzr+l + vrzr), for some r, 
O < r S n - 1. A good choice of r is again one which makes (urZr+ 1 + vrZr) a small 
perturbation to the original polynomial (see (2.4)). The criterion of choosing r to 
minimize a(r) thus seems appropriate also to polynomial deflation, and indeed a simi- 
lar criterion was suggested by Bingham. Composite deflation is then quite successful 
irrespective of the order of magnitude in which the roots are determined. In a similar 
way we find that our new algorithms perform equally well for roots of any size. 

Moreover, it is interesting that Method 3 is just as successful as Method 2. 
This suggests that the initial choice of r, that is the initial choice of the division algo- 
rithm, generally remains suitable throughout the computation. Thus when using Meth- 
od 3 we might have some confidence in basing our deflation process on the same divi- 
sion algorithm as used by the method, in which case we would accept as our deflated 
polynomial the final quotient polynomial naturally generated by Method 3. It might 
be safer, though, to apply, after the convergence test has been satisfied, one further 
step of the method in which the value of r is reselected on the basis of a(r). This 
should yield a more accurate deflated polynomial and may further improve our esti- 
mate of the quadratic factor. Note that we would certainly not feel confident in ac- 
cepting as our deflated polynomial the final quotient polynomial generated by Bair- 
stow's method, unless the roots are determined in increasing order of magnitude. 

6. Conclusions and Extensions. The results of Section 4 indicate that the new 

method, Method 3, is superior to the classical Bairstow method. There seems a much 

greater chance of convergence from a given starting point; and moreover when the clas- 

sical method does converge, the new method seems to converge slightly quicker even 

allowing for the extra computation required. As we mentioned in the introduction, 
Bairstow's method is commonly used in conjunction with some slow but reliable meth- 

od which sets up a good initial approximation. The use of Method 3, rather than Bair- 

stow's method, not only increases the likelihood of convergence from such an approxi- 
mation, thus reducing the chance of having to switch back to the slower method in 

case of failure, but moreover may allow us to switch from the slower method at an ear- 
lier state in the computation. 
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It is not necessary to solve Eqs. (2.6) by Newton's method; in principle any 
method for solving a pair of nonlinear equations could be used. Indeed it seems attrac- 
tive to use some method with a much wider domain of convergence, such as the Leven- 
berg-Marquardt method [8]. 

Bairstow's method can be extended in an obvious way to find a real factor of 
P(z) of degree s > 2. An approximation to the factor is divided into P(z), using for- 
ward division, to leave a remainder (A(?) zs-1 + . . . +A (0)), where As(0) A(?) s- 1 0 s- ~~1' ~ 0 
are functions of the s coefficients of the divisor. Solution of the nonlinear equations 
AO) = 0 (i = s - 1, . . . , 0) yields the coefficients of the factor itself. The forward 
division can be replaced by a compositie division which leaves a remainder of the form 
(A(r)2zr+s-l + ... + A)zr), for any r, 0 r n - s + 1. Thus we have the 
choice of solving the equations A(r) = 0 (i = s - 1, ...,O) for any r, 0 r < n - 

s + 1. Hence a family of algorithms is again available to us, and similar criteria to 
those described here for the case s = 2 should yield good choices of r. 

Exactly the same technique can be used to determine complex factors, though 
the system of equations to be solved is then complex. 

Finally, we mention that Bairstow's method is itself an extension of Newton's 
method for finding a single root, or linear factor of a polynomial. Again Newton's 
method is based on forward division, and it is possible to replace this by a composite 
division. This could well lead to a superior algorithm, and we hope to report on this 
at a later date. 

Acknowledgments. I would like to thank Roger Fletcher who read the manu- 
script and suggested a number of improvements. This work was carried out under an 
NCR Research Fellowship, at the University of Dundee, Scotland. 

Computer Laboratory 
University of Leicester 
Leicester, England 

1. D. A. ADAMS, "A stopping criterion for polynomial root-finding," Comm. ACM, v. 10, 
1967, pp. 655-658. MR 39 #2314. 

2. D. W. ARTHUR, "Extension of Bairstow's method for multiple quadratic factors," J. Inst. 
Math. Appl., v. 9, 1972, pp. 194-197. 

3. L. BAIRSTOW, Investigations Relating to the Stability of the Aeroplane, Reports and 
Memoranda #154, Advisory Committee for Aeronautics, October 1914, pp. 51-64. 

4. J. A. C. BINGHAM, "An improvement to iterative methods of polynomial factorization," 
Comm. ACM, v. 10, 1967, pp. 57-60. 

5. F. M. CARRANO, "A modified Bairstow method for multiple zeros of a polynomial," 
Math. Comp., v. 27, 1973, pp. 781-792. 

6. P. HENRICI, Elements of Numerical Analysis, Wiley, New York, 1964. MR 29 # 4173. 
7. P. HENRICI & B. 0. WATKINS, "Finding zeros of a polynomial by the QD algorithm," 

Comm. ACM, v. 8, 1965, pp. 570-574. MR 31 #4172. 
8. D. W. MARQUARDT, "An algorithm for least-squares estimation of nonlinear parameters," 

J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 431-441. MR 27 #3040. 
9. G. PETERS & J. H. WILKINSON, "Practical problems arising in the solution of polynomi- 

al equations," J. Inst. Math. Appl., v. 8, 1971, pp. 16-35. MR 45 #7980. 
10. L. B. RALL, Computational Solution of Nonlinear Operator Equations, Wiley, New York, 

1969. MR 39 #2289. 
11. R. F. THOMAS, "Corrections to numerical data on QD algorithm," Comm. ACM, v. 9, 

1966, pp. 322-323. 
12. J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood 

Cliffs, N. J., 1963. MR 28 #4661. 


