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How to Calculate Shortest Vectors in a Lattice 

By U. Dieter* 
Dedicated to W. Fenchel, Copenhagen, on the occasion of his 70th birthday 

Abstract. A method for calculating vectors of smallest norm in a given lattice is out- 

lined. The norm is defined by means of a convex, compact, and symmetric subset of 

the given space. The main tool is the systematic use of the dual lattice. The method 
generalizes an algorithm presented by Coveyou and MacPherson, and improved by Knuth, 

for the determination of vectors of smallest Euclidean norm. 

1. Formulation of the Problem. Let G be a lattice in the n-dimensional Euclid- 

ean space Rn, generated by n linearly independent vectors e 

(1) G = {x = zie z1 integers}. 

The norm in Rn is defined by a convex, compact set B which has positive measure and 
is symmetric about the origin: 

(2) lIxIl = min{X E R I x E XB}. 

Examples of these norms for x = (xl, . . ., xn) are 
(i) The Euclidean norm llxl = (X2 + ? ? x2)1/2. 

(ii) The Maximum norm lxii = max{ixi I I i = 1, ... , n}. 
Here Boo = { . . ., Xn)I Ixi- ? 1 for all i}. 

(iii) The norm lixil = lx11 + -'_ + lXn 1- 

Here B1 = {(xl, . . . , Xn) IXI I + ?* + Xn I 1 

The problem is to find a nonzero vector of shortest length (norm) in G. The 
main tool of the presented method is the use of the dual lattice, 

(3) G* ={x*= E z4e*Iz*integers), 
k=l 

where the e* are defined by eie* = 6ik; here 6ik is equal to 1 if i = k and equal to 0 
if i # k, and e e* denotes the scalar product V7n= e.1e* . The polar of B, namely 

(4) B* = {b* E Rn I Ibb*l < 1, V bEB}, 

induces a length or norm in G* by 

(5) 1ix*i*1 min{X* E R Ix* G X*B*}. 

It should be noted that the Euclidean norm corresponds to itself, whereas the Maximum 
norm lxii = maxi IxiI corresponds to iix*ii* = Ixv + i ? + Ix*l and vice versa. 
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For the scalar product x*x = x*x1 + ?-- + x*xn the following inequality holds 

(6) Ix*xI < lix*ii* llxil 

which may be proved as follows: Since x = lixilb, x* = Ilx*ll*b* for some b E B and 
b E B* one has x*x = jix*li*llxIIb*b. Since lb*bi S 1 holds for all b E B, b* E B*, 
the inequality (6) is proved. 

2. Presentation of the Method. If x = zle1 +? + zn en is any element of G, 
inequality (6) implies that 

izjj = jet(zjej + + znen))I = iexi x iierii**llxll. 

Hence, if w is the length of a shortest nonzero vector x in G, the coordinates satisfy 

(7) 1zi I le!'ii*w for 1 < i < n. 

This inequality helps to limit the search for a shortest vector. Since 

w = Min{llxll I x E G, x # 0} 

is not known, when the algorithm is started, the minimum value of Ilekil is initially 
taken. Hence zi is bounded by 

(8) lzi I c, = [j1e7jj*Min Ilekil]e i = 1, * . , n; (ry] integral part of y). 

If the bounds ci are reasonably small, a direct search through the 
n 

(9) ~ ~~~~P= (2ci + 1) 
i=l1 

possibilities may become feasible. Otherwise, attempts are made to change the bases ei 
and e" such that the bounds ci are decreased. The task is to find a transformation with 
the following properties: 

(M) The new ileill are smaller than the old ones. 

(M *) The new 1IetII* are not larger than the old ones. 

Among the unimodular transformations of the e, and e*, two special types are considered, 

ei ei *ek ek -mkei 
Ti : for a fixed i for k = i, 

e e- + E mkek ek* e* ) 
k$i 

ei* e- ek ek - mke* 

T7: for a fixed i e fork#i. 

ei ei + m m*ek ek ek 
k0i 

It is easy to see that e e7 =5 also holds for the new ei and e. . 
In the transformation Ti, the integers mk are chosen in such a way that the Eu- 

cidean length e2 is minimized for k = i. Consequently, mk has to be determined by 

(ek - (ik - 1)ei)2 > (ek - Mkei)2 < (ek - (Mk + I)ei)2. 

