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Polynomial Expansions* 

By Jerry L. Fields** and Mourad E. H. Ismail 

Abstract. The expansion of arbitrary power series in various classes of polynomial 
sets is considered. Some applications are also given. 

Notations. We will use the following contracted notation for the generalized 
hypergeometric function 

F (aq P z p q bQ |Z) k-(bQ)k k. 
where 

p q r(? + k) 
(aP)k [ (a1)k' (bQ)k n (b), and (u)k = r(a) 

j= ij=1 

1. Introduction. Recently there has been some interest in establishing expan- 
sion formulae of the type 

(1.1) F(zw) = E znRn(z)Pn(w), 
n=O 

where F(z), Rn(z) are power series and the Pn(w) are polynomials of degree at most 
n. For example, Fields and Wimp [5] proved 

Ian, 
CR 00 

(aP)n()()n(3)n 
(-Z)n F zw 1= 

p+r q+s Q, ds n (b On(y + n)n n! 

(1.2) F n~~~~~~~~~ a c, n ? (3, n ? ap z (1.2) x ?p+2 q I + 2n + y, n + bQ 1 ) 

r+2Fs+2 ( a, ,B, ds |W) 

while Verma [13] generalized (1.2) to 

00 (ZW)m E0 
(-Z)n 

E 
(a')n+r(1n)n+r r 

am bmm! : bn,rZr 
(1.3) m m ! n=on0 y?n)nn or!( 2n?+ )rnr 

n (-n)s (n + y)s 

and S! (it)s( . H aswso 

and obtained an analogous expansion in two variables. He also gave a q-analogue of 
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(1.3) which reduces to (1.3) as q 1. In [12] Verma generalized a result of Niblett 
[9] first to 

lbsF \ ( ?zw)=h -1 
(bs),(eu)(- z)' 

PS\ Q /n=O n(CQ)n 

(1.4) x F (n + bs, n + eu, h + n(l-a) I ) 

F- -n, ap, 
1 ? 

h(1 - c) 
X p+2Fu+2k hna+ 1 eu h(1)l I)-1w,/ 

and then to 

E c d (ZW)m 
E m dm m!I 

m=0 

(1.5) E _E k! [h + k(l -1t)] ckw 
n=O n* k=O k 

Z ' 
x , (eu + k)s+fnk(h + k + 1 - na)s+n-kds+n s! 

s=0 

which, he observes [14], contains most of the results of Brown [2], [3], Carlitz [4], 
Srivastava [11] and Zeitlin [17]. Niblett's result is (1.4) with w = 1, q = r + t and 
u = r. Other results of this type are collected in [8]. 

We note that all the expansions (1.2)-(1.5) are of the type (1.1). The purpose 
of this work is to show how such expansions can be built up from relatively simple 
identites. In particular we will show (Section 2) that these "identities" are easily char- 
acterized when the Pn(z) are defined by a generating function of Boas and Buck type 
[1], [10]. It will become apparent that all the formulae (1.2)-(1.5) correspond to special 
choices for the generating function. 

In [7], Ismail showed how to obtain generating functions of Boas and Buck type 
for any given orthogonal set of polynomials Pn(w). Thus the results of Section 2 are 
valid for all orthogonal polynomial sets. 

Sections 3 and 4 contain applications of Section 2. 

2. Fundamental Relationships. First, assume that the Pn(w) are defined by the 
Boas and Buck generating function 

(2.1) A(t)s(wH(t)) = , Pn(w)tn, H(O) = 0, H'(O)A(0) = 0, 
n=O 

where the A(t), H(t) and 4(t) are power series in t satisfying the indicated requirements 
in (2.1). Under these requirements we can make the change of variable u = H(t) and 
rewrite (2.1) in the form 

