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Elliptic Curves Over Finite Fields. 11

By I. Borosh, C. J. Moreno and H. Porta

Abstract. The class groups of certain elliptic function fields without complex multiplica-
tions are computed. Questions about the structure of these groups and the arithmetical
nature of their orders are considered.

1. Introduction. The present work gives in greater detail the computations out-
lined in the Boulder paper [2]. Let E be an elliptic curve whose Néron minimal model
is

E:y* +apxy +ayy =x3 +ax* +aux +ag

with a; € Z and of conductor V. For a fixed prime p, the same equation for £ with
coefficients read in the finite field F,, of p elements defines an elliptic curve £(F )
over the algebraic closure F,, of F,, for all primes p not dividing the conductor . In
this paper we study that part of E(Fp) which is left fixed by the action of the Galois
group G = Gal(F,/F,). More precisely, we study the structure of the finite abelian
group,

E(F,): y* +ayxy + a3y = x3 + a,x? +a,x +ag mod(p),

consisting of the points on the elliptic curve E whose coordinates lie in the finite field
F, and also the point at infinity. We will not consider the somewhat simpler question
of the structure of E(F,) for those primes p which divide the conductor of E, since
this can be done mechanically once the Kodaira type of the reduced fiber is known.

The starting point of our investigations was the important work of Shimura [11]
where knowledge of the number of points on the curve,

2 =g - (A031) (4161
E(F,): y* = 4x < 3 )* 77 mod(p),

was used to obtain information about the nonsolvable field extensions obtained by
adjoining to the rationals the coordinates of the /-division points on the curve,

4-31 41 - 61
2 _ 3 _ (T 20}, - (———
y? =4x ( 3 )x < 57 ),

3 — x?. The computations given

which as Tate has observed is isogenous to y2 —y = x
by Shimura in [11] for

N, = Card E(F,)=p-a, +1
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were obtained by computing the coefficients @, in the infinite product,

oo

f@=q1 0 -4V -¢"") = X a,4", q =expQ2niz),
n=1 n=1
which is a cusp form of weight 2 associated with the Hecke congruence subgroup
Iy(11). The traces of Frobenius a,, in Shimura [11] are given for primes p < 2000.
D. H. Lehmer also computed the @, using the above product expansion for all primes
p < 30000; incidentally, Lehmer found many primes p for which a,, = 0.

There are in nature eleven other curves like the one considered by Shimura which
are uniformized by modular forms on I'y(V). Affine models for these have been given
by Birch [1]. Thus in principle one can compute Card E(F,) in essentially two different
ways: namely, by counting the number of points on the Birch models (unfortunately,
these are not given in Néron minimal form!) and by computing the traces of Frobenius
via an explicit construction of the cusp form associated with the modular curve which
can be obtained as a linear combination of suitable theta functions.

For N = 14 Birch [1] has given the model,

Ej: ¥ +xy=x343x* + 8x.
The associated cusp form of weight 2 and level 14 as given by Doi and Naganuma [7] is

oo

S aa=q I1 (=g =21 ~a™X1 =),

n=1
In [10] Serre has given an affine model of a curve of conductor 14,
E:y?+xy+y=x>-x

Our preliminary computations gave that the traces of Frobenius for primes p < 5000
were identical for both curves £, and E;. Also, for all primes p < 2000 we computed
the groups E 4(F,) and E(F,) and found that they agree except for the splitting of
the 3-primary component. This suggested strongly the existence of an isogeny of degree
3. That this is in fact true can be explained by observing that the elliptic curve E| is
in fact the curve X, (14) in the notation of Ogg [9], E,, = X,(14), and X,(14)
covers X, (14) by an isogeny of degree 3. More explicitly, E is equivalent to y2 +xy
—y = x3; and dividing out by the cyclic group of order 3 generated by (0, 0), we get
»? + xy = x> + 3x% + 8x which is Birch’s equation. We might add that the general
rule for dividing y2 + a,xy + azy = x3 by the point (0, 0) is y* + a;xy + 3a3y —
6a,a;x + a2ay — 943.

The contents of the paper are as follows. In Section 2 we give a brief description
of the group law on E(F,) which is useful in computation. In Section 3 we describe a
method for computing the primary decomposition of E(Fp) by machine. In Section 4
we present the numerical results obtained. In this same section we also give various
conjectures and theorems which were suggested by the machine computations. The
primary decomposition of E(F,) for various curves and primes p < 5000 and also for
some other primes p < 5000 are given at the end of the paper.

The present version of the paper owes much to the suggestions of many people.
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Here we would like to record our thanks to the referee, who among other things pointed
out the isogeny between £, and E given above and also suggested the first and third
remarks which appear at the end of Section 3.

