
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 131
JULY 1975, PAGES 935-950

Factoring Multivariate Polynomials
Over the Integers

By Paul S. Wang and Linda Preiss Rothschild*

Abstract. An algorithm for the irreducible factorization of any multivariate polynomial
over the integers is given. It is much faster than the classical method ascribed to Kro-
necker. The algorithm begins by making substitutions for all but one of the variables
with selected integers, giving a polynomial in just one variable. This univariate polyno-
mial is then factored by a known method, which uses an algorithm of Berlekamp for
factoring univariate polynomials over finite fields. The multivariate factors are
constructed from the univariate ones by a kind of Hensel algorithm. The procedure
has been implemented in the algebraic manipulation systems MACSYMA and
SCRATCHPAD. A number of machine examples with timing are included.

1. Introduction. We describe an algorithm for the irreducible factorization of any
multivariate polynomial over the rational integers, Z. This algorithm makes use of Ber-
lekamp's algorithm for factoring univariate polynomials modulo a prime number [1],
[2]. Our algorithm is much faster than the classical method ascribed to Kronecker [10,
pp. 135-136]. Experience of machine computation bears this out in both univariate
and multivariate factoring with almost no exceptions.

Essentially, our algorithm first reduces a given multivariate polynomial to a poly-
nomial in one variable by substituting integers for the other variables. The resulting
univariate polynomial is then factored over Z by an algorithm which uses the Berlekamp
algorithm with a small prime. The univariate factors over the integers are used in turn
to construct the irreducible multivariate factors by using a variation of a kind of "p-
adic" interpolation based on Hensel's lemma originally suggested by Zassenhaus [12].

The entire algorithm has been implemented in the LISP programming language
[7] for the algebraic manipulation system MACSYMA [13] at Project MAC, Massachu-
setts Institute of Technology. It is also implemented in the SCRATCHPAD system at
the Thomas J. Watson Research Center, IBM.

A list of polynomials factored by this computer program is included in an appen-
dix. The running time for each problem is indicated. These timings are made on the
MATHLAB time-sharing system at MAC which uses a PDP-10 computer with a memory-
cycle time of about two microseconds.

In his thesis, Musser [9] has described an algorithm for factoring a univariate poly-
nomial over the integers in the SAC-1 system [4]. He has also discussed briefly some

Received August 3, 1972; revised March 4, 1974.
AMS(MOS)subject classifications (1970). Primary 10M05, 12-04, 12C05; Secondary 10D05,

1 2E05-.
*Work reported herein was supported in part by Project MAC, an M.I.T. interdepartmental

laboratory sponsored by the Advanced Research Projects Agency (ARPA), Department of Defense,
under Office of Naval Research Contract N00014-70-A-0362-0001.

Copyright i 1975, American Mathematical Society

935

936 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

ideas of extending his algorithm to multivariate factorization. But no specific algo-
rithms or programs have been given.

We are grateful to Stan Brown, Joel Moses, Richard Fateman, David Yun and Rich

Schroeppel for assistance and suggestions. We would also like to thank G. E. Collins
and D. Musser for making available to us an outline of their program for the Berlekamp

algorithm. We also wish to thank the referee whose comments and suggestions were
very helpful in revising this paper.

2. Preliminaries and an Outline. Polynomials over Z, in several variables, x, x2,

X3, ... , xn, form a unique factorization domain Z[x, x2, ... ,xn]. Let

U(x, X2, X3,, xn) be a multivariate polynomial in'Z[x, x2, .. , xn]. By choosing
a main variable, say x, we may write U as a polynomial in x,

U(x, X2, ... ,X) = UmXrm + Umilxm'l + ... + Ulx + UO

with coefficients Ui in Z[x2, . . , xn, i = 0, 1, . .. , m. We may assume that the
leading coefficient of U, lc(U) = Um, with respect to the main variable is not zero.

Therefore, the degree of U, deg(U), is m. CONT(U), the content of U with respect to
the main variable, is defined as

CONT(U) = GCD(U0, U, Um)

where GCD stands for the common divisor of greatest degree. The principal part of U,

pp(U), is equal to U/CONT(U). U is primitive if CONT (U) = 1. U is squarefree if U

has no repeated factors.
For any set, F = f1, f2 . . . fr} C Z[X2,X3,Xnj, the ideal generated by

F, denoted by (fi, f2, . . . , fr), is defined as the set,

{g1fl + g2f2 + * + grfr: gi EZ[X2, ...,xn] Vi}

(see [10, Section 16]). The set F need not be finite. For any integer, k > 0 and any

ideal 9, tk denotes the ideal generated by all products of the form hi h2 h. . hi E

,i = 1 , 2, . .. , k.
If A and B are polynomials and 9 is an ideal in Z[x, x2, .. ., xnI, we define

A B mod 9 if A - B E 9, i.e., if A - B is divisible by an element of 9. For example,
if 9 = (X2 - a2,x3 - a3, X * * * Xn - an) with a2,. . ., an integers, A(x, x2,.. ., xn)
A(x, a2, .. ., an) mod 9 for A(x, a2, .. ., an) is the remainder of dividing A by every

Xi - ai, i = 2, ... , n; gk iS then the ideal generated by al polynomials of the form,
n n
fi (xi -ai)c' with Eci=k, ci>0.
i=2 E=2

For this ideal 9 we define, for any positive integer-k,

A = B mod k if A-B mod k and deg(A) in x2, ...,xn < k.

