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The Second Largest Prime Factor 
of an Odd Perfect Number 

By Carl Pomerance 

Abstract. Recently Hagis and McDaniel have studied the largest prime factor 

of an odd perfect number. Using their results, we begin the study here of the 

second largest prime factor. We show it is at least 139. We apply this result to 

show that aAy odd perfect number not divisible by eight distinct primes must be 

divisible by 5 or 7. 

1. Introduction. Suppose n = p'l lp'2 *.* p't is an odd perfect number (opn) 
where a,, a2, . . ., a. are positive integers and p1 > p2 > * > p. are primes. In 

[7], Kanold proved that p1 > 61. Recently, Hagis and McDaniel [5], [6] have suc- 

ceeded in showing that 

(1) p1 > 100129. 

It is the purpose of this paper to study the second largest prime factor of an opn. In 
Section 2 we develop a method of attack. In Section 3 we prove that 

(2) P2 > 139. 

The proof of (2) makes only marginal direct use of computers (we used some computer 
factorizations in the construction of Table 3). But the proof of (2) does depend 
strongly on (1), and (1) could not have been accomplished without electronic assistance. 

In Section 4 we illustrate the value of the seemingly weak (2). Indeed, in 
Pomerance [9] and Robbins [10] it is shown that any opn is divisible by at least 7 
distinct primes. Sylvester [11] showed that if an opn n is divisible by precisely 7 dis- 
tinct primes, then 31n. In Section 4, using (1) and (2), we prove that if an opn n is 
divisible by precisely 7 distinct primes, then either 51n or 71n. This result would be 
very difficult to establish without the use of (2). 

Before we proceed, it should be pointed out that there is an effective (but not 
practical) procedure for deciding the following: 

Problem. Given any k, N, either find an opn with kth largest prime factor Pk < 
N, or prove no such opn exists. 

Indeed, Dickson [2] and Gradstein [4] proved that for any given m there are 
only finitely many opn's divisible by at most m distinct primes, and it is clear, at least 
from Dickson's proof, that these opn's are effectively computable. Hence, to resolve 
the above problem, one need only examine the finite set of opn's divisible by at most 
k + ir(N) - 2 distinct primes (where ir(N) denotes the number of primes less than N). 
Indeed, if the kth largest prime Pk of the opn n satisfies Pk < N, then n is divisible by 
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at most k - 1 distinct primes not less than N. Together with the rr(N) - 1 odd primes 
less than N; we see that n is divisible by at most k + ir(N) - 2 distinct primes. 

Using this procedure to prove (2), one would "merely" have to enumerate the 
set of opn's divisible by at most 33 distinct primes. However, this would be an enor- 
mous undertaking and hardly practical. Since we do know that every opn is divisible 
by at least 7 distinct primes, this method gives the result P2 > 17. Using the additional 
fact that no opn is divisible by 3 * 5 - 7 (Sylvester [121), we can get P2 > 19. 

By the above discussion, for any N there are at most a finite number of opn's 
with second largest prime factor P2 < N. We denote this set by P(N). Hence, given 
any prime p, the set E(p, N) = {a > 0: pajlnj for some n E P(N)} is finite (we write 
xlly if xly and (x, y/x) = 1). The main goal of Section 2 is to develop procedures 
for proving E(p, N) = 0 or perhaps E(p, N) C S where S is some small, explicitly 
determined set of positive integers. 

I wish to acknowledge the expert assistance of David E. Penney on the computer 
work used for constructing Table 3. 

2. Notation, Preliminaries, and a Theorem. If p is a prime and m is a natural 
number, we write vp(m) for the exponent (possibly 0) on p in the prime factorization 
of m. If p,m, we write ordp(m) for the least positive integer h for which pI(mh - 1). 
We write 

ap(m) = O, if ordp(m) = 1; 

ap(m) = vp(mh - 1), if h = ordp(m) > 1. 

