
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 131

JULY 1975, PAGES 911-913

An Algorithm for Finding the Blocks
of a Permutation Group

By M. D. Atkinson

Abstract. An efficient algorithm for finding the blocks of imprimitivity of a group from

generating permutations is described and justified.

One of the most economical ways of storing a description of a group on a digital
computer is to store permutations which generate the group. The penalty for this eco-
nomy is the difficulty of answering specifi1c questions about the group although, in the
case of groups of degree up to about 200, a method due to Sims [1] is very convenient.
For groups of larger degree, one can at least (without much difficulty) decide whether
the group is transitive. If it is, the next thing one usually wants to know is whether it
is primitive. This paper gives an algorithm to decide whether the group generated by
given permutations is primitive. In the case of an imprimitive group,.the algorithm pro-
duces a nontrivial block system.

Let Q = {1, 2, . .. , n} be the (finite) set permuted by permutations g1, g2,

gm which generate a transitive group G. The main part of the algorithm is the follow-
ing process P., which calculates (when X # 1) the smallest block which contains {1, c}
and the block system containing this block. P. calculates a function f: Q Q 2 and
so, in a computer implementation, storage space must be reserved for the values of f.
In addition, storage space has to be reserved for a collection C of symbols; symbols of
2 are added to and deleted from C during the process. Apart from storage space re-
quired for a few working variables, this is all that is necessary; however, at the end of
the paper, I will indicate how P. may be made faster, using some additional storage to
make Q into a singly linked list.

The Process P.,, X 1.
1. Initially C is empty and, for all a EE Q, f(a) is set equal to a.
2. Add X to C and set f(c) = 1.

3. Delete a symbol ,B from C and calculate a = f().
4. Set an integer j equal to 0.
5. Increase j by 1 and calculate y = agg and 6 = 3g1.

6. If f(y) and f(6) are equal, go to 9.

7. Ensure f(6) < f(T) by interchanging y and 6 if necessary.

8. Redefine those values f(c) of f which are equal to f(y) giving them the new val-
ue f(6) and add the old value of f(y) to C.

9. If ji<m,go to 5.
10. If C is nonempty, go to 3.

Received April 24, 1972; revised June 19, 1974.

AMS (MOS) subject classifications (1970). Primary 20B99; Secondarv 20-04

Copyright 0 1975, American Mathematical Society

912 M. D. ATKINSON

1 1. Stop.
In the description of Pi,, I have used the symbol f for a function which changes

its values throughout the process; and from the description, the reader should have no
difficulty in constructing a computer program to carry out P,,. However, in order to
justify that P,, is an algorithm that produces the required result, I shall adopt a differ-
ent approach which does not rely on arguments concerned with time varying functions.
I thank Professor C. C. Sims for suggesting this method of exposition, improvements 3
and 4 at the end of the paper, and many other helpful comments.

Let fo be the initial function f, fo(c) = 1 and fo(a) = a if a 0 w. Let f,

f2,. .. fr = f be the variants of f defined by step 8. Associated with each function
fi is a partition Hli of Q, each part of Hli consisting of all the symbols on which fi takes
a fixed value. Because of step 8, Hi+ 1 is obtained from fHi by replacing two parts of

Hli by their union; in particular, Hi is a refinement of H.i+ 1 (i.e., every part of Hli is
contained in a part of hi+ i).

For any partition Hl of Q, let Hl(a) denote the part of H which contains a. Clear-
ly fo(a) Ei H0(a) for all oa E Q; and because of step 8, it is also evident that fi(a) E

HV(a) for all at E Q and i = 1, 2, . . . , r. This establishes
LEMMA 1. (a) If fi(i) = fi(q) then f.(ai) = f.(i), X = is r ,

(b) fi2= i i = O, 1, . . .,r
LEMMA 2. (a) at > fo(ot) > f1 (a) > . * >.f()
(b) a point (belonged to C if and only if ,B f(O,

(c) if (3 belonged to C, then there exists a < ,with f(a) = f7(1) and f(agi) =

f(,Bg,), = 1, ...,m.

Proof. (a) Step 1 ensures that a > fo(Ot) and step 7 ensures that fi(a) > fi+ 1 (a).
(b) Points (3 are added to C in steps 2 and 8. In step 2, (= X and X > fo(w) =

1 = f(X). In step 8, (3 = f (-y) for some i and -y; then fi(j3) = = fi(4y) and fi+ 1(() <
f1(,B). Conversely, if 3 > f(O), then either 0 = X belonged to C or we can choose i
with (= fi(() > fi+ I(j); then clearly fi (3) = (3 belonged to C.