Similarly, A = B mod (q) for any prime power q > 2 if A B mod (q) and the coeffi-
cients of A are between - q/2 and q/2.

Let us outline the five major steps in our algorithm for the irreducible factoriza-
tion of U over Z.

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 937

I. Primitive and Squarefree. If U is not primitive, CONT(U) and pp(U) may be
factored separately. Thus, we may assume that U is primitive. Let

GCD(U(x, X2,Xn) aU13X) =D.

Note that U has a repeated factor G if and only if G divides D and UID is squarefree.
The algorithm can be continued by factoring D and UID separately.

II. S>tbstitution. Find a set of integers, {a2, a3, . . .3 , a, (not necessarily distinct)
such that J(x) = U(x, a2, .. ., an) is squarefree and deg(U) = deg(U).

III. j-Tnivariate Factorization. Apply the factoring algorithm for a univariate poly-
nomial to find a factorization

(1) U(X) = p'(X) . . . r(X), r> 1,

over the integers. If U(x) is irreducible, so is U and the algorithm terminates. This
process also produces a prime q such that U(x) is squarefree modulo q (see Section 5).

IV. Construction of Multivariate Factors.
(i) Coefficient hound. Let V = U(x, Y2, Yn. + an). Find a number B

such that for any integer coefficient c of any divisor of lc(V) V, B > Icl. Let j be the
smallest integer such that 2B < q21 = b. The prime power b is used as a modulus in
step (ii).

(ii) Construction of Factors. Equation (1) can be written as

P1 (x) P2 (x) ***Pr (x)-U(x, * n)mo

where 9 is the ideal (X2 - a2, X3 - a3, . . ., xn - an). An extended Zassenhaus algo-
rithm based on a variant of Hensel's lemma (see Section 8) is used to compute, from
the above congruence, relatively prime polynomials P1(x, x2, ..., xn), i = 1, . . . ,

such that each Pi Pi mod 9 and

(2) P1(x, * * *, xn) * * Pr(X, n *, x,) U(x, ... , x,) mod(b, n)

where h = 1 + degree of U in x2, .. . , Xn.
V. Finding Actual Factors. If U(x, . .. , xn) is monic (with respect to the main

variable x), then any irreducible factor G(x, . .. , xn) of U over Z either is equal to
some Pi for 1 < i < r or is equal to the product of two or more Pi's mod(b, 9h). If
U is not monic then these equivalences are up to the units in the coefficient domain of
U (see Section 9). In any event, the irreducible factors of U are found from these Pi's
by trial divisions.

3. A Complete Example. Now let us illustrate the whole algorithm by applying
it to a specific multivariate polynomial, following the steps outlined in the previous
section. The polynomial to be factored is

U(X, y, Z) = x4 + (-z + 3)x3 + (z3 + (y - 3)z _y2 - 13)x2

(3) + (-Z4 + (y2 + 3y + 15)z + 6)x +yz4 + 2z3

+ (-y3 - 15y)z - 2y2 - 30.

938 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

I. U is primitive since lc(U) = 1 (choosing x as the main variable). U is square-
free for GCD(U, aUIiax) = 1.

II. The substitution y = 0 and z = 0 is used because deg(U) = deg(U(x, 0, 0))
and U(x, 0, 0) has no repeated factors. Thus, the ideal 6 = (y, z) and

U(x) = U(x, 0, 0) = x4 + 3x3 - 13X2 + 6x - 30.

III. Factoring U(x) over Z (see Section 5), we have

U(x)=(x2 + 2)(x2 +3x - 15).

IV. Starting from U(x) U(x, y, z) mod f, we use the extended Zassenhaus
algorithm to construct (see example in Section 8)

U=(X2 - zx + 2)(x2 + 3x - 15) mod j2,

U_ (X2 -zx +yz + 2)(x2 + 3x _y2 - 15) mod e3,
and

U=(X2 - zx + yz + 2)(x2 + 3x -y2 + z3 - 15) mod 64.

There is no need to go to a higher power of 6, because the last congruence is actually
an equality over the integers.

V. Trial division immediately gives the irreducible factorization of U over Z

(4) U(x, y, z) = (X2 - zx + yz + 2)(x2 + 3x -y2 + z3 - 15).

4. Selecting Integers for Substitution. The integers needed for substitution in step
II exist. That is, one can show that if U is squarefree, integers a2, a3, . . , an can be
chosen so that U(x) = U(x, a2, . . ., an) is still squarefree and deg(U) = deg(U). The

proof, which uses the discriminant, is omitted here. Suitable ai's may be found by trial
and error. The first choices for these a 's should be 0, 1, and - 1 for they usually make
coefficients of U(x) small in size. It is desirable to use as many zeros as possible for
the substitution, because each ai which is not zero can cause some intermediate expres-
sion growth when the extended Zassenhaus algorithm is applied in step IV.

For different substitutions, the number of factors, r, in (1) may be different.
Since the larger r is, the longer the entire algorithm takes, it is sometimes advantageous
to try several substitutions and work with the one which gives minimum r. Our pro-
gram does not attempt to do this not only because the number r requires a fair amount
of time to compute, but because a different substitution does not guarantee a smaller r.

