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Higher Order Compact Implicit Schemes 
for the Wave Equation * 

By Melvyn Ciment and Stephen H. Leventhal** 

Abstract. Higher order finite-difference techniques have associated large star systems 

which engender complications near the boundary. In the numerical solution of hyper- 

bolic equations, such boundary conditions require careful treatment since errors or 

instabilities generated there will in general pollute the entire calculation. To circum- 

vent this difficulty, we use a class of implicit schemes suggested by H.-O. Kreiss, 

which achieves the highest order of accuracy possible on the smallest (most compact) 

mesh system. Here we develop a scheme which approximates the wave equation, 

Utt = a(x, y, t)Uxx + b(x, y, t)Uyy, 

with fourth order accuracy in space and time. After an appropriate factorization, 

the resulting set of equations are tridiagonal and hence easily solved. The tridiag- 

onal nature also indicates that the boundary conditions do not create special dif- 

fi'culties. Numerical experiments demonstrate the expected order of convergence 

and fulfill our expectations on the treatment of boundary conditions. An exper- 

imental computation also demonstrates that our results hold on L-shaped domains. 

I. Introduction. The design of higher order accurate finite-difference methods 

for hyperbolic equations is complicated by the need to provide stable schemes which 

are efficient with respect to operation count and which do not experience difficulties 

near the boundaries. This last point is especially important to bear in mind when one 

employs higher order schemes, which characteristically have a large number of mesh 

points in the associated star of each point. For the second order wave equation, most 

of the work to date has been involved with second order methods as these will not 

require fictitious boundary points. Second order methods include the classical second 

order explicit method [2], and the implicit schemes of von Neumann and Lees [3]. 

These implicit methods were developed because of their favorable stability condition. 

Lees [3] devised an alternating direction (ADI) type modification of von Neumann's 

method which allows one to solve multi-dimensional problems by solving tridiagonal 

equations. 
In this paper, we describe a fourth order implicit scheme. Aside from the higher 

order accuracy, the most important features of our method is the fact that we solve 
only tridiagonal equations and that fictitious points are not needed at each time step 

along the boundary. Our scheme is a modification of a class of implicit difference 
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approximations suggested by Kreiss which achieve highest order of accuracy possible on 
the smallest (most compact) mesh system. Here we treat the wave equation 

Utt = a(x, y, t)Uxx + b(x, y, t)Uyy 

with fourth order accuracy in space and time on a star which yields tridiagonal equa- 
tions. Our method closely resembles the work of McKee [4] who claimed to have 
achieved a fourth order space and time ADI type scheme for the above equation. How- 
ever, the published version of McKee [4] contains errors which make his equations 
only second order for time dependent coefficients. McKee has personally communi- 
cated his corrected equations to us and plans to publish an erratum. Before his cor- 
rected equations were known to us, we had already provided a fourth order scheme. 
Our derivation in the time-dependent case resulted in an algorithm somewhat more 
complicated than McKee's. However, we are able to achieve an ADI factorization and 
arrange the remaining computations in such a way that ultimately one only needs 13 
operations (multiply or divide) per grid point in solving the implicit equations at each 
time step. Moreover, McKee reports that his method is unstable for time-dependent 
coefficients, whereas our method appears to be stable in all cases tested and numb 
results are presented to bear this out. 

Our scheme is an ADI type factorization which requires no commutation and 
thus should not be expected to suffer from the defects associated with some ADI 
schemes which are limited to rectangular regions as in the elliptic case [6]. We present 
a computation on an L-shaped domain which shows that our method can be extended 
to more general domains and retain fourth order convergence. 

II. Derivation of the Algorithm. A fourth order finite-difference approximation 
to a second derivative UXX can be obtained by using the five-point explicit difference 
formula 

(2.1) (I h 2 U= + 0(h4), 

where 2Ui Uj+ - 2Uj + Uj_L1 represents the usual second central difference and 
h is the mesh size in the x direction. 

Consider approximating the wave equation Utt = Uxx, using a fourth order ex- 
plicit scheme in its most obvious form. This would involve differencing over five time 
levels and five spatial points; namely, let Un7 denote an approximation to U(xj, ta), then 

(I 2 ) 12) h2 i' 

where xi jh and tn = nk and where h and k are the spatial and temporal grids, re- 

spectively. Aside from the fact that this scheme is unconditionally unstable, there still 
would be a problem of providing a fictitious point near the boundary. In this paper 
we follow a suggestion of Kreiss, cited in Orszag [5], as to how to construct higher or- 
der compact difference approximations which reduces the number of fictitious points 
needed near the boundary. They note that by using a Neumann series expansion that 
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(2.2) (I j) =(Ij--2) + 0(h4). 

Substituting (2.2) into (2.1) we obtain 

52-1 82 
(2.3) + 12 2 = UXX + 0(h4). 

The approximation to Uxx is obtained by solving 

(2.4) + ) UXX = h2 U_ + 0(h4). 