This leads to 
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e < es (ek - 
mkei) < ? es 

or 
- ? + (eiek)/e < Mk < + (eiek)/e0. 

In order to determine mk uniquely, the right-hand inequality sign < is replaced by <. 

This suggests the choice 

(10) mk = [0.5 + (elek)/e3I 

in the transformation Ti. Similarly, for the transformation Ti the choice 

(1 1 ) = [0.5 + (e*e*)/e *2] 

minimizes all ek2 for k * i. This shows that transformation Ti fulfills property (M) 

and T7 fulfills (M*) for the Euclidean norm. 
It would be nice if Ti could also be guaranteed to satisfy (M*). Explicitly, this 

would mean that 

Qi (Z1 *QZ*) = es + k. Z*e* 
2 

assumes its minimum at Z* = mk. Differentiation of Q*(z* . . . z*) leads to the 
system 

(12) e7(eI + E z = e7e* + E z*e7e = 
0 forj i i (12) ~ \ k*i /k*i 

The matrix (qik) = (eiek) is orthogonal to the matrix (q*1) = (e*e7*). This follows 

from the definition of the dual basis: Let 

E = ( ' ) and E*=( - 

denote the matrices whose rows are given by the components of the bases e1 and e*. 

The defining relation eie* = 6ik reads in matrix notation EE*T = E*ET = I where I 

is the unit matrix and ET the transpose of E. E*ET - I yields ETE* = I. Hence the 

matrix product (eiek) (e *e7*) is equal to EETE*E*T - E(ETE*)E*T = EE*T = I. 

This proves the assertion. 
Equating Z* to qiklqii = eiek/e3 in (12) leads to 

+ 
(q q = qkqj qilq 61i/lqii = O- 

k*ikk 1 ki k ii if 

Hence Q*(z*, . . . z*) assumes its minimal value at z* = qiklqii* The value mk = 

[0.5 + qik/qii] is the nearest integer to qiklqii- This shows that Qi(m,... ., Mn) is 

near its minimal value. However, numerical examples show that the minimal value 

is sometimes assumed at a point zZ* * mk. In practice, this did not much influence 

the efficiency of the algorithm. 
In the case of an actual increase in the number P of zk-combinations, it would 

be better to reverse the responsible transformation Ti and proceed with Ti- 1 or Ti+ . 

However, this was not done in the trial runs in which the method worked quite well 
in spite of occasional increases in P. 
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It should be noted that the transformations Ti and T* decrease the lengths Ileie 
and lle'i*1* only with respect to the Euclidean norm. However, since the compact, con- 
vex set B has positive measure, it contains a ball B = {x GE RI Ix2 + * + x2 < r} 
and it is contained in a similar ball B. Consequently, a norm defined by this set B is 
equivalent to the Euclidean norm. Therefore, the same transformations Ti and Ti 
were used for calculating shortest vectors of any kind. In extensive numerical experi- 
ments, the transformations Ti and T* led always to a final basis for which the value P 
in (9) was small. Hence a direct search for a vector of shortest length could be carried 
out. 

It should be mentioned that both transformations Ti and Ti were always used. 
Examples were found where a mere application of transformation T* led to a large 
value of P in (9). A single application of transformation Ti decreased this value con- 
siderably. Subsequently, transformations T* were applied again and the value of P 
was further decreased. 

In another experiment, the transformations Ti were applied more than once, each 
time T1 got stuck. But this did not improve performance, so it was finally decided to 
use Ti as little as possible. 

3. The Computer Program. The complete algorithm can now be prepared. First 
of all, the bounds ci in (8) are calculated for the given basis ei of G; and the number 
P = HI71l (2ci + 1) of possible choices of the zi is worked out. If P is small, a direct 
search becomes possible. Otherwise, the transformations T.* are applied to the basis 
e1. For this the mk defined in (11) are calculated first and the corresponding trans- 
formation T1 is applied unless all mZ are zero. The process is stopped when n succes- 
sive calculations of the m* have not led to any successful transformation T7C, that is to 
decrease P. After n failures the transformation Ti is tried instead, subject to the same 
limit on trials. If P is decreased during Ti, a new attempt at transformation T* is 
started immediately. Therefore final failure occurs eventually only after n unsuccessful 
trials on both T* and Ti. Afterwards, the smallest value of llxil is found through an 
enumeration of vectors x = X1 z e for which - c1 S zi 6 Ci. Since vectors (0, ... , 0, 

Zi .....i zn) and (0, . . . , 0, - Z, .. . - zn) lead to the same lixii, the procedure may 
assume that the first nonzero component is positive. It can be shown that this reduces 
the complete enumeration from P to (P - 1)/2 steps. 