The leading coefficient plays an important role in the factoring process. Factori-
zation is easier if the leading coefficient is 1; for if U is monic, then any factor of U is
monic. But if U is not monic, then additional computation is required to determine the
leading coefficient of each factor. Therefore, the main variable of U is chosen so that
lc(U) is 1 or small, in order to avoid or simplify later computations related to the lead-
ing coefficient. If several variables have a monic leading coefficient, it is best to choose
the variable giving the smallest deg(U), thus limiting the number of possible factors.

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 939

5. Factorization of Univariate Polynomials Over Z. In step III, an arbitrary square-

free polynomial U(x) E Z[x] is to be factored over Z. The basic steps of this process
are outlined here.

(a) Choose a prime q such that U(x) mod(q) is squarefree and has the same de-
gree as U(x). Let u(x) = U(x) mod(q).

(b) Factor u(x) using Berlekamp's algorithm [1], [6] to obtain

(5) u(x)-p1(x)p2(x) ... pt(x) mod(q)

with the pi's distinct and irreducible over Zq. If t = 1, U is irreducible mod(q), so U
is clearly irreducible over Z, and the algorithm ends.

(c) Find an upper bound B on the magnitude of the coefficients of any possible
factor of U(x), i.e. B is a number such that B > Icl for any coefficient c of any fac-
tor of U. Also find the least integer d such that q2d > 2 Ilc(U)IB.

(d) Use a "p-adic" algorithm by Zassenhaus [121 to construct P (x), p2(x), ...

pt(x) from (5) such that each Pi Pi mod(q) and

(6) U(x) -1(x)j2(x) ... pI(x) mod(q2d)*

(e) Use the algorithm TRUEFACTORS for the ideal (q2d) to get a factorization
of U(x) over Z (see Section 9).

U(X) = P1(X) ... Pr(X), < r < t

If r = 1, U is irreducible over Z. For example, we can carry out the above steps
for the polynomial,

U(x) = X4 + 3x3 - 13X2 + 6x - 30.

(a) U(x) is nonsquarefree mod (3). Choosing the next larger prime 5, we have

U(X) = X - 2X3 + 2X2 + X U(x) mod(5)

which is squarefree.

(b) Factoring u(x) over Z,5 givees

u(x)-x(x - 2)(x2 + 2) mod (5).

(c) If we take, for simplicity, B = 300, then d = 2 since 54 = 625 > 2 * 300.

(d) Zassenhaus' algorithm described in Section 7 is applied to yield

U(x) (x + 45)(x - 42)(x2 + 2) mod(625).

(e) Of the three factors above, only (X2 + 2) divides U(x) over Z. Therefore,

U(x) has only two irreducible factors. The other factor is

x2 + 3x - 15-(x + 45)(x - 42) mod(625).

An irreducible polynomial in Z[x] may have nontrivial factors modulo q. In fact,

the number of factors, t, in step (b) depends on the prime q chosen in step (a). Let

m = deg(U) and r be the number of irreducible factors of U(x) over Z. We see that

940 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

m > t > r. In cases where m is small, we may choose q as the smallest prime that sat-
isfies (a). If m is rather large, a particular choice of q may cause t to be much greater
than r. An extreme case is r = 1 and t = m. To guard against such instances, one may
want to try two or more primes, depending on the size of m, and use the one which
gives minimum t.

According to Knuth [6], steps (a) and (b) take O(m3) units of time. Step (d)
takes no more than O(qtm2) units of time. For step (e) we use algorithm TRUEFAC-
TORS which requires no more than 0(2tm2) units of time. In view of this exponen-
tial characteristic, it pays to make (t - r) small. However, for each additional prime
tried, the cost in time is approximately O(m3).

The referee informs us that a method due to R. Graham allows one to conclude
irreducibility over Z from the way a polynomial factors modulo several primes. Cur-
rently, this method is not in our factoring algorithm.

6. Coefficient Bounds. There are two methods given in Knuth [6] for finding up-
per bounds on the magnitude of the coefficients of every possible factor of a given uni-
variate polynomial U(x). One of these methods involves bounding the absolute value
of the roots of U(x). Another uses matrix computations.

A coefficient bound which works in both the univariate and the multivariate
cases is given by Gel'fond [5, p. 135]. Let the maximum coefficient magnitude and de-
grees of U(x, x2, , xn) be Umax and m, M2 X n . m in the variables x, x2, ...
xn, respectively, then Umax eM, M = m + m2 + ... + mn, bouncts the magnitude of
the coefficients of any divisor of U. We use this method to compute the upper bounds
B (step (c)) and B (step IV(i)). This is suggested to us by P. Weinberger.

The bounds computed are often much larger than they ought to be. If B is too
large, then d, the number of iterations in the Zassenhaus algorithm, is too large. It is
desirable to find a more accurate coefficient bound than the one we use here. MAC-
SYMA enables the user to save computation time by electing to use a heuristic bound
in the factoring process:

B = in MAX(m, I UJI, IUl1, . . ., lUm I) *2m/2}, 2m = deg(U),

where the U 's are the coefficients of U(x) and {m/2} stands for the least integer >
m/2. This heuristic bound is sometimes still rather large. Arithmetic involving integers
more than single precision (35 bits on a PDP-10) is handled by MACSYMA's arbitrary
precision integer arithmetic routines.

It is conceivable, although not probable, for the heuristic B to be too small. In
such a case, factors found by the algorithm may be reducible. Thus, one should be
careful in electing to use the heuristic coefficient bound.