00 

(wu) = E Pn(w){pt(u)}j/A(t(u)). 
n=0 

Setting 
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oo 

{t(U)}n/A(t(u)) = Xju n+i, n = 0, 1, 
j=o 

and 00 

(Z) = E anzn, 
n=O 

we note that Xn, o # 0, and that equating coefficients of um, we get 

m 

(2.2) amw = W Xn,mrnPn(W)) m = 0, 1,.... 
n=O 

Multiplying (2.2) by bmzm and summing over m, we formally obtain 

00 00 m 00 

(2.3) X ambm(zw)m = 2 bmzm E x AnnPn(W) = 2 znRn(z)Pn(w) 
m-O m-O n=O n=O 

(2.4) Rn(z)= E bn+mXn,mZm- 
m-O 

Inversely, if we define A,2 by 

A(t){H(t)}n= E ,n, tnf+i 
j=O 

then 
n 

(2.5) Pn(W) = Pi, n 1a1w. 
j=O 

Substitution of (2.5) into (2.2), and vice versa, for arbitrary am, leads to the 

equivalent orthogonality relationships 

m 

(2.6) 2 Xi,m jMk, j-k ,k m > k > 0, 
j=k 

m 

(2.7) F, A,m jXk,j-k =sm, k m > k > O. 
j=k 

In particular, 

xm,OAm,O = 1,1 m = , 1,* . 

To see that (2.6) and (2.7) are equivalent, let 

/00 1 01 1s02 ..**.* 100 X 0 1 I X02 X*** 

?s 0110' U1 1'. * L *, ?X 10' 1 1'** 

\ l ? l 1120,-- \ , ? , ?20, 

Then (2.6) and (2.7) can be interpreted as UL = LU = I where I is the infinite identity 

matrix. 
Formal substitution of (2.4) in the following, yields 
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00 00 n 

(2.8) E Im ,nZn+mRn+m(Z) = E bnZ E /m,j-m , = bmZ 
n=o n=m j=m 

For completeness, we note that when (2.8) is multiplied by amWm and summed over 
m, we again formally obtain (2.3) together with (2.5). 

From the above discussion, it is clear that either the "identity" (2.2), when 
the polynomials Pn(x) are specified, or the "identity" (2.8), when the functions 
Rn(x) are specified, is sufficient to formally obtain the expansion (2.3). Moreover, 
once the Xn, j" gn X have been introduced in the identities (2.2) and (2.8), the 
subsequent development, including (2.3), is independent of any generating function 
origin. 

From (2.6) and (2.7) it is clear that the Xn, X and in, X are to some extent in- 

terchangeable, i.e. if we set 

n 

Qn(w)= 2 Xj n -a.w, n = 0, 1, ***, 
j=o 

then we again have 
m 

amw = E 'n, m-nQn(w), m = 0, 1,* , 
n=O 

and formal substitution yields 

E amb (zw)" = E ZnSn(Z)Qn(w), Sn(z)= E, bn+m/n,mZ 
m 

(2.9) m=O n=O m=O 

n = 0, 1, *.. 

We will refer to (2.9) as the dual expansion, and the Qn(w) as the dual polynomials. 
More basically still, we note that if Xn, j is any double sequence such that 

Xn0 o +0 for all n, and that if the in, X are chosen to satisfy (2.6) or (2.7), as they 
always can be, then (2.2) and (2.8) can be derived formally from (2.6) or (2.7), 
i.e. the computation in (2.8) formally derives (2.8) from (2.6), while substitution 
of (2.5) into (2.2) derives (2.2) from (2.6). 

It is worth mentioning that only those functions F(zw) = E2=ocn(zw)n can 
be expanded in the form (2.3) which satisfy the requirement that cn = 0 if and only 
if anbn = 0. 

Multidimensional analogues can be similarly obtained. Let Pn(w) and Wn(v) 
satisfy 

n n 

anWn = E Xk,nkPk(W), bnvn = EI Y1,iniWi(V). 
k=O 1=0 

Then formally, we have 
00 

E am bn Cm, n (zw)m (vy)n 
m, n=O 

00 00 

= Z wl(v)Pk (w)zkyl 'Yl,nXk, mCm +kl+nzm n 
L,k0 m,kn=0 
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which is a two dimensional analogue of (2.3). The extension to higher dimensions is 
immediate. Similarly q-analogues in one and several variables may be derived. 