In the special case of the Euclidean norm in dimension 2, i.e. if llxil = (x2 +x2)1/ 

no final search is necessary. For, if m1 = m2 = 0 one has 

- 0.5 < (ele2)/el < 0.5 and - 0.5 < (ele2)/e2 < 0.5. 

This is equivalent to the classical condition of Gauss and Legendre that 2e1 e21 6 
Min (e2, e2) holds for a reduced lattice basis. Hence, e1 or e2 is a vector of shortest 
Euclidean length, and its length is already contained in D. 

Variants of this procedure are possible. Knuth suggests that one should apply the 
transformations T.* and Ti as long as P is greater than some given C, say C = 1000. In 
the examples to follow this increased the computation times considerably. In a few 
cases P < 1000 was never reached. The above method of continuing reduction until 
the transformations 17v and Ti are stuck is at least theoretically finite, although in prac- 
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tice the final enumeration may still cost too much time. 
The complete procedure is now stated as a formal algorithm. 
Algorithm S (Vector of smallest norm lixil in G = {x = Zc ziei I zi integers}). 
1. Set C <D M (M very large), m < n li + I1. 
2. For 1 ? k ? n set rk Ilekl, r* +Ile*ll*; and if rk <D, set D *-rk. Then 

for 1 < k < n set ck [D r*] and work out P = H[n=l (2ck + 1). If P < C, set 
t* t <-n, C <P and go to 3. Otherwise, if m-- 1, set t* < t* - 1; but if 
m = 1, set t < t - 1. If t* = 0, go to 4. 

3. (Transformation T*.) If t* + t = 0, go to 5. Set i - i - 1; and if i = 0, 
setHi n. For all 1< k?n do: if k=i, setm*= [0.5 + 2 e .!e / L1e !2]. 
If all mk are zero, set t* t* - 1; and if t* = 0 go to 4, else restart 3. If at least 
one mk is not zero, do for all 1 < j n: set e11<- e1 + ki mkekj; and for I < k 
< n do: if k = i, set e* <e* -mZei. (=1,.. .,n). Set m -1 and go to 2. 

4. (Transformation T.) If t* + t = 0, go to 5. Set i i - 1; and if i = 0, set 
i < n. For all 1 k S n do: if k # i, set mk = [0.5 + 1l eiIek/in e1] . If all 

mk are zero, set t t - 1; and if t = 0 go to 3, else restart 4. If at least one mk is 
not zero, do for all 1 < j < n: setei -ei ? z koimke>and for 1 <k kn do: if 
k * i, set eki < 

-ekj 
- 

Mkei; ,.*. n). Set m 1 and go to 2. 
5. (Final Search.) For all combinations of integers (zl, ... , Zn) * (0, , 0) 

in which - ci < zi S ci for all 1 < i < n and for which the first nonzero component 
is positive, calculate W = iIjn_ zeANi; store the smallest of these values in D and the 
corresponding zi in d,. 

6. Deliver the vector x = j;n=1 d1e, and its norm D = llx I. 

4. Applications. The task of determining nonzero vectors of shortest length 
appeared early in number theory, especially in the theory of quadratic forms started by 
Gauss and continued by Hermite and, notably, Minkowski. Hermite and Minkowski de- 
rived global bounds for the vector of shortest Euclidean length; these bounds were not 
sharp, and sharp bounds are only proved up to dimension 10. Furthermore, Minkowski 
obtained global bounds for the norms llxil = Sin-l 1xil and lixii = maX-j.1=**,n 1xil. His 
main tool was his famous "convex body theorem". Sharp global bounds for these 
norms are only known for dimensions 2 and 3. Hopefully, this note will help to estab- 
lish guesses for global bounds in higher dimensions. 