7. Zassenhaus' Algorithm for Factoring mod q2 . In this section, we describe how
(6) is constructed from (5) in step (d) of Section 5. The algorithm is due to Zassen-
haus [12] and is based on Hensel's lemma. Let us write (5) as

U(x)-P1op2o .. . Pto mod(q)

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 941

with pio's distinct and irreducible over the field Zq. From these factors, the algorithm

constructs pi;, proceeding from j to j + 1, starting from j = 0, such that

(7) U(x) ... mod (q21) and p1j pio mod(q).

It suffices to have such an algorithm for two relatively prime factors of U, which can
then be used recursively when t > 2.

Let F , and Go be relatively prime polynomials in Zq[x] such that deg(FO) =

f > 0, deg(-O) = g > 0, deg(U) = f + g and U(x) Fo(x)Go(x) mod(q).

LEMMA. Polynomials F), G1, ota and ,i3, j > 0, can be found such that deg(Fj) =

f, deg(Gj) = g,

(8) U(x) FjGj mod(q21), F1 Fo, G1 Go mod(q)

and

(9) oa,F1 + OjG1 1 mod(q21)

with deg(a) < g and deg(%,) < f. Furthermore, F and G, are unique up to units.

(Note that U(x) need not be monic.)
Proof. The lemma is true for j = 0, because a0 and jgo can be found uniquely by

a polynomial remainder sequence method given in [6]. Let us assume that the lemma
is true for j = k - 1. We compute C(x) by

(10) C(x) = (Fk-1 Gk- - U)Iq2k1 mod(q2kl)

Let R1(x) be the remainder of ak-l C(x) divided by Gki1, i.e., compute R1 by

R1 =ak-lC-Gk-lP mod(q2k1)

with P(x) the quotient. Compute R2(x) by

R2 = FkilP + 3ki1C mod (q2k 1).

It is easy to deduce that deg(R1) <g, deg(R2) < f and, from (9),

(11) RlFkj +R G -C(x) mod (q2k-l)

Thus, if we compute Fk(x) and Gk(x) by

(12) Fk =Fkl -q2k- R2 and G = G -q2k-lR,

It follows from (10) and (11) that Fk and Gk satisfy (8) for j = k. Now compute
D(x) by

D(x) = (ak_lFk + 1k-1Gk - 1)/q2k1 mod (q2k).

As before, we can find S,(x) and S2(x) such that deg(Sl) <g, deg(S2) < f and

Sl Fk-1 + S2 Gk-1D(x) mod (q2kl) Therefore, if we compute ak and '3k by

ak = ql - 1 and Pk = 1k-1 - q2k- S2 mod(q2),

then (9) is satisfied with j = k.

942 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

Now we show that Fk and Gk are unique up to units. Let us assume

(13) U(x) -Fk(x)Gk(X) A(x)B(x) mod(q2k);

and, by induction,

Fk Fk-l aA and Gk Gk-l a-1B mod(q2k-1)

for some unit a in Z/(q2kl). That is,

Fk aA + q2k1 C (X)

Gk -a1B +q2 C2(x) mod(q2k)

for some C1 and C2, deg(Cl) < deg(A) and deg(C2) < deg(B). From (13) we have

aAC2 + a-BC1 -0 mod(q2k-1)

A and B being relatively prime implies

C1 = elA and C2 = e2B mod(q2k1)

for e1 and e2 units in Z/(q2k 1). Hence, A and B are unit multiples of Fk and Gk, re-

spectively. O
Therefore, (7) can be constructed and it is unique up to units in the ring Z/(q21).

Example. Let

U(x) = x4 + 3x3 - 13x2 + 6x - 30.

Extend the following congruence to modulo 25:

U(x) (X2 - 2x)(x2 + 2) mod(5).

Let Fo = x2 - 2x, Go = x2 + 2; we have

F0G0 - U(x) = 5(-x3 + 3x2 -2x + 6) = 5C(x).

a0o(x) = 0 and j00(x) = -(x + 2) give

of Fo + 00 Go-C(x) mod (5).

Therefore, according to Eqs. (11) and (12),

F,(x) = F0(x) - 5(-x - 2) = x2 + 3x + 10,

Gj(x) = G0(x) and FjG, U(x) mod(25).

8. An Extended Zassenhaus Algorithm. This algorithm computes (2) in step IV
from (1) in step III. For the same reason as given in Section 7, we shall give the algo-
rithm for two relatively prime factors. Let F(x) and G(x) be two relatively prime poly-
nomials such that F(x)G(x) = U(x) over Z. It follows that

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 943

where 4 is the ideal (X2 - a2, X3 - a3, . .. , Xn - an). From F and G this algorithm

constructs, proceeding from k to k + 1 starting from k = 1, multivariate polynomials

Fk and Gk, with F1 = F and G1 =G, such that

Fk(x, x2, , xn) F(x) mode, Gk(x, x2,,xn)G(x) mod z,

and
U(x,x2,...,xn)=EFkGk mod*k.

We shall first show how to get to k = 2. Then, the general case is given by in-
duction. The algorithm ends when k reaches h which equals 1 + degree of U in x2,

xn.

Let yi = xi- a, i = 2, 3,.. ., n, and

V(x, Y2, * * * ,Yn) = U(x, Y2 + a2,5 ... * Yn + an).

We compute R 1 and W1 by

R l(x, Y2 X . .. X Yn) =F(x)G(x) -V(x, Y2 X .. * Yn)
and

W1 (x,9 Y2 X . .. X Yn) = R , mode02.