2. The Group Law. When the elliptic curve E is given in Weierstrass normal form,
E:y* = 4x3 —g,x —g,,

with g,, g5 € Z, the group law for E in characteristic zero corresponds simply to the
addition formulas for the Weierstrass p-function,

p) =zt + 3 (- w?-w?).
wEN

Now if the elliptic curve E has good reduction at a prime p, the formula for the group
law of E can be reduced modulo p to give the group law for E(F,). This procedure
works for almost all primes not dividing the conductor. To obtain formulas defining
the group law for E(F,) which work for all primes not dividing the conductor one
must work with the Néron minimal model of E and obtain explicit formulas in charac-
teristic zero and then read them modulo the prime p to obtain the group law for E(Fp).

In characteristic zero the group law is obtained by the tangent-chord process of
Euler: “Three collinear points on £ add up to zero,” where the zero element on E is
taken to be the point of infinity P, = (e°, «). Thus,if P, =(z,,y,)and P, =(x,,y,)
are two distinct points on E, their sum P; = (x5, y3) is the inverse of the point —P; =
(x%, ¥%) where the curve E intersects the line passing through the points P, and P,.
To obtain P; from —P, one considers a line passing through —P;, P3, and P,,. For an
elliptic curve with affine model,

E:y? +apxy + a3y =x3 +ax? +aux + ag,
the coordinates of Py = (x5, y3) are given by
Xy =-x, —x, +m? tam-a,, y;=-y,-—mxy+xm-ax;-a
where m = (y, —y,)/(x, —x,). The double of a point, i.e. the case P, = P,, is
found similarly by first observing that the tangent to E' at P; has a contact of second
order (the intersection multiplicity is 2) and then finding the other point of intersection.
The coordinates of 2P, = P = (x, y) are
x=—2xl+m2+alm—a2, y=—a;x —a; -y, —mx —x,),
where

m=(3x3 + 2a,x, +a, —a,y,)/(2y, +a,x; +a3).

The group law for E(F p) is now given by the above formulas read modulo p. The good
reduction of the elliptic curve E at a prime p which does not divide the conductor of
E guarantees that the group law for E(Fp) given by the above formulas are well defined
modulo p.

The I-division equation plays a very important role in the following considerations.
If t = (x(2), y(¢)) is a point on the elliptic curve, then the /th multiple /¢ of the point ¢
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has coordinates It = (x(lt), y(It)), where
x(It) = By(x)/A ,(x)2 and y(It) = yD/(x)/A ,(x)3.

The polynomial 4,(x) is of degree (/> — 1)/2 and is classically known as the Il-division
equation. For small / it can be computed by iterating the group law. For more details
see the expository article by Cassels [5].

3. Machine Computations.
3.1. Computation of the Points and the Order of the Group. Let

E(F,): y* +ayxp + a3y = x> + a,x* +a,x + a

be the reduction mod p of the Néron minimal model for E. To compute the points on
E(F,), we take a £ in F, and solve for y the quadratic equation,
Y24+ @E+ay)y+ (8 —aE? +aE+ag)=0,
using the formal expression y = (—a, £ — a; * A'/?)/2, where
A=+ 03)2 + 4 + ‘1252 + a4k +ag).
This process yields two points on the curve, one point, or no point depending on
whether A is a nonzero square in F,, zero or a nonsquare. The repeated use of this
algorithm for all £ = F,, gives all the points on E(F,) except the point of infinity P, =
(°°, ). The computation of the square roots in the above formula was done by
squaring the numbers 1, 2, .. ., (p — 1)/2 and storing them for use for all points of
the curve. The above method gives immediately the number of points on E(F,):
Np =p-a, +1
and hence the value of a,. This is obtained by O(p) operations.

3.2. The Primary Decomposition of the Group. We obtain first the prime de-
composition of N,. The actual determination of the structure of the /-primary com-
ponent is done as follows. If there are I — 1 points of order / in E(F,), then the I-
primary component is cyclic. Otherwise the /-primary component has rank 2, and the
problem now becomes that of determining how the l-primary component breaks as a

direct sum of two cyclic groups. Now if the rank of the l-primary part of E(Fp) is 2
and ||V, or P|IN,, then

EF,) = (Z1Z) ® Z/iZ) or [E(F,)=(Z/PZ)® (Z/12),
respectively. If the rank is 2 and I"‘IINp with m 2> 4, then let m; be the number of

points of order I fori= 1,2, ... , [m/2]. Letj be the largest i such that m; = 12—
1272 then the l-primary component of E(Fp) is

E(F,) = 2Z/1z) ® z/m2).

Remarks. (1) An important fact used implicitly in the computation of E(F,) is
that the kernel ,, E of multiplication by m in the elliptic curve E(Fp) is a product of
two cyclic groups of order m and carries a natural symplectic structure. Thus if all the
m? points of mE have coordinates in the field F,, then Fp contains all mth root of
unity, i.e. ml(p — 1). This gives immediately the fact that if N, and p — 1 are relatively
prime, then E(F,) is cyclic, or equivalently if a, —2 and p — 1 are relatively prime,
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then E(F,) is cyclic. This criterion greatly simplifies the computations since the size of
a, = 2is O(p'/?) by the “Riemann Hypothesis”.