Initially, the above algorithm was developed for investigating the lattice structure 
of pseudo-random numbers generated by the linear congruential method. Only the 
simplest case will be considered here. Construct a sequence of integers 1zi4 by 

Zi-azi11 (mod 2e), zo 1 (mod 4), 0 ?zi < 2e and a 5 (mod 8). 

Since the sequence {zi} contains all numbers of the form 4k + 1, the fractions ui - 

Zi / 2e are used as samples from the uniform distribution in [0, 1). Consider the points 
Pn = (ui, ui+ 1, - * , ui+ n 1 ) in the n-dimensional space Rn. Equating ui and 
(4k + 1)2-e, one obtains 

Pn- 2-e(4k + 1, a(4k + 1), .. ., an1(4k + 1)) (mod 1) 

-e+ke1 (modl1) where e1= 2(e-2)(l,a,... , a"1), e0 = ?e1. 
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Here the integer k runs from O to 2e-2 - 1. If the integer k is smaller than 0 or 

greater than 2e'2, the corresponding Pn = e0 + ke1 is congruent modulo 1 to one of 

the former Pn for which 0 < k < 2e`2. Consequently, if one enlarges the set {Pn} 
to the set 

{Qn} eo + {k1el + k2e2 + + knen Ikl, k2, . . ., kn integers} 

where 

el= 27(e-2)(l ,a ..... an-) e2 (O, l,o, . . . ,),.. en (0,....O,l), 

the new set {Qn} is the translate of a lattice G generated by el, e2, . .. , en . Its dual lat- 

tice G* generated by 

e* = (2e-2, 0,., 0), e2*=(-a, 1 , O, . .. , O), . . . e = e*(- an- 1I, O, . . . , O, 1) 

has a simple geometric meaning: G* corresponds uniquely to the set of parallel hyper- 
planes x*x 0 (mod 1), on which all points of G lie. This may be proved as follows: 

First, all points of G lie on the set of hyperplanes x*x 0 (mod 1) where x* - En1z7e7 

is a fixed element of G* (which means z* integral). Conversely, if the set of hyperplanes 

x*x = (En z*e*)x-O (mod 1), z* fixed, contains i1l points of G, it contains especially 
the points el , e2,.. ., en . Consequently, z* has to be integral. 

For qualifying random number generators, the following questions can now be 

answered: 
(i) Determine the minimal number of parallel hyperplanes on which all points Pn lie. 

(ii) Determine the maximal distance of parallel hyperplanes on which all points Pn lie. 

For (i) one has to compute 

N =Min{? tx*Ifx*=(X1,.** X*)EG*,x* 0}, 

since the right-hand side of the equation x*x = En=l x7*xi = v can only attain the 

values v for which - j-n (x1.*)_ < v < n (x*r)+. Here x+ and x are defined by 

ifx>0, 0 ifx>O, 

x+ sx_= 

O ifx<O, -x ifx<O. 

The number of these v is equal to 

n n n 
E (X*)+ + E (x,*-- - I X*lRI 

i- iC1 i11 

For (ii) one has to calculate 

DZ= Max {1( (X)2) x* =(x*, .. ,x*)EG*,x*0O}=1lw,* 

where 

W,*=Min{( (X1*)2) |x*=(x*,...,x*)EG*,x**O}. 

Question (i) was raised by G. Marsaglia in his famous paper [4], where he derived 
upper bounds for N_ using Minkowski's 'convex body theorem'. The table below con- 
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tains exact values of N* for some random number generators; the Minkowski bounds 
are listed at the end of the table. 

Question (ii) was considered by R. R. Coveyou and R. D. MacPherson in their 
Fourier analysis of random number generators. For this purpose they developed an 
algorithm to calculate W,*; the algorithm was improved by D. E. Knuth in [3, pp. 89- 
97]. The systematic use of the dual basis as outlined above simplified the algorithm 
considerably in this special case of the Euclidean norm. 

Table of values of Nn* and [Wn" (in parentheses) for some generators mod 231 

a (mod 231)| N 3 N N N5 N | 

65 533 32 765 15 15 15 15 
(23 169) (10) (10) (10) (10) 

258 585 933 22 107 1 115 257 69 31 
(17 440) (698) (146) (40) (17) 

414 536077 27 307 1 115 209 91 41 
(19 758) (781) (124) (49) (20) 

Minkowski 32 768 1 476 336 145 85 
bounds for Nn 3 7 1 4 3 145 85 
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