Since 6 is now the ideal (Y2 ... , Yn), computations mod 6' are done simply by drop
ping all the terms of degree greater than or equal to i in Y2, . .. X Yn e.g., y2Y3 0
mod 62*

Since F(x) and G(x) are relative prime, unique oti(x) and pi(x) can be computed
such that for all i 6 m

(15) ai(x)F(x) + Oi(x)G(x) = xi

with deg(oti) < deg(G) and deg(oi) S deg(F). These oci and pi are computed as the
need arises and are stored for future use. This scheme is used at the suggestion of J.
Moses.

For any polynomial T(x, Y2, . . ., Yn) let us denote by A(T) the polynomial

obtained by substituting oti(x) for xi in T and by B(T) the polynomial obtained by
substituting pi(x) for xi in T. Now compuLe F2, G2 and R2 by

F2(X, Y2 X .* * Yn) = F(x) - B(W1), G2(x, Y2 X * * Yn) = G(x) -A(W,)

and

R2 =R1 + A(W1)B(Wl) - A(W1)F- B(W1)G.

It is readily verified that

A(W1)F + B(W1)G = W1, A(W1)B(Wl) 0 mod q2

V -F2 G2 mod q2 and R2 = F2G2 - V.

Suppose we have, by induction, Fk-l, Gk-1 and Rk-1 such that, for k > 2,

V=Fk-lGk-1 mod k-1, Fk1 -F mod e, Gk-1-G mod e

and

944 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

Rkl = Fkl Gk-l V.

Now let us compute Wk-1, Fk, Gk and Rk by

(16) Wk1 = Rk_ mod 6k, Fk = Fk-l - B(Wk-1),

Gk = Gk-1 - A(Wk1)
and

(17) Rk = Rk1 + A(Wk-l)B(Wk-l) - A(Wk-l)Fk-l - B(Wk-l)Gkl.

Then, it can be deduced that

Fk*F mod e, Gk*G mod e

and

Fk G* - V-R--kod0. FkGkV=Rk=O mod~k

Consequently, the congruence

(1) V(x, Y2 X Yn)-=Fk(x, Y2 X** Yn)Gk(X, Y2 X***XYn) md0

can be constructed for any k > 2. The algorithm ends whenever Rk is zero or when k
reaches h. It can be shown that Fk and Gk are unique up to units. Therefore, the Pi's
in (2) are also unique up to units.

Integer arithmetic would be sufficient for this algorithm if it were not for the

ai(x) and t3i(x) needed in (15) which normally have rational coefficients. To avoid the
costly process of using rational arithmetic for the entire extended Zassenhaus algorithm,
we can use a large enough modulus for our computation.

Let B be an upper bound on the magnitude of the coefficients of any possible
factor of V(x, Y2, . . Y, Yn) or U(x). We can use the prime q chosen in Section 5 to
form a prime power b - q21 such that b > 2 llc(U)IB. It is easy to see that all com-
putation can be done modulo b. However, a true bound is usuglly too large. In MAC-
SYMA we provide an optional heuristic bound:

B = MAX(B, h - MAX(h, vmax) 2{h/2})

where vmax is the absolute value of the largest integer coefficient of V.
The computing time of this algorithm is dominated by the multiplication of mul-

tivariate polynomials in Eq. (17). If V has v terms, Eq. (17) takes no more than v2
units of time. Thus, the entire algorithm takes O(hv2) units of time. And to construct
the congruence (2) from (1), we need to apply this algorithm r times.

Example. Given

U(x, y, z) = x4 + (-z + 3)x3 + ((y - 3)z -y2 - 13)x2

(19) + ((y2 + 3y + 15)z + 6)x

+ (-y3 - 15y)z - 2y2 - 30,

F(x) = (X2 + 2), G(x)=- (X2 + 3x - 15)

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 945

and

U(x, 0, 0) = F(x)G(x),

find F2, G2, F3 and G3.
To avoid rational arithmetic, we use 625 as a modulus; that is, all arithmetic will

be done modulo 625. Let 4 be the ideal (y, z); then U F(x)G(x) mod 6. Now

W1(x, y, z) =z(x3 + 3X2 -15x)=F-G-U mod 2.

And we have

a= - 171x - 232, a1 = 281x - 65,

a2 =-283x- 160, a3 = 64x + 130,

g= 17lx - 281, f,B = 28lx + 283,

32 =283x-63, f3 =-63x + 59,

satisfying Eq. (15). All these a 's and f3i's are derived, as indicated in Section 7, from
the relation - (x + 2)F + (x - 1)G -1 mod(5) which can be obtained by a polyno-

mial remainder sequence method.
We now can compute A(W1) = 0 and B(W1) = zx which give F2 = x2 - zx + 2,

G2 = G. Similarly, to find F3 and G3, we compute

W2 =-yz-y2)x2-3yzx+ 5yz + 2y2 =R2 mod 6,

A(W2) = y2 and B(W2) =-yz.

This means that

F3=x2-zx+yz+2 and G3=x2 +3x-y2 -15.

One can show that F2G2 U mod 62 and F33G3U mod 63.