(2) We do not have to compute the order of all the points of E(F ) in order to
determine the group structure. If FIN., we only need to know at most the number of
points of order not larger than I/, (j = [i/2]); this simply means that we have to iter-
ate the group operation for all the points of E(F,) at most V=1, (j = [if2]), times.
The number of operations involved for every point is O(7) = O(pl/ 2), and since N, =
p —a, + 1 = O(p), we get that the total number of operations involved in computing
the group structure of E(F,) is at most O(p*/?).

(3) When two elliptic curves E; and E, are connected by an isogeny of degree d,
the two groups £ l(FI,) and E2(Fp) are the same except for the /-component for each
prime /ld. As an example, we consider the case of the two elliptic curves

E;:y?-y=x3-x2 and E,:y?+y=x3-x>-10x - 20.
These are the curves X, (11) and X,(11), respectively, in the notation of Ogg [9] which
in fact are connected by an isogeny of degree 5. This leads to the following observa-
tions:
(i) The groups E(F,) and E,(F,) are the same, except for the 5-component.

(ii) If p # mod (5), then the 5-component of both is cyclic and so the two
groups are the same.

(iii) Using Kummer Theory, Ogg [9] shows that all 25 points on E, of order
dividing 5 are rational over the cyclotomic field Q(e?>™*/®), and for p =1 mod (5) the
group E,(F,) is not cyclic.

In Table 2 we have given the structure of E, (Fp) from which we can easily com-
pute the group E2(Fp) using the remarks above.

Notation. In the subsequent tables the primary decomposition of a group will be
written for simplicity in the form (m,, m,m, . . . , m;) which stands for

@/m,Z) ® Z/myZ) & - - - ® (Z)m, 2).

4. Numerical Results.

4.1. Computations were carried out for six elliptic curves whose equations, j
invariants, conductors V and discriminants A are given below. These curves were taken
from Serre’s article [10] where the Galois properties of their fields of /-division points
are studied:

TABLE A
Elliptic
curve Equation J-invariant Conductor  Discriminant
E, y-y=x>-x? -212/11 11 -11
E, y*4+y=x*-x*-10x-20 -2'2-313/11° 11 -11%
Ey Y4+xy=x+x?-2x-7 -112 112 -11°
E, y+y=x3+x? -212/43 43 —43
E; y+xy+y=x*-x -58/22 -7 2-7 =227
Eg y*+y=x’-x 213 - 3337 37 37

The original computations were carried out for primes in the range from 2 to
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5000. Table 1 records the traces of the Frobenius endomorphism a,, for the above
curves for primes in the range 2 to 2000. The results we obtained for £, were compared
with those given by Shimura in [11] and are not included here. Curves E; and E, are
isogenous and thus have the same a, (Vélu [12]).

Tables 2, 3, 4 and 5 give the prime p and the primary decomposition (notation:
PD) of E(F,); the order N, = Card E(F,) can easily be computed from this data. In
Table 2 the results for £, are presented and from these we can easily compute Ez(Fp)
using the remarks at the end of Section 3. Each table goes up to 500 and presents
some additional primes.

As is well known, the curve £, has a rational point of order 5 and hence 5|V,
for all p # 11. Similarly E5 has a rational point of order 6 and hence 6|V, except for
p=2andp=17.

The computations suggest that the reduction of the same curve for various primes p
may lead to the same order Np but to nonisomorphic groups. Below we give several examples:

TasLE B
Curve Prime N, E(Fp) Curve Prime N, EF,)
E, 557 560 (16,5,7) E, 719 712 (2,4,89)
E, 599 560 (2,8,5,7) E, 721 712 (8,89)
E, 1021 1000 (2,4,5,25) E, 1579 1620 (2,2,3,27,5)
E, 1031 1000 (8, 5, 25) E, 1667 1620 (2,2,81,5)
E, 967 1000 (8, 125) E 1301 1372 (8, 3,53)

E, 4091 4180 (4,5,11,19) E, 1307 1372 (2,4,3,53)

E, 4201 4180 (2,2,5,11.19)
Other exampies may be found in the tables below.

An interesting observation that was made for the curve E| of conductor 11 and

E; of conductor 112 is that 3|Card E 1(Fp) if and only if 3|Card E3(F,). Also, the
3-primary component of E, (Fp) splits if and only if the 3-primary component of
E3(Fp) splits. These observations can be checked in Tables 2 and 3. Below we give
examples of the simultaneous splitting.