LEMMA 1. If p is a prime and m = qc > 1 where q, c are natural numbers, then 

ap(q) S ap(m) + vp(m - 1). 

We denote by a(m) the sum of the positive divisors of m. We note that if q is a 
prime, then q(qC) = (qC+l - 1)/(q - 1) for any natural number c. The following lemma 

is a corollary of Theorems 94 and 95 in Nagell [8]. 
LEMMA 2. If p, q are odd primes and a, c are natural numbers, then pallar(qc) 

if and only if ordp(q)l(c + 1) and vp(c + 1) = a - ap(q). 
LEMMA 3. If p, q are odd primes, a, b are natural numbers, and a(pa) = qb 

then ap(q) = 0 or 1. 
Proof. We have qb1 =p + p2 + . . - + pa, so that pll(qb - 1). Let h= 

ordp(q). Then hlb and plj(qh - 1). 
We state now a result found often in the literature; it is originally due to Bang 

[11: Given arbitrary integers a > 2, b > 2, there is a prime p with ordp(a) = b, unless 
(i) a = 2 and b = 6, or (ii) a = 2k _ 1 for some k and b = 2. 

LEMMA 4. If q is an odd prime, c is a natural number, and 41a(qc), then for 
each divisor d > 1 of c + 1, there is a prime plu(qC) with ordp(q) = d. 

Proof We apply the theorem quoted above to the natural numbers q, d, noting 
that q 0 2 so (i) does not apply, and since 4fu(qc) we have c + 1 odd if q = 2k _ 1 

for some k, so (ii) does not apply. Hence there is a prime p with ordp(q) = d. Also, 

pl(qd - 1)/(q - 1)|(qC+l - 1)/(q-1) = Or(qc). 

Suppose now N < 100129 and p is an odd prime. We denote by A@, N) the set 
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of all qc, q an odd prime, c a natural number, with 

(i) q <N; 

(ii) pla(qC); 

(iii) -41r(qC); 
(iv) if c' < c, then vp(a(qc)) < vp(a(qc)); and either 
(v) every prime factor of a(qC) is less than N; or 
(vi) a(qc) has precisely one prime factor r > N and r > 100129. 

We remark that given any q, p, N, there are at most finitely many c with qc E A(p, AN). 
Indeed, Lemma 2 and condition (iv) imply that if c + 1 0 ordp(q), then pl(c + 1). 
But if c + 1 = pm where m > N, then Lemma 4 implies there are primes rl, r2 with 

r1r2 l(qc), ordr1(q) = m, and ordr2(q) = pm. Then r, > m + 1 > N, r2 > pm + 1 
> N, so that neither (v) nor (vi) is satisfied. We conclude that the set A(p, N) is 
effectively computable. 

We now define several subsets of A(p, N). Let A (p, M) denote the subset of 
those qc for which 2lo(qC); let A2(p, N) denote the subset of those qc for which 
21a(qC) and (v) holds; and let A3(p, AN) denote the subset of those qc for which 2,1a(qC) 
and (vi) holds. Let 

a1(p, N) = max {vp(a(qC)): qc E A1(p, N)}, 

a2(p, N) = a1(p, N) + E max{vp(a(qC)): qc E A2(P, )}, 
q C 

a3(p, N) = 
a, 

(p, N) + , max{vp(a(qc)): qc E A2(, N) U A3(p, N)}. 
q C 

Let 

Q(p, N) = {r > 100129: r prime, rla(qC) for some qc EA3(p, AN)}, 

b(p, N) = max{vp(q - 1): q prime, q < N}. 

We recall now the definitions of P((N) and E(P, N) from Section 1. 
LEMMA 5. Suppose n E P(JV) where N < 100129, p1 is the largest prime factor 

of n, p is any prime factor of n, pallIln, and palln. Then VP(a(pa1)) > a - a3(, N). 