9. Obtaining True Factors. In this section, we describe the algorithm for obtain-

ing actual factors of U(x, x2,, x,) over the integers from the factorization

(2) U(x, ... , xn) = Pi (x, ... , xn) ... Pr(X . . , xn) mod (b, 6h)

with r > 2, the Pi's distinct and irreducible.
The factorization (2) is unique up to units in the quotient ring R =

Z[X2, .. , xn]I(b, 6h), though R is not a unique factorization domain.
If U is monic, then the Pi's are all monic and any irreducible factor G(x, - - . , xn)

of U either is equal to some Pi, 1 i 6 r, or is equal to the product of two or more

Pi's mod(b, 6"). If U is not monic, then these equivalences are up to units in R. Sup-

pose an irreducible factor G, of U over Z, is equal to H up to units in R. Then

(20) H* = lc(U)lc(H)-}H=lc(U)lc(G)-1G mod(b, th)

and G = pp(H*) taken over the integers. The quantity lc(U)lc(H)-} is easily comput-

ed. For example, for any 1 6 i < r,

946 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

r

lc(U)lc(Pi)-1 = I lc(P1) mod(b, 4h).
j=1 ;j*i

Evidently, if H* divides lc(U)U, pp(H*) is a factor of U over Z.
Because U is squarefree, different irreducible factors of U over the integers cannot

involve the same Pi for any i. Exactly how these Pi's should be grouped to give rise to
the irreducible factors of U requires a combinatorial search.

With U, h, *, Pi, i = 1, 2, ..., r, as input, the following algorithm returns a
list of irreducible factors of U over Z. This algorithm finds the true factors by trial di-
vision over Z. The divisors are formed by taking different products, mod(b, oh), of 1,
2, . . ., r - 2 elements, in that order, from the set {P1, P2, ... Pr}. Of all such
products, only those of degree not exceeding m/2 are formed. If U is not monic, nec-
essary steps for correcting the leading coefficients of possible factors as indicated in
(20) will be taken. Each successful division produces an irreducible factor of U and re-
places U by the quotient. This algorithm ends when U = 1 or when all combinations
are taken. In the latter case, the remaining quotient U is an irreducible factor.

Algorithm TRUEFACTORS:
(1) For i = 1 through r, execute the following:

Set U* = lc(U)U, Y = lc(U)lc(Pi)-1Pi mod(b, oh). If y
divides U* over Z, put pp(Y) on the list FAC and set
U = UIpp(Y); otherwise put Pi on the list L.

(2) If L is an empty list, return the answer FAC and exit. If L
contains less than four elements, put U on the list FAC return
FAC and exit (for L cannot contain two disjoint subsets of two
or more elements). Otherwise, set M = 1, a = number of elements on L,
r = r - number of elements on FAC, u = deg(U)/2, U* = lc(U)U.

(3) SetM=M+ 1.
(4) If U = 1, return FAC and exit. If r = 1, M > r - 1 or M > u, put U on the

list FAC, return FAC and exit.

(5) Select a combination, E, of M elements from L with the sum of their
degrees not to exceed u. If no such combination can be found, put U
on the list FAC, return FAC and exit. If all such combinations of
M elements from L have been taken, go to step 3.

(6) Set Y = product of elements in E mod(b, oh).

Set Y = lc(U)lc(Y)-l Y mod(b, gh). If Y divides U* over Z, do the
following:
(i) Put pp(Y) on the list FAC and set L = L - E, r = r - 1;
(ii) set U= U/pp(Y), u = deg(U)/2, U= lc(pp(Y)) U;

(iii) delete from L any element with degree greater than U; set ae = number of
elements on L.

(iv) go to step 4.
If Y does not divide U* over Z, go to step 5.
In the above algorithm, the computing of U* and pp(Y) is unnecessary if the

original polynomial U is monic. Trial division of U* by Y is preceded by test divisions
of the leading and trailing coefficients.

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 947

Note that only one multiplication is needed to form a product of M elements
from that of M - 1 elements. In the worst case, where U is irreducible and r =
deg(U) = m, this algorithm goes through 2m-1 iterations and each iteration involves es
sentially one multiplication and one division of multivariate polynomials.

10. Special Cases. The factoring process for polynomials of some particular forms
can be greatly speeded up by the use of special techniques. For instance, the factors
of x' ? 1 can be obtained by computing the factors of the relevant cyclotomic polyno-
mials [10]. For other univariate polynomials, Eisenstein's irreducibility criterion [10]
can be applied first. In addition to these, we have in MACSYMA the following special
cases that have been implemented by R. Fateman:

A. Linear Case. If U is a polynomial linear in the variable x, i.e., U = ax + b,
then U is irreducible if and only if GCD(a, b) = 1.

B. Quadratic Case. If U is quadratic in some variable x, that is, U = ax2 + bx +
c, and U is primitive with respect to x. Then, either U is irreducible over the integers
or factors into two linear factors computed by the quadratic formula.

11. Practical Difficulties. In early tests with the factoring program, it was discov-
ered that taking GCD of multivariate polynomials was very slow. This affected the
very first step in our factoring algorithm. Namely, content and squarefree operations
were taking too long. At that time, MACSYMA was using the modular GCD algorithm
[3]. The need for a better method for multivariate GCD motivated the work on the
EZ-GCD algorithm [8], [11]. The EZ-GCD algorithm uses the extended Zassenhaus al-
gorithm. It is very efficient for multivariate polynomials that are not completely dense
It also makes content taking extremely fast.