TABLE C
P Np El(Fp) Np E3(Fp)
337 360 (8,3,3,5) 351 (3,9,13)
523 540 (4,3,9,5) 540 (4,3,9,5)

1087 1080 (2,4,3,9,5) 1134 (2,3,27,7)
2437 2520 (8,3,3,5,7) 2520 (2,4,3,3,5,7)
2719 2790 (2,3,3,5,31) 2664 (8,3,3,37)
2749 2700 (4,3,9,25) 2673 (3,81, 11)
3331 3375 (3,9,5,25) 3312 (16,3, 3, 23)
3469 3555 (3,3,5,79) 3429 (3,9, 127)
3709 3690 (2,3,3,5,41) 3753 (3,9, 139)
4003 4050 (2,3,27,25) 3960 (8,3,3,5,11)
4483 4590 (2,3,9,5,17) 4500 (4,3, 3,125)
4801 4725 (3,9,5,5,7) 4779 (3,27, 59)

" The above are all the examples that appear in the range up to 4963.
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TABLE 1. Traces of Frobenius

2 -2 1 -2 = 2
3 -1 2 2 .2 -3
5 1 1 -4 0o -2
7 -2 -2 0 »
n o+ * 3 0 5
13 4 1 -5 -4 -2
177 -2 -5 -3 6 0
19 0 6 -2 2 0
23 A 2 A 0 2
29 o 9 -6 -6 6
31 7 I T
37 3 -3 (o] 2 *
[51 -8 -5 5 6 -9
43 -6 0 * 8 2
47 8 2 8 .32 -9
2 e 32 £ %
61 12 6 2 8 -8
67 -7 2 -3 ] 8
71 -3 12 2 0 9
73 L] -2 2 2 -1
g -12 -12 -8 2 i
- 1 -6 -15
89 15 -9 .E -6 i
97 -7 -13 7 -10 P
101 2 210 -9 0 3
103 -16 8 1 -4 18
107 18 6 -12 12 -12
109 10 -11 é 2 16
113 g -9 -20 6 -18
127 -16 1 -16 1
131 -18 0 8 18 -12
137 -7 -10 6 18 -6
139 10 -2 19 14 4
159  -10 17 12 -18 -5
Bl 2 16 -20 8 16
17 -7 2 210 -4 23
163 4 -2 1% -16 -18
167  -12 12 -9 -12 -12
173 -6 6 6 -12 g
17 =15 24 20 -12 1
181 7 1 10 20 5
191 17 8 -16 24 -4
193 4 =5 3 1+ -26
197 -2 -11 2 -18 3
g? o 24 14 20 2
12 12 2 -4 13
23 1 -20 -28 8 -17
21 1 24 -4 18 -16
229 15 9 -15 -4 7
233 2k 21 6 -6 6
229 30 6 16 28 -6
21 L 22 12 -10 1%
251 23 -2 . =23 -8 -2
27 -2 19 -2f 18 )
223 14 -22 -18 0 19
269 10 1 -25 12 -6
o -28 20 23 -16 -31
ar -2 1 -3 -10 12
2B -8 6 19 -6 12
203 I 28 21 -22 §
293 2u 9 26 24 -2
X1 8 22 7 2 -7
1 12 2h 15 24 0
13 2 23 22 -10 22
3T 13 -2 9 6 22
231 7 20 -2 8 -2
337 -22 213 -3 14 -25
45 28 28 28 -2v -10
2 30 27 14 -28 6
32 2 9 31 18 8
29 -20 -2 19 24 5
P -7 - 32 8 B
7 -26 22 32 14 -19

I 957
P E,,E, Ey E) Es Eg
-5 -32 11 -16 15
; % -1 20 32 36 20
389 -15 =3 6 18 4
397 -2 13 -6 20 -5
2 & o4 bk
409 -30 21 -
ulg 20 2 -28 6 7
421 22 13 -10 =10 =-24
431 -18 12 =21 28 =30
433 -11 19 -12 -3k 9
439 40 22 17 8 28
3 -1l -20 -4 a2 1
-hug 35 -13 30 18 36
y57 =12 39 -18 -10 18
nel 12 33 30 12 30
363 -11 -20 4 32 =22
67 -27 12 6 6 -2
479 20 -16 21 =36 14
487 23 2 36 -16 -24
t01 -8 -2 -6 -12 -238
%99 29 8 -3 - 12
503 -26 -33 6 0 16
509 15 -2 215 36 =31
521 -3 30 14 6 -33
523 -16 -16 12 2 -22
5481 -8 34 1 38 20
5h7 8 -16 -29 8 8
2ot 53 %3
' v 37 -
569 o} 6 7 6 -2
571 -23 22  -1h 32 7
517 33 -21  -20 2 0
587 8 =14 2 =42 =32
593 i 11 -16 - -5
599 L0 30 -1 -2k 1
601 2 -13 -4 26 -22
607 -22 -10 -4 320 =32
613 -16 17 -18 2 15
617 18 -9 =21 6 17
619 -25 2 36 26 -1
631 7 -14 6 -16 -28
o1 33 -9 12 -18 -1
643 29 -10 -36 1+ 14
o7 -7 20 -2 -12 -8
053 -i1 14 -1d 18 -24
€59 10 22 .19 -2 -15
€61 37 13 31 -4 -28
673 1k -10 v 26 271
677 -42 -27 3 <12 -1l
683 156 2 29 -12 18
691 17 20 40 -W6 =20
701 2 17 -2 18 -12
709 =25 =10 -1 -U6 40
719 15 30 8 12 39
727 3 =42 16 Iy 16
733 =36 9 32 -=h0 7
739 50 .10 -10 =16 -9
743 N -38 -2k 26 21
751 -23 -20 6 -4 25
757 -22 53 28 2 =50
761 12 =21 20 -18 =35
769 20 11 -42 1 26
773 -6 -42 -y 24 -9
787 32 23 y -22 -5
797 53 210 k2 =12 52
809 0 6 26 6 2
811 -38 28 14 2 47
821 22 -2 49 6 -u7
823 39 -24 -1 -4 -16
827 52 -10 -36 -36 22
829 25 -47 B 56 -4
839 -5 46 .40 12 44
853 14 17 =29 W 26
857 8 -22 .10 -18 -u8
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TABLE 1 (Continued)