3. Remarks and Examples. An interesting feature of (2.2) is that the Pn(w) need 
not form a basic set of polynomials [1] as in Fields and Wimp [6]. An obvious feature 
of (1.1) is that if do) d1, ... , dn ... is a sequence of nonzero numbers then replacing 

an, bn by an/dn, bndn, respectively, introduces new factors in Pn(w) and Rn(z) but 
does not change the left-hand side of (1.1). This is the origin of the free parameters ax and 

,B in Fields and Wimp's expansion (1.2) and in Verma's (1.3). With this in mind, we 
note that the parameters eu of (1.5) are redundant since (eu + k)n+s-k is nothing 
but (eu)n+sl(eU)k- 

We now proceed with some examples. 
Example 1. Take H(t) = -4t(1 - t)-2, A(t) = (1 - t)-c and 1(z) = a z 

Then u(t) = -4t(1 _ t)-2 implies t = -u(I + 1=- 2 and simple computations 

lead to (see [10, pp. 137-140]) 

(c)n n~ &n)k(C +nk 

w ! k=O (c)2k ak(4w), 

and 

(C)2 n (-n)k(c + 2k) 
= 

~!k= (c)n?k+l 

Therefore, 

00 00 ~~~~~(cn)0 (cI2)n+i ((c ? )2n+ 
E ambm(zw)m = E (c + 2n) ( (-z)n E bn 

n=O n=O n j=0 ]*C2n+j+ 1 

n (-n)k(C + n)k k x E:- - ak(4w)k 
k=O (2k 

Replacing an, bn by 

(c/2)n((C + 1)/2)n 1 b 
a! Z,' (c/2)n((c + f)!2)n n 

respectively, we get essentially Verma's formula (1.3). 
The dual computations then lead to 

4-n(c)2 n n(-n)k(C ? 2k) 
Qn (w) =k0 (c ? l?lk akwk 

n!(C)n+ 1 k= (C + n + 1) kW 

and 
00 00 

~~(c)2 n 0(c?+2n), E ambm (zw)m = E n (z )n E (C b +2 Z1 
m=O n-O n+ 1 j=O 

" &n)kC ? 2k) k 
x E 

(c?n? 1+ ) - 
akw1 

. 

Example 2. Let H(t) =-t( - t)-1, A(t) = (1 - t)-c and d(z) = n= 
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Then formulae (2.5) and (2.2) reduce to 

P()=(c) 
n 

(-n)kakwk Pn(W) 
= (1) : c w k 

and 

(1)n k=0 (C)k 

respectively. Proceeding as in Section 2, we-arrive at 

(3.2) 1m am bm (zw)m = 0n (c )n )( j! bn + (-)k k 
M =O n=0 ,0 k=0 (C)kak 

which is a generalization of Fields and Wimp's expansion 

F /ap, CR Iw p+r q+s bQ, ds 1/ 

(3.3) E (aP)n(a)n(-Z)n nF (?2na aZ)r+pFs+(l w) 

n=0 (bQ)~n!n+b d 

In [5], Fields and Wimp derived (3.3) from (1.2) by confluence. Similarly, we could 

derive (3.2) from (3.1). 
The expansion (3.2) is selfdual. 
Example 3. Brown [3] proved that the polynomials 

(3.4) Pnf(w)= 
= ( )akwk, 

are generated by 

(3.5) _ a 
+bfPn(W)(l u) b} (1 + U)a E 0 

a 
+0n (WU) 

n=O a + bn (I + ?))n= a?+bnanw) 

The generating function (3.5) is clearly of Boas and Buck type. The corresponding 
H(t) and A(t) are defined implicitly by H(t) = t[l + H(t)] b and A(t) = (1 + H(t))a. 

The relationship (3.5) implies 

n (-a - bj\@a ? bn) 
(3.6) a wn = fd n _ (a ? bI) P,(w). 