There are still two major sources of difficulty. One is the coefficient bound
which we have mentioned in Section 6. The other has to do with being able to use
zeros for the a 's. An important step in the extended Zassenhaus algorithm is the
change of variable

V(x, Y2, * * *Yn) = U(x, Y2 + a2, .. . Yn + an).

If not enough of the a 's are zero, one can expect V to have many more terms than U.
Just compare the size of xrySzt with (x + I)r(y. + 2)s(z + 3)t. The former has only
ofie term and the latter has (r + 1)(s + 1)(t + 1) terms when expanded. This interme
diate expression growth is typical of many problems in symbolic manipulation. One
may try avoiding this change of variable. But this is not always easily done. We have
yet no general solution for this growth problem.

Appendix. This appendix contains 18 examples of factoring done by the MAC-
SYMA system (version 252) at Project MAC, M.I.T. The running times are indicated
in milliseconds. We have chosen the examples with the following complexity measure-
ments of polynomials relative to factorization in mind: degree, number of variables,
density, number of irreducible factors, number of terms in the polynomial, size and
form of the coefficients, especially the leading coefficient. For each example, the or-

948 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

der of the variables is X, Y, Z, W, with X the most main variable and W the least main.
In MACSYMA, labels (Ci) and (Di) are used for the ith command and display lines re-

spectively. The symbol % stands for the previous expression.

14
(D1l X -1
02) FACTORS (%);

TIME= 239 MSEC.
6 5 4 3 2 6 5 4 3 2

(D2) (X - 1) (X + 1) (X + X + X + X +X X + 1) (X - x + X - x + X - X + 1)

8

FACTOR
X + X + 1

TIME = 1005 MSEC.
2 6 5 3 2

(D4) (X + X + 1) (X - x + x - x + 1)

(D5) 228533760 X + 1921081160 X + 233096077 X - 204462708 X + 170301571 X z 291338682 X + 7552512
(06 FACTOR(%);
TIME= 3326 MSEC. 2

(D6) (455 X + 3750 X - 99) (576 X + 131 X - 256) (872 X - 55 X + 298)
3 3

C8 FACTOR(%);
TIME= 526 MSEC. 2 2

(D8) (X - Y) (Y + x Y + x)

4 3 5
(D9) x + y + z
(C10) FACTOR(%);
TIME= 421 MSEC.

(D10) Z + Y + X

4 2 2 2 4 2 2 4
(Dll) 2 X + (Y + 10 Z) X - 6 Y - Z Y + 12 Z
(C12) FACTOR;(%) ;
TIME= 1227 WREC.

2 2 2 2 2 2
(012) (3 Z + 2 Y + x) (4 z - 3 y + 2 X)

3 3 2 2 3 2 2 2
FDl O) Y X + (2 Z Y + 9 Y) X + (Z Y + ZY+9 Z) x + Z Y + 9 Z Y
(C14) FACTOR (%);s

TIME= 908 MSEC.
2 2

(D14) (Y Z + X Y + 9) (Y Z + X Z + X Y)

3 2 2 2 3 2 2 3
(D15) X + (-+Z) X + (- Y - 2 Z Y - Z) X + Y + Z Y - Z Y - Z
(C16) FACTOR(%);
TIME= 2309 MSEC.

(D16) (X + Y + Z) (Z - Y + X) (- Z - Y + X)

4 3 2 3 2 4 3 2
(D17) X +(-Z+3) X + (-Y +ZY + Z - 3Z - 13) X - (ZY +3ZY-Z +15 z+6) X-ZY - 2 y

4 3
+ (Z - 15 Z) Y+2Z - 30

(C18) FACTOR(#%);
TIME = 1520 MSEC0.

2 3 2 2
(D18) (Y Z - X Z 4 X 2) (Z -Y 4 X 4 3 X - 15)

D19) 6 6
(C20) FACTOR(%); X y
TIME= 1025 MSEC.

2 2 4 2 2 4
(D20) (Y 4 X) (Y -X Y + X)

4 2 3 2 3 3 3 23) 2 2
(D21) 2115 Y X (45 W Z - 45w)x (-470Y 4 (141 z4 94W Z) Y) x+ (- loW Z + 10 W)2Y

2 6 3 4 2 3 3
+ 3W Z 4 2W Z - 3W Z -2W Z

(C22) FACTOR(%)
TIME= 1952 MSEC .

3 2 3 2 3 2
(D22) (3Z q 2WZ - 10Y + 45X) (W Z + 47XY-W

6 2 4 3 3 2 2
(D23) x + (6 y + 1) X + (11 Y4 24) X 4 (60 Y 4 54 y + lo Y + 9) X 4 10 Y 4- 159Y + 135
(C24) FACTOR(%);
TIME= 1566 MSEC.