E{,E, Es E), Eg Eg p E,,E, Ey
-15 24 32 14 -20 1433 54 -9
2k 54 6 -2h -2k 1439 0 42
-12 -27 41 =22 50 1447 28 -38
=43 35 37 =54 -14 1451 52 22
[l -20 31 20 48 1453 271 13
-22 -h6 22 -36 25 1459  -20 64
-12 12 b7 Ly 52 1471 22 28
12 24 22 48 26 1481 32 -13
10 28 -h9 56  -58 1483 kg 6k
-30 21 -6 6 18 1437 58 3h
8 23 32 2 37 1489 -15 30
42 =27 33 =24 -10 1493 -36 -27
=27 -2 33 24 12 1499 55 -20
2 31 22 -54 61 1511 37 52
-32 22 37 32 -14 1523 -4l 34
b7 2 -13 -6 -8 1531 32 56
-27 -57 34 -6 28 1543 -36 24
39 =36 -24 36 9 1549  -15 9
-8 -20 2  -16 -18 1553 -56 3]
38 53 U 8 k2 1559  -60 6
-10 -hg  -18 -3 -4y 1567 -52 -10
39 -42 22 -3 36 1571 -28 20
-10 -46  -30 36 46 1579 =30 6
22 -2 =14 =l -62 1583 34 -14
32 50 46 0 -4 1597 -32 3y
-16 11 13 26 3 1601 2 -49
5 -10 3k -4 -59 1607 33 2k
-55 -25 6 -30 -4 1609  -10 35
2 -16  -60 by -16 1613 -6 9
-13 -43  -k0o  -30 -62 1619 -20 -32
4y 20 12 -16 7 1621 22 -b7
-20 1 32 g -30 1627 78 0
8 -46 20 8 12 1637 33 9
-58 -10 40 30 30 1657 2 2
-51 30 <46 22 -36 1663 n 3y
-h2 29 12 -6 36 1667 48 6
-51 L 1669 50 17
-30 42 0 36 -35 1693 -6 66
48 -27 L =34 33 1697 -k2 29
24 24 60 -46 -22 1699 40 34
50 -13 =26 50 50 1709 -i5 30
2 -46 =30 -12 -25 1721 -3 78
=31 -46 21 2 18 1723 -46 -6
24 -38 32 -60 -36 1733 -6 6
-3 12 -52 20 -22 1741 17 =31
-18 -3 -ho 60 57 1747 =57 -2k
-12 66 -48 12 -33 1753 3k 19
-21 -21 32 66 -11 1759 ko -22
2 23 =55 14 Lk 1777 8 -82
-2 57 - -6 -4 1787 =57 12
14 56 -6 -2h 30 1789 10 -35
60 6 > 30 -8 1801 52 -38
-18 0 -26 -28 -19 1811 12 h2
18 45 -20 =4O  -42 1823 -56 28
-0 -5 =50 26 -13 1831 -3 -76
-25 56  -12 18 8 1847 -52 22
-47 46 -20 2 24 1861 62 -3
-15 2l 20 20 64 1867 28 -38
-36 b2 237 0 -36 1871 -3 -h2
0 -21 2 30 48 1873 -6 -42
-8 -14 -9 -58 35 1877 18 42
48 =33 =38 -34 38 1879 -35 -2
27 57 39 -48 30 1889 70 -5
39 12 39 8 56 1901 77 -79
28 A SR 1907 52 -58
-30 -00 -18 -24 -4 1913 -36 -33
47 35 7 62 35 1931 -18 72
63 -46 66 32 -2 1933 54 6
12 6 0 -18 66 19h9 Lo -10
=72 =42 -12 -24 62 1951 -23 -1k
39 9 -5 30 -2 973 79 <47
-98 61 52 -22 63 1979 30 0
60 -5 32 iTe] -25 1987 22 86
-1 -9 42 18 -1 1993 -66 -54

29 -58 29 56 -34 1997 -72 27
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TABLE 2. E’l:y2 -y =x3-x2

P PD P PD P PD

2 5 167 4,9,5 383 5,7,11)

3 5) 173 4,9,5 389 81,5)