If p1 0 Q(P, A'), then vP(a(pa1)) > a - a2(p, A'). 
Proof Let the prime factorization of n be written pa l1pa2 * p *pt where p1 > 

100129 > N> P2 > > Pt. Now a(n) = 2n, so a = 4vup(a(pqi)). But 

Si-=2 vp(aq41i)) a3(P, N), and if p1 0 Q(P, A'), then X4.2vp(aU(pi)) S a2(p, N). 
THEOREM 1. Let N < 100129 and let p denote an odd prime. Each of the fol- 

lowing conditions implies a 0 E(p, A'): 

(i) 4lr(pa); 

(ii) there is a prime qja(pa) with N S q < 100129; 
(iii) there are primes q1 q2 with q 1 q2 IaCva) and q 1 > q2 > N; 
(iv) a(pa) is divisible by a prime q > N and a > a3(p, N) + b(p, N) + ap(q); 
(v) ar(pa) is divisible by a prime q > N, q 0 Q(p, M), and a > a2(p, N) + b(p, N) 

+ ap(q); 
(vi) every prime divisor of U(pa) is at least N and a > a3(p, N) + b(p, N) + 1; 
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(vii) q(pa) = m1m2 where every prime divisor of ml is less than N, every prime 

divisor of m2 is at least N, m2 > 1, and a > a3(p, N) + b(p, N) + ap(m2) + vp(m2 - 1); 

(viii) p < N, a + 1 is prime, and a + 1 > max {?(N - 1), a3(pI N) + b(p, N) + 

3}; 
(ix) pa satisfies one of the above and (a' + 1)1(a + 1). 

Prooqf Note that (i), (ii), and (iii) are obvious. 

Suppose (iv) holds and suppose n E P(N) with palln. Then q = p1, the largest 

prime factor of n. Say pa '1un. Lemma 5 implies vp(c(pa1j)) > a - a3(p, N) > b(p, N) 
+ ap(p, ). Hence Lemma 2 implies pI + b(P,N) i(a, + 1). By Lemma 4, there is a prime 

rlo(pal1) with ordr(p) - 
+ b(p,N), so that vp(r - 1) > 1 + b(p, N). Then r > N. 

But r $ p, contradicting n E P(N). Hence a 0 E(p, N). 

To show that (v) implies a 0 E(p, N) we proceed as with the proof of (iv), ex- 

cept that we note the condition p, = q 0 Q(p, N) implies by Lemma 5 that vp(au(pa)) 
>a -a2(P, N). 

Now assume (vi) holds. Then we may assume a(pa) = qb where q is a prime and 

q > N. Lemma 3 implies ap(q) = 0 or 1. Hence a 0 E(p, N) by (iv). 
If (vii) holds, we may assume m2 = qb where q is a prime and q > N. Then 

Lemma 1 and (iv) imply a ? E(p, N). 
Suppose (viii) holds. Since a + 1 is prime, if q is a prime divisor of a(pa), then 

ordq(P) = a + 1 or 1 by Lemma 2. In the former case, q-1 (mod a + 1), so q > 

2(a + 1) + 1 > N (since a + 1 > 3 and a + 1 > h(N - 1)). Suppose ordq(P) = 1, so 

that p-1 (mod q). Then a(pa) = 1 + p + - - .+ pa _ a + 1 (mod q), so that a + 

1 = q. Hence p > 2(a + 1) + 1 > N, a contradiction. Thus every prime divisor of 

a(pa) is at least N, and since a > a3(P, N) + b(p, N) + 1, (vi) implies a ? E(p, N). 
Finally, suppose (ix) holds. Since a(pa )la(pa), we have a 0 E(p, N) due to our 

above proofs for (i)-(viii). 
Remark. We note that Lemma 4 together with (iii), (viii), and (ix) of Theorem 1 

imply that if a E E(p, N) and p < N, then every prime divisor r of a + 1 satisfies r < 

max{?(N - 1), a3(P, N) + b(p, N).+ 3} and vr(a + 1) S b(r, N) + 1. Hence Theorem 

1 provides an effective means for examining the finite set E(p, N). 