FACTORING MULTIVARIATE POLYNOMIALS OVER THE INTEGERS 949

5 2 5
(D24) (10Y + X + 9) (X(6 Y+ i) + Y4 X + 15)

2 2 2 2 2 5 5 5 5 5 5 2
(D25) ((Z- W) Y + (- Z ? W) Y 4 WZ - W Z) X + ((Z?W) Y + (Z - W) Y - WZ ? W Z) X

2253 3 5 225 3 532 2 2 3 5 3 2
4 ((Z _-W) Y ?(-Z +W)Y +W Z -w WZ)X4(--WZ 4W Z) Y +(WZ - W Z)Y

+ (-W z ?W Z Y

(C26) FACTOR(%);
TIME= 4153 MSEC.
(D26) (X -W1,) (Y - W) (x - Y) (Z - W) (X - 7) (Y - Z)

5 2 2 3 5 2 3 253 2 2
(D27) (Y + Z Y + Z Y 4 Z X x (Y 4 (Z + 90) Y 4 90 Z) X + ((Z - 11) Y 4 Z - 11 Z)X + (Z - 11) Y

+ 90 Z - 990

(C28) FACTOR($%);
TIMF= 5072 MSFC. 3 2 2 2
(D28) (X (Y 4Z) 4Z -11) (X (Z 4Y) 4 Y+90)

3 2 2 2 2

(D29) Z Y X 4 ((Z 4 1) Y t (20 Z 4 30) Y + Z + 10 Z) X

2 3 2 2 2
z (y~ (30 Z +20) Y+(Z 4 10Z 4 Z+610) Y4 20 Z?+230 Z500) X?+(Z+10 Z) Y

2
4 (30Z ?5+20 Z 4200) Y?+600 z?+6000

(C3o) FACTOR(%);
TIME= 4670 MSEC.
(D30) (Z 4 XY - 10) (XZ A Y 4 36) (YZ A X 420)

2 6 2 55 2 4 10 2 5 2 2 49a
(D31) (54 z Y - 216 w z y 522 Z Y) X + (18 W Z -18W Z) Y X

+ (24 z Y ? 96 W Z Y -232Z Y)X + ((42 W -3) z Y + (- 168W + 12W)Z Y
2 5 3 2 2 5 2 8 56 4 5 5537

4 ((8W + 9) Z? 6 WZ 4 (414 w - 29) Z) Y 4 (-56W Z - 24W z)Y + (87Z ? 58 W Z)YX

4 2 5 4 2 2 5 2 8 356 2 5 553 56
(((14W-_W)Z 4(-14 - 4 W) Z)Y + (3W Z 4 2W Z -3W Z -2W Z) Y) X

(C32) FACTOR(%)
TIME= 11224 msEc.

6532 3 2 2 2 3 2 3 2 253 2
(D32) X Y Z (3 Z 2W Z - 8 XY (14 w-_1) Y 4 18X Y) (X(- 12W Y Z +S3Y + 29) ? W Z - W

4 8 4 7 4 3 6 4 5 5 4 3 2 4
(D33) 6 Y X 4355Y XA (75 Y 53 Y) X 4 (70 Y + 226 Y) X 4 (24 y + 314 y + 169 Y) X

3 253 2 2

(C34) FACTOR(%); + (1142Y
-

465 Y) X 4 (311Y + 227 Y) X -298 YX + 105
TIME= 16574 MSEC. 2 2 2 2
(D34) (x y?+X y?1) (X Y +2 XY+ 3) (2 X Y +3XY +5) (3XY?+4 X Y +7)

(D35) Y x +z (Y + Z 4 1) X ? (Y +Z Y + Z) x ? (Z +Z) YX + ((Z ? 1) Y ?Z Y + Z 7+Z3) X?ZY ? Z

(c56) FACTOR(f);
TIME= 41076 MSEC.

3 2 5 4 5 2
(D356) (Z ?XYZ4 Y +x) (x (Z +1)?+Z+x Y

Project MAC and Department of Mathematics
Massachusets Institute of Technology
Cambridge, Massachusetts 02139

School of Mathematics
Institute for Advanced Studies
Princeton, New Jersey 08540

1. E. R. BERLEKAMP, "Factoring polynomials over finite fields," Bell System Tech. J., v.
46, 1967, pp. 1853-1859. MR 36 #2314.

2. E. R. BERLEKAMP, "Factoring polynomials over large finite fields," Math. Comp., v. 24,
1970, pp. 713-735. MR 43 # 1948.

3. W. S. BROWN, "On Euclid's algorithm and the computation of polynomial greatest com-
mon divisors," J. Assoc. Comput. Mach., v. 18, 1971, pp. 478-504. MR 46 #6570.

4. G. E. COLLINS, SAC-1 Modular Arithmetic System, University of Wisconsin Technical Re-
port No. 10, June 1969.

5. A. 0. GEL'FOND, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952; English
transl., Dover, New York, 1960. MR 15, 292; 22 #2598.

6. D. E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.

950 PAUL S. WANG AND LINDA PREISS ROTHSCHILD

7. J. McCARTHY et al., LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Mass.,
1963.

8. J. MOSES & D. Y. Y. YUN, "The EZ GCD algorithm," Proceedings of ACM Annual Con-
ference, August 1973.

9. D. R. MUSSER, Algorithms for Polynomial Factorization, Ph. D. Thesis, Computer Science
Department, The University of Wisconsin, Madison, Wis., 1971.

10. B. L. VAN DER WAERDEN, Modern Algebra. Vol. 1, Springer, Berlin, 1930; English

transl., Ungar, New York, 1949. MR 10, 587.
11. D. Y. Y. YUN, The Hensel Lemma in Algebraic Manipulation, Ph. D. Thesis, Department

of Mathematics, M.I.T., Nov. 1973 (also Project MAC TR-138, November 1974).
12. H. ZASSENHAUS, "On Hensel factorization. I," J. Number Theory, v. 1, 1969, pp. 291-

311. MR 39 #4120.
13. MACSYMA Reference Manual, the MATHLAB group, Project MAC, M.I.T., Cambridge,

Mass., Sept. 1974.