5 5 179 3,5,1%) 397 2,8,25

7 2,5 181 25 ,7; 4o1 2,8,25

13 2,5 191 25,7 ko9 8,5,11
17 4,5 193 2,5,19) 419 2,8,25
19 4,5 197 8,25) 4ol 2,8,25
23 25) 199 2,4,25) 431 2,9,25
29 2,3,5) 211 8,253 433 5,89)

31 25) 223 5,41 439 16,25)
37 5,7) 227 2,3,5,7) 443 5,7,13)
41 2,25; 229 5,43) 4hg 5,832‘

43 2,25 233 2,3,5,7) 457 2,5, 7;
47 2,4,5) 239 2,27,5) 461 2,9,25
53 2,2,3,5) 241 2,125; 463 25,19)
59 5,11) 251 25,11 467 9,5,11

61 2,25 257 2,2,5,13) 479 4,5,23
67 3,25 263 2,125) 487 3,5,31
71 3,25 269 2,2,5,13) 4ol 4, 125
73 2,5,7 271 4,3,25) 499 2,16,3,5)
79 2)9)5 277 8,5’7) * % %

83 2,9,5 281 4,3,25)

89 3,25) 283 8,5,7) 569 2,3,5,19)
97 3,5,73 293 2,27,53 809 2,81,53
101 4,5,5 307 4,3,25 1289 2,3,5, 3;
103 2,4,3,5) 311 2,2,3,25) 1439 2,16,9,5
107 2,9,5) 313 9,5,7) 2539 2,2,5,127)
109 4,25) 317 5,61) 3319 8,5,83
113 3,5,7; 331 25,13) 3559 8,5,89
127 8,3,5 337 8,3,3,5) 3919 2,8,5,49)
131 2,3,25) 347 64,5;
137 5,29) 349 64,5
139 2,5,13) 353 3,125)
149 32,5) 359 4,5,19
151 2,3,5,5) 367 5,7,11
157 3,5,11; 373 16,25) -
163 2,16,5 379 5.7,11)

4.3. Densities. For a fixed elliptic curve E defined over the rationals and a fixed
prime /, a natural question to ask is, what is the set of primes p such that / divides
Card E(F,). We will denote this set by P(E). We also denote by Sp,(E) the set of
primes p such that l-primary part splits. If £ has complex multiplications, then the
splitting field of the /-division equation is abelian over the corresponding imaginary qua-
dratic field;and hence‘P,(E) can be characterized by congruences. The elliptic curves
investigated here have no complex multiplication, and thus the splitting field of the
I-division equation is not solvable in general, and P/(E) cannot be characterized by con-
gruences; however, the Cebotarev Density Theorem can be applied in this situation to
obtain that P/(E) has density. The actual theoretical computation of the density of
P(E) is done by using Serre’s results concerning the I-division fields associated with E.
In the case / = 2, we obtain that the Dirichlet Density of P,(E,) is 2/3. Furthermore
we also get that the density of primes for which the 2-primary component of £ l(Fp)
splits 1/6 (see Heilbronn, p. 228 or Tate-Serre, p. 354 in [6]). A more detailed inves-
tigation will appear elsewhere.

The frequences of primes p less than 5000 for which

p EP(E) or p € Sp(E)

for the curves studied here are given in the following table.
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TaBLE D
(Relative Frequencies)

2-component 3w 3-component s E(F,)

Curve 2IN, splits p splits p WV

Np prime

~

cyclic

E, 0.67 0.16 0.44 0.018 1.0 0.17 0.62 0
E, 0.67 0.16 0.44 0.018 1.0 0.17 0.62 0
Ey; 0.66 0.16 0.44 0.016 024 015 082 0.063
E, 0.66 0.15 0.42 0.010 022 0.12 082 007
E; 1.00 0.49 1.00 0.156 023 0.16 043 0
E, 0.67 0.16 0.45 0.017 024 0.14 0.83 0.084

The last two columns correspond to the frequencies of primes for which E(F,) is
cyclic.

4.4, Theorems and Conjectures. The above discussion of the numerical results and
the tables suggest a few conjectures, some of which we could prove and others which are
still open. In Table C we gave some examples of prime pairs (p, q) such that Card E(F,)
= card E(F,). In the computations we found many other occurrences of such pairs
which suggest that the number of these pairs is infinite. We also found many triplets.