3. The Proof of (2). In Section 2 we remarked that the sets A(p, N) (and hence 

the subsidiary notions Aj(p, N), A2(P, N), A3(P, N), Q(p, N), a,(p, N), a2(P, N), and 
a3(p, N)) are effectively computable. We have performed these computations for N = 

139 and p = 3, 7, 11, 13, 19, 31, 61, 97, and 127. The fruits of this labor may be 

found in Tables 1, 2, and 3. Also, b(p, 139) for the above p may be found in Table 1. 

Making use of this numerical information and Theorem 1, we are able to conclude: 

E(3, 139) C {2, 4}, E(31, 139) = 0, 

E(7, 139) C {2}, E(61, 139) C {1, 2}, 

(3) E(11, 139) C {2}, E(97, 139) C {1}, 

E(13, 139) C f1, 21, E(127, 139) = 0. 

E(19, 139) C {2}, 
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Below we give the details of the proof that E(3, 139) C {2, 4}. These details are fairly 

representative of the techniques used in establishing the remainder of (3), the proof of 

which we omit. 

Since a3(3, 139) + b(3, 139) 4-,3 = 19 < 69 = 'h(139 - 1), (viii) and (ix) of 

Theorem 1 imply that if a E E(3, 139), then every prime divisor of a + 1 is less than 

69. Since every prime divisor of a(3a) is at least 139 for a = 30, 36, 42, 46, 58, 60, 

66, (vi) and (ix) of Theorem l imply that if a E E(3, 139), then (a + 1, 31 * 37 * 43 

47 5 59 * 61 * 67) = 1. Since 1093la(36), 38511a(310), 1871la(316), 1597la(318), 

28537la(328), (ii) and (ix) of Theorem 1 imply that if a E E(3, 139), then (a + 1, 7 

11 * 17 * 19 * 29) = 1. Let m2 = u(352)/107, a(340)/83, or a(322)/47. Then in each 

case m2 is an integer, every prime divisor of m2 is at least 139, and a3(m2) + 

v3(M2 - 1) = 1. Then (vii) and (ix) of Theorem 1 imply that if a E E(3, 139), then 

(a + 1, 23 * 41 * 53) = 1. Since 41a(3), (i) and (ix) of Theorem 1 imply that if a E 
E(3, 139),then(a + 1,2) = 1.. 

Hence if a E E(3, 139), then every prime divisor of a + 1 is found in the set 

{3, 5, 13}. Suppose n E P(139), 3alln, and 131(a + 1). Then p1 = 797161 = a(312) 

is the largest prime divisor of n. Say pal'lln. Now 797161 g Q(3, 139), so Lemma 5 

implies v3(a(797161al)) > a - a2(3, 139) = a - 10 > 2. Then Lemma 2 implies 

91(al + 1). Hence 1511a(7971612)Ia(797161a1)12n, contradicting n E P(139). Hence 

if a eE(3, 139), then (a + 1, 13) = 1. Since 7571a(38), 4561 Ia(314), and 8951la(324), 

(ii) and (ix) of Theorem 1 imply that if a E E(3, 139), then 91(a + 1), 151(a + 1), 

251(a + 1). We conclude that E(3, 139) C {2, 4}. 

We now use (3) to prove (2). Suppose n E P(139). Then (3) implies 31Jn and 

127Jn. Now, if 191n, (3) implies 192lln. But a(192) = 3 * 127 and 127Jn. Hence 

19fn. If either 71n or IlIn, then 7211n or 112lln, respectively. But a(72) = 3 * 19 and 

u(I12) = 7 * 19, and 19fn. Hence 7fn and llJn. If 971n, then 9711n. But a(97) = 2 

72 and 7fn. Hence 97fn. If 611n, then either 6111n or 612lln. But a(61) = 2 * 31, 

a(612) = 3 * 13 * 97, and 31Jn, 97Jn. Hence 61Jn. If 131n, then 1311n or 132lln. But 

a(13) = 2 * 7, a(l32) = 3 * 61, and 7fn, 61Jn. Hence 13Jn. Finally, if 31n, then 3211n 

or 34lln. But a(32) = 13, a(34) = 112, and lltn, 13Jn. Hence 3Jn. 