(c) Let a be the point defined in step 3 when (3 is deleted from C. Then a =

fi(() < (for some i. Moreover fi(a) = fa2((3) = fi(O) and so f(a) = f(O). Finally, after
step 8 for a given j, fk(agj) = fk((3gg) for some k and so f (aig1) = f(idg1).

LEMMA 3. H = Hr is invariant under G.
Proof. It is sufficient to prove that each g1 preserves H. Suppose that there exists

0, 4 E Q, 0 < 4, with f(0) = f((0) but f (6g) $ f7(qg1). Choose 0 minimal subject to
this. Then f (q) = f () < 0 < and so 0 belonged to C. Hence there exists a <4

with f(a-) = f () and f (agi) = f(g5gi). Since f (a) = f (0) and a < X, the -minimal
choice of 4 ensures that f(ag1) = f(0g1). Thus that f (Qg1) = f (ag,) = f (0g1); a
contradiction.

Thus A = h(l) is a block of G containing 1 and w. As G is transitive and H is
G-invariant, H is the block system containing A.

LEMMA 4. A is the smallest block containing 1 and Q.
Proof. Let A1 be the smallest block containing 1 and X so that A1 C A. Let

H = {A9 Ig E G}. Then H is a partition of Q; we now prove that each Hi is a refine-
ment of H. This is clearly true if i = 0. Assume now that i > 0, Hi is a refinement of

FINDING THE BLOCKS OF A PERMUTATION GROUP 913

H and consider a part of Hi+1. Such a part is either a part of Hi or the union of two
parts of Hi of the form Hi(f(y)) U Hi(fi(Q)) = H'i(y) U H1(Q) where = ag1, 5 g
and H,i(x) = Hi(3). By an inductive assumption, H(a) = Il(,B). Then

H(y) = H(a)gj = H1(f)g, = H(8) D ni(fi(y)) U ni(fi(5)).

This completes the induction and we have A = H(1) = Hr(l) C H(l) = Al. Hence
A= A1.

To verify that G is primitive, we have to run the process P. with X = 2, 3,....

n. If some P,, produces a nontrivial block system, then generators 91, ... gm for the

group induced on the blocks may be obtained by taking the points of f(Q) as the per-

muted symbols and defining f(az)g = f(ag1).

There are several ways in which the algorithm can be made faster:
(1) Keep a record of the size of Hl(l) (the set of symbols , with f() = 1) during

P,,. If it becomes larger than the greatest divisor of n, then QZ is the only block con-

taining 1 and c.
(2) If the P., c = 2, 3,..., are performed in this order and we find a symbol

- E H(l) with 1 < y < co, then again Q is the only block containing 1 and w.
(3) Q2 can be given the structure of a singly linked list in which the parts of the

current partition defined by f are represented by circular sublists; the uniting of two

parts is then easily done by manipulating pointers and without scanning the whole of

Q2.
(4) If C is stored in such a way that its elements are not overwritten when they

are deleted, then when we exit from the process, we will have a list of all the elements

which have been in C. These are the only symbols a for which f(a) has been changed
from its initial value ca, and so we may use C to perform step 1 of the run of the next

process more quickly.
(5) If generators for H, the stabilizer of the point 1, are known (for example,

they would be known if G arose as the result of a coset enumeration) then we can cal-

culate the orbits on Q under H and only run P,, taking a representative co from each

orbit.
In general, the computation time rises as the square of the degree. I have pro-

grammed the algorithm in Fortran on an ICL System 4 (a machine logically similar to

the IBM System 360 and with a cycle time of 0.75 ,us) and have treated many genera-

ting sets. Two reasonably representative examples are:

(i) the group generated by (1, 2, 3, . .. , 998) and (1, 2, 3)(4)(5) ... (998)-
found to be primitive in less than 1 second;

(ii) the group generated by (1, 2, 3, . .. , 499)(500, 501, . . . , 998) and

(1, 2)(3, 4) ... (997, 998)-found to be imprimitive in 20 seconds. The reason that (i)
is much faster than (ii) is because (2) above works very well in this.

Department of Computing Mathematics
University College
Cardiff, Wales

1. C. C. SIMS, "Computational methods in the study of permutation groups," Computational
Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon Press, Oxford, 1970, pp. 169-
183. MR 41 #1856.