TaBLE3. y2 +xy =x3 +x2-2x -7

p PD ho PD p PD
2 2 167 4,3,13) 383 2’4,7,13)
3 2 173 2,4,3,7) 389 3,131)
5 5 179 4,3,13 397 5,7,11)
7 2,5) 181 181) 401 379;
13 13; 191 8,23) 409 131
17 23 193 199) 419 2,11,19)
19 2,7) 197 11,19 421 409)
23 2,11) 199 16,11 433 4,3,5,7)
29 3,7) 211 8,25 433 ,83)
31 2,17) 223 4,61 439 2,11,19)
37 hl; 227 4,9,7) 443 16,29
41 47 229 (13,17) 449 63;
43 ’t,ll; 233 3,5,173 457 419
47 2,23 239 2,9,13 461 3,11,13)
53 9,5) 241 2,2,5,11) 463 4,121)
59 1,1%) 251 2,12 467 8,3,19)
61 2,4,7) 257 239) 479 16,31
o7 2,3,11) 263 2,11,13) 487 2,243
71 4,3,5 269 269) 491 2,13,19)
73 2,2,9 271 4,9,7) 499 4,3,41)
79 2,9,5 277 277) *oxox
83 2,3,13) 281 2,2,3,23)
89 9,11; 283 256) 1069 1069
97 3,37 293 3,5,19) 1231 17,7,113
101 2,8,7) 307 2,3,5,11) 1627 4,11,37
103 32,3) 311 32,9g 1979 4,9,5,11)
107 2,3,17) 313 3,97 2213 2213
109 151§ 317 2,32,5) 2389 2389
11 3,41; 331 32,11) 2557 2557
127 16,9 337 3,9,13) 3167 32,9,11)
131 4 ,3,113 3h7 64,5) 3613 361
g; g,$i37 %’;g %Big% 3877 3877
LN
23,7 7 2,191
157 2,2,3,13) 373 2,16,11)
163 2,83) 379 4,103)
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TABLE 4. E;: y2 +y = x3 + x2

P PD P PD P PD
2 5) 167 3,59) 383 32,11
3 2,3? 173 2,4,5,7) 389 128,3
5 2,5 179 3252& 397 2,2,101)

7 8 181 2,2,43) 401 397)

11 9 191 16,13) 409 2,7,31)

13 19) 193 191) 419 64,

17 3,7) 197 2,2,49 421 16,27

19 2,11) 199 2,3,31 431 3,151

23 25) 211 2,3,5,7) 433 2,223

29 4,9) 223 4,9,7) 439 9,47)

31 3,113 227 8,293 4143 2,32,7)

37 2,19 229 5,49 449 4,3,5,7)

i 37) 233 4,3,19 457 4,7,17

47 2,2,11) 239 2,16,7 461 2,8,2

53 59?‘ 241 2,127) 463 4,5,23

59 2, ,93 251 5,5,11 467 2,3,7,11)

61 4,3,5 257 2,3,47 479 27,17)

67 71) 263 2,3,47 4387 2,2,113)

71 2,5,7; 269 5,59; 491 2,3,83)

73 8,3,3 27l 3,83 499 4,127)

79 2,4,11) 277 2,5,31) * o

83 3,23 281 263

89 2,47 283 263 541 541)

97 7,13 293 4,16,5) 1109 2,3,5,37)
101 3,37 307 9,5,7 1361 2,3,227)
103 103) 311 27,11 1429 1429)
lo7 2,4,3,5) 313 4,73) 1531 4,383)
109 103) 317 3,103 1657 1657)

113 2,67) 331 2,179 2069 2,9,5,23)
127 127) 337 11,31 2087 2087)

131 4,31) 347 64,5) 2281 2,7,163)
137 4,3,11) 349 16,3,7 2543 2,8,3,53)
139 121) 353 5,7,11 3011 2,2,3,251)
149 2,3,23) 359 11,31) 3733 3733)

151 {k,53) 367 2,8,25;

157 8,3,7) 373 2,9,19
163 2,3,25) 379 9,41)

Given an elliptic curve E, it might be of interest to know the density of rational
integers n such that n = card E(Fp). A related question is that of the density of in-
tegers n which can be traces of Frobenius for a given elliptic curve. The last ¢olumn
of Table D shows that except for trivial reasons E(F,) is a cyclic group of prime order
for a substantial number of primes p. Nevertheless, this frequency seems to tend to
zero. For an interesting discussion of a related problem, see Mazur [8].

Another question that arises is that of characterizing which finite abelian groups
can be realized as E(Fp) for some E and some p. Clearly not all finite abelian groups
can be so realized, and it would be of interest to know if the obvious necessary condi-
tion that each primary part should have rank at most two is also sufficient.

The computations suggest that the number of distinct prime divisors of card E(F,)
may be large. In this situation we can prove the following:

THEOREM. We have

lim Sup w(®V,) = e,
4

where w(n) = number of distinct prime divisors of n.
The proof of this theorem is given in [2].
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TABLE 5. Eg:y2 +xy +y =x3-x

p_ P P PD p___ P
2,3 167 4,9,5) 383 4,3,29)

g 2,33 173 2,3,31; 389 2,2,3,31)
11 2,2,3) 179 2,32,3 397 2,27,7)
13 2,9 181 2,81) 401 2,2,3,5,7)
17 4,3 191 2,M,3,73 409 4,9,11
19 2,9 193 2,2,9,5 419 2,9,23
23 2,4,3 197 2,4,27) 421 2,8,27
29 2,2,9 199 “,3,3,53 431 2,4,3,17)
21 4,9) 211 2,4,3,9 433 “,9,13g
37 2,2,9) 223 8,3,9) 439 16,3,9
ul )”79) 227 2)3)5’7) uu} 2,&,3,19)
43 2,2,9 229 2,3,13) 4ig (2,8,27)
47 4,3,5 233 2,8,3,5) 457 2,2,9,13)
53 2,8,3 239 2,4,27) 461 2,9,25
59 2,3,11) 2k 4,3,3,7) 463 2,8,27
61 2,3,9 251 2;27,53 L67 2,3,79
67 2,4,9 257 16,3,5 479 4,3,43
71 2,4,9 263 2,4,3,11) 487 2,4,9,7