Summing up, if n C P(139), then (n, 3 * 7 * 11 * 13 * 19 *31 * 61 * 97 * 127) = 

1. Say the prime factorization of n is pallpa2 ... pat where p1 ? 100129 > 139 > 

P2 > > pt. Then 

2 =JjJ a n ni=:1 Pj' 

P.l - 1 t Pi1 100129 -H <JJ1 P < 1.9 

where P is the product of all p/(p - 1) as p ranges over all primes less than 139 and 

not equal to 2, 3, 7, 11, 13, 19, 31, 61, 97, 127. This contradiction shows that P(139) 

= 0; that is, , n opn exists, its second largest prime factor is at least 139. 
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4. An Application. It was noted by Euler [3], that if n is an opn, then in n's 
prime factorization, every exponent is even except for one exponent which is--1 
(mod 4) as is the corresponding prime. We also note that if p is a prime, then a(pa)Ipa 
is an increasing function of a and lima,. (pa)/pa = p/(p - 1). We are now in a position 
to prove: 

THEOREM 2. If n = plpa2* pa7 is an opn where p1>p2>* *>p7 are 
primes and a,, a2,... , a7 are positive integers, then p7 = 3 and P6 = 5 or 7. 

Proof: As we remarked in Section 1, Sylvester [11] proved that p7 = 3. 

Suppose P6 > 11. Then P6 = 11, p5 = 13, p4 = 17, and p3 = 19. Indeed, if 
not, using (1) and (2) we have 

2- (n)- 
7 

(p'~ 7 p 2 = ?=II a< ii n i=1 pi 
_ P p-1I 

S 3 . 11 13 17 23 139 100129 < 2 
2 10 12 16 22 138 100128 

a contradiction. We next note that a7 > 4, a6 > 4, a. > 4, and a3 > 4. Indeed, if 
a7 = 2, then 

u(n e 32 11 13 17 19 139 100129 
n 32 10 12 16 18 138 100128<2. 

If a6 = 2, then 7la(112)In. If a. = 1, then 71u(13)12n. If a. = 2, then 611a(132)In. 
If a3 = 2, then 1271a(192)In. 

We now show that a4 > 4. First, suppose a4 = 2. Then P2 = 307 = a(172). 
Then 

(n> ) . _(114) . a(l34) . . u(194) . a(3072) > 2, 
n 34 114 134 172 194 3072 

a contradiction. Next suppose a4 = 1. Then from 1.13 in [9], we have p1 p2 
(mod 17). But P2 > 139, so P2 > 239. Then since 

a(3 4 1 13 X(17) 19 239 100129 
< 2 

34 10 12 17 18 238 100128 

we have a7 > 6. But 10931Ir(36) and 1093 :f1 (mod 17), so a7 > 8. Now 

or(3 8)' (114) . a(134) r(17) 94) .a(6472) > 2 
38 114 134 17 194 6472 

so P2 > 647. Then since P2 =1 (mod 17), we have P2 > 919. Then 

< < 11 13 a(17) 19 919 100129 < 2, 
n 2 10 12 17 18 918 100128 

a contradiction. Hence a4 > 4. 
Also since 

u2 6. a(114) a(134). u(174 ) 4)> 2, 
36 114 134 174 194 

we have a7 = 4. 
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Using the natural generalization of 1.1.1 from [9], since a4 > 4, we have for 
either p = p1 or p =p2 that p-- (mod 4) and p- 1 (mod 174). Then p 
167041 (mod 334084). But 167041 is not prime, so p > 500000. Now, if p2 > 569, 
we have 

) < a34) 11 13 17 19 569 500001 
n 34 10 12 16 18 568 500000 

Hence P2 < 563. But then 

> 2.a(l)al4 a(7)al4 a(6)> 2 
n 34 114 134 174 194 563 

a contradiction. 