Thus we have 

E ambm(ZW)m = Eabn E (a + bn + bj)bn+j(aib) z 
0= n=0a+b = 

(3.7) 

x i1 a e n o(wk 

which ~ ~ ~ ~~ = is ksetal em' 15.Teda xaso f(.) 
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00 00 00~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ab)~ ? n+bj 
ambm(zw)m = E (a + bn)Zn (a bn + _ __ 

M=0 ~n=0 jz= O / ? bn ? bj 

x E (a k) akw,k 

follows easily from (3.4) and (3.6). 
For the sake of completeness we include a simple proof of (3.5). Clearly (3.5) 

is equivalent to (3.6), which in turn is equivalent to the orthogonality relation 

(3.8) (a + bo5n o = 2 ( k )( k )(a + bk + bl). 

The relationship (3.8) is obvious for nO0. For n > 0, its right-hand side is equal to 

(a + bO(a bnbl)2F1( b4b,a + b) 

-b(a ? bi) ( 1) 2 F1 (a + b + bl +2 ), 

and hence is zero by Gauss's theorem. 
Example 4. Consider the case A(t) = (1 + t2)-v, H(t) = 2t/(1 + t2), and 1D(z) = 

10 a zn, which includes the Gegenbauer (ultraspherical) polynomials [10] c(v)(w) as 

the special case 1D(z) = (1 - z)-v. Let 

00 t (3.9)~~~ Pn(W)tn = + t2)v) t 

The explicit representation 

(3.10) Pa(w) = (2 -)a 2k(2w)n-2k a, = 0 if 1 < 0, 

follows easily from (3.9). In (3.9) let u = 2t/(1 + t2), or t = u(1 + 1 - ); 

and using 

2F1(y, y-?2; 2,; z) = 

[10, p. 70], we get 

(3.11) 2mamwm= m (v? -j Pmm2v(W) 
j=0 !(V)m +i 

Thus we have the new expansion 

00 00 (v?+n) 00 (v?+n?+j)1 (z/2)2i 
E ambm(zwYm = (2 Z" j!(v + n+ ) n+2j 

m0O n=k0 j0 k 

xand (2k -n ) -a2k 

and its dualan- 2k(W) 
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00 00 00 ~~~~~~(n ? ) 
, a bm(ZW)m = , (V)n Zn E (-l )k k! bn+ 2k 

2 

m-0 n=O k=O 

[n/21 (v ? n - 2/) Wn2 
0nj!(v)n+ 2 a_n-2j 

4. Applications. The kernel function 1/(z - w) is one of the most important 
functions in complex function theory. If in (1.1) we take anbn ,we get 

I00 

1 = E z Rn(z)Pn(W), 
n-0 

or 

(4.1) w _znR (w) and 1 = nE z Rn Pn(W) w z ~ Zn (Z)I-nV ZW E 

Using Cauchy's Theorem to represent an arbitrary analytic function f(z) as a contour 

integral, substituting into the integral (4.1) and formally interchanging the order of 
summation and integration, one obtains the formal expansions 

00 
I 

' 

f(z) E ZnRn(Z) 1 Jf(w)w|P(w)')dw 

n=0 2rri e 
and 

f(w) = nOE Pn(w) * f f(z)z-n-'Rn(z-1)dz, 

for some appropriate contour c. 
We will not consider the convergence of such expansion problems for analytic 

functions here. 
Formulas of the type (1.1) are particularly useful in expansions of convolution 

transforms. Let 
00 

(4.2) [Tf; x] = f X K(Xt)f(t)dt, K(zw) = E znRn(z)Pn(w) 
n=O 

be such a transform. We formally have the polynomial expansion 

00 0 

(4.3) [Tf; w] = ; P,(w) f(t)tnR (t)dt, 
n=O 

as well as the expansion 
00 

(4.4) [Tf; z] = E ZnRn(z) f f(t)PnQ(t) dt. 
0 

In [15] and [16] Wimp established the expansion (4.3) for the Laplace transform and 

some other special transforms. He also discussed the merits of such expansions in 
numerical computations. Expansions of the type (4.4) are also important when the 

Rn(z) can be efficiently computer generated as in the case when Rn(z) = 

z-(n+v)/2jn+v, +(VT), the modified Bessel function of the second kind. 
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