3 8,9) 269 2,3,47 4ol 2,4,9,7
79 2,4,9 271 32,3,3 499 2,4,9,7
33 2,9,5; g 7 g,ig,g * *

32:3 1 ’ ’ 8’ s
101 2)3)17) 293 2’2 )5 1283 2,2’3’107)
103 ‘)4’27) 307 299’17 1487 16’3’31)
107 2,16,3 311 16,3,7 1511 8,27.7)
109 2,2,27 313 4,815 1285 2’891
113 (2,27 317 2,4,5,13) 12 25713
e 2.8.9) 33 2280 2039 2,4,3,5,17)
131 2,3)19) 337 2’2r81 2087 2’4,9’29
137 2:4’3’5) 3“7 2:2,3,31) 2543 2,8,3’53
139 2,9’7) 3’49 2,3’997) 2843 2,2’9’79
149 2’)“y3:7 353 1 ’3,72 2903 8’3,121
151 (2,83,3 359 2,60.3)- %% 7
127 2,3,27) §7§ 2.3,3)5)

2’ ’ ’ et d E ’

12 2,2:2:2,5) 379 2,2,9,11)

The discussion in the preceding paragraphs about the densities leads to the follow-
ing result. Put:

m(x) = # of primes less than x,

D((x) = # {p < x: p prime, I|card E(F,)},

Djx) = # {p <x: p € SpE)},

Dyx)=# {p <x: p=-1 mod ! and a, = 0 mod(})}.
THEOREM. We have for almost all primes 1

Jim DX/ = G, lim D)fn) =G, lim Dx)ine) = G,
where
G>C=2/(-1)*I+1) and {,>0.

The proof of this theorem will appear elsewhere.

For an elliptic curve E, E(Fp) is cyclic if each of its primary parts is of rank one.
Therefore, we conjecture ihat the set of primes for which E(Fp) is cyclic has a density
given by C(E) = II}(1 — C;), where * means that some correction should be made for
the exceptional primes in the preceding theorem which is also the same as the set of
exceptional primes in Serre’s Theorem. Clearly C(E) could be zero for trivial reasons
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TABLE 6. Eg: y2 +y =x3-x

ho PD P PD s PD
2 5 167 4,9,5) 383 4,7,13)
3 7 173 3,5,11) 389 2,193
5 8 179 2,81 397 13,31
7 9 181 3,59 501 1283
11 17 191 4,49 409 2,3,5,13)
13 16 193 4,5,11 419 7,59)
17 2,9 197 3,5,13 421 2,223
19 4,5; 199 2,9,11 431 2,3,7,11)
23 2,11) 211 9,25) 433 25,17
29 8,3 223 241) 439 1,103
31 4,9 227 4,61) 443 443)
41 3,17) 229 223) 449 2,9,23;
43 2,3,7) 233 2,2,3,19) 457 8,5,11
47 3,19) 239 2,3,11 461 16,27
53 53) 241 4,3,19 463 2,243
59 4,13) 251 2,127) 467 2,5,47)
61 2,5,7) 257 2,3,43) 479 2,233)
67 2,2,3,5) 263 5,49) 487 512)
71 9,7) 269 2,2,3,23) 491 2,4,5,13)
73 3,25 271 3,101) 499 8,61)
79 4,19 277 2,7,193 % % %
83 9,11 281 2,27,5
89 2,43 283 8,5,7) 577 2,289)
97 2,47 293 2,4,37) 599 99
101 9,11 307 25,13% 2213 4,3,11,17)
103 2,43 311 8,3,13) 3511 2,4,439)
107 2,4,3,5) 313 4,73) 3989 39893
109 2,9,7) 317 2,4,37) 3541 3643
113 4,3,11) 331 2,167
127 127) 337 3,121
131 16,9) 3h7 2,179
137 2,8,9) 349 2,4,43)
139 2,4,17) 353 2,173g
149 5,31) 359 3,125
151 2,4,17) 367 2,4,9,5)
157 27,5) 373 3,131)
163 2,7,13) 379 5,73)

as happens, for example, for some of the modular curves, but the conjecture still makes
sense once we divide E by a suitable subgroup; for example, we can ask for the density
of primes p such that the group (£, /H)(F,) is cyclic, where H is the subgroup of order
5 generated by (0, 0).
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