TABLE 1 

p b(p, 139) al(p, 139) A1(p, 139) 

3 3 3 5, 55, 17, 29, 41, 53, 89, 101, 113, 137 

7 1 2 55, 13,41,97 

11 1 1 109 

13 1 0 0 

19 0 1 37, 113 

31 0 1 375,61 

61 0 0 0 

97 0 0 0 

127 0 0 0 

TABLE 2 

p a2(P, 139) A2(P, 139) 

3 10 72, 132, 192, 372, 612 672 792 

7 11 112, 232, 372, 672, 792, 1072, 1372 

11 4 34, 54 

13 4 32,292, 612 072 

19 3 72, 112 

31 3 52, 672 

61 2 132, 472 

97 1 612 

127 2 192, 1072 
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TABLE 3 

p a3(P, 139) A3(P, 139) Q(p, 139) 

3 13 138, 618, 678 1609669,903870199,30152894311 

7 12 296 88009573 

11 8 2310, 974, 1034, 1374 262321,319411,10332211,3937230404603 

13 4 0 0 

19 6 238,478,618 7792003,567332587,903870199 

31 4 974 262321 

61 3 1314 973001 

97 1 0 0 

127 2 0 0 

Department of Mathematics 
University of Georgia 
Athens, Georgia 30602 

1. A. S. BANG, "Taltheoretiske Unders5gelser," Tidsskrift Math., v. 5, 1886, pp. 70-80, 
130-137. 

2. L. E. DICKSON, "Finiteness of the odd perfect and primitive abundant numbers with n 
distinct prime factors," Amer. J. Math., v. 35, 1913, pp. 413-422. 

3. L. EULER, "Tractatus de numerorum doctrina," Commentationes Arithmeticae Collectae, 
v. 2, 1849, p. 514. 

4. I. S. GRADSTEIN, "O ne&etnych soverlennych 6islah," Mat. Sb., v. 32, 1925, pp. 476- 
510. 

5. P. HAGIS, JR. & W. L. McDANIEL, "On the largest prime divisor of an odd perfect num- 
ber," Math. Comp., v. 27, 1973, pp. 955-957. MR 48 #3855. 

6. P. HAGIS, JR. & W. L. McDANIEL, "On the largest prime divisor of an odd perfect num- 
ber. II," Math. Comp., v. 29,1975, pp. 922-924. 

7. H.-J. KANOLD, "Folgerungen aus dem Vorkommen einer Gaussschen Primzahl in der 
Primfaktorenzerlegung einer ungeraden vollkommenen Zahl," J. Reine Angew. Math., v. 186, 1944, 
pp. 25-29. MR 6, 255. 

8. T. NAGELL, Introduction to Number Theory, 2nd ed., Chelsea, New York, 1964. MR 30 
#4714. 

9. C. POMERANCE, "Odd perfect numbers are divisible by at least seven distinct primes," 
Acta Arith., v. 25, 1974, pp. 265-300. 

10. N. ROBBINS, The Non-Existence of Odd Perfect Numbers With Less Than Seven Distinct 
Prime Factors, Doctoral Dissertation, Polytechnic Institute of Brooklyn, June 1972. 

11. J. J. SYLVESTER, "Sur une classe spe'ciale des diviseurs de la somme d'une se'rie ge'ome- 
trique," Comptes Rendus, v. CVI, 1888, pp. 446-450. 

12. J. J. SYLVESTER, "Sur les nombres parfaits," Comptes Rendus, v. CVI, 1888, pp. 
403-405. 


	Cit r265_c278: 