Since (2.4) is a tridiagonal system the problem of fictitious points for U, does not 
arise. However, one must have boundary values for UXX. How this is handled depends 
on the analytical circumstances of the problem and will be discussed for our specific 

case in Section IV. 
Let us now formally apply the above implicit difference approximations to the 

derivatives occurring in the following initial boundary value problem for the two-di- 

mensional wave equation 

Utt = a(x, y, t)Uxx + b(x, y, t)UYY in Q2, 

(2.5) 
U(x, y, 0) = 

f(x,yy)} E 2 (2.5) 
~~~Ut(x, y, 0) g(Ax, Y) 

,(,ye , 

U(x, y, t) = h(x, y, t), (x, y)E a2, 

where a(x, y, t) > 0, b(x, y, t) > 0, Q is a rectangle in R2and U2 is its boundary. We 

divide Q2 x [0, T] into a rectangular mesh with mesh spacings h, k in space and time, 

respectively. Direct application of (2.3) yields 

82 82 5 

(2.6) Q'-1 U~ =a Q-1 -xUn +b7 Q Y Un t k2 m I,m x m + h2 Qm 

where the j, m, and n indices represent displacements in x, y, and t directions, respectively, 

and Qx, Qy, and Qt are defined as in (2.2). 
The approximation represented by (2.6) has truncation error O(h4 + k4). How- 

ever, (2.6) as it stands, seems to suggest that a large number of operations are needed to 

solve the implicit equations. Clearly, if one could factor the difference operators into the 

separate spatial variables, then it would only be necessary to solve tridiagonal equations. 

Here we provide a simple stable ADI type factorization (of a modified equation (2.6)) 

which remains tridiagonally implicit in its one-dimensional factors. It appears that McKee's 

corrected equations result in a factored explicit scheme which, unfortunately, is unstable 
for time-dependent coefficients (4]. Below, we give a simple factorization which is correct 

for time-dependent coefficients. Modify (2.6) in the following manner: 
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k2 rm '2mQ XU2 (2.7) Q71t I Um = mQx h2 
x 

m + bmQ27YUL'm 

(2.7) 
52k4 i~ 52 s21 

Q_ O Q-1 
x b~ Q -~ I'UM. 144 t k2 'm x h2 ib my h2 j,m2 

The term added on in (2.7) is an O(k4) term; therefore, the accuracy of the method 
is unchanged. 

Multiplying (2.7) by Qt we obtain 

(s2 [ 
2 bjnm Qy--2 15 UP;m 

(2.8) 

= Km2[a7mQ1x +b QI Sy]Ui'm 

or 

r 
a+1Q 0+1 1p+ 

L 12 j,1m x xJ 12 bj'm Q1SyjI'm 

(2.9) [ 1 [Ib7 ,mQ;1 iJUim 

-[I _ Xa2 Q-1 aS2] [-2 bm1 Qy 152 Un- 

+ 2 [am Q-152 + b Q-152] Un' I',m xx I'M 1-y yj'm' 

where X = k/h. 

The numerical implementation of (2.9) is discussed in Section IV. However, let us 
note the following: 

1. The left-hand side of (2.9) is a factorization into x and y differences which allows 
us to solve (2.9) by sweeping first in the x and then in the y directions. It will be seen 
that these sweeps only require the solution of tridiagonal systems. 

2. The intermediate boundary conditions necessary for the sweeps are easily ob- 
tained using the differential equation and the analytic representation of the difference 
formulas. 

3. The right-hand side of (2.9) is computed as a combination of the two previous 
right-hand sides, the previous intermediate step, and one tridiagonal sweep. 

4. The previous remarks are all easily seen to hold for the obvious generalization to 
three space dimensions. 

III. Stability Analysis. For completeness we include the stability analysis of (2.7) 
(see [1] .for case a = b = 1) for the case of constant coefficients a and b. That the scheme 

is stable for the case of nonconstant coefficients will be apparent from the numerical ex- 

amples in Section V. 
To analyze stability, one substitutes a solution of the form - pne'i0eim f into 

the difference equation (2.7). Observing that the implicit scheme is three-level in time, one 

obtains a quadratic in p 
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(3.1) 2 + - 2(rs + abX4) ? 10X2(ar + bs) + 1 0 
L (rs + X4ab) ? X2(ar + bs) J 

where r = (5 + cos b)/(1 - cos k), and s = (5 + cos 0)/(1 - cos 0). It is clear that for 

the above real polynomial, since the product of the roots is one, that the necessary and 
sufficient condition for stability is that the discriminant be nonpositive. 

This leads to the condition 

(3.2) abX4 - 2X2(ar + bs) + rs > 0, 

on X and assures that IPI = 1. The above quadratic inequality on X2 holds for all 0 
and b if X2 is less than the smallest X2 root obtained by taking equality in (3.2). This 
implies that 

(3 .3) X,,2 S b- + s (r )2 rs + (s) 2 

If we set c = max(a, b), then one observes that this last inequality certainly still 
holds if one replaces a given a or b by c. Since the case when the three are all equal 
(a = b = c) is possible, it is thus necessary and sufficient for stability that 

r s I (3.4) r2 < - + s 
_.Ir 2 + rS + s2. 

Now by definition, 2 < r, s < . Inspection reveals that the minimum is assumed at 
(2, 2). Thus we have for stability 

cX2 < 4 - X1= 2(2 - ) 

or 

(3.5) -,- < ),1 = 2 - 1[3 -I 

IV. Numerical Implementation. The major features to be discussed in the num- 
erical implementation of (2.9) are the splitting of the left-hand side for the x and y 
sweeps, the computation of the right-hand side, the computation of intermediate bound- 
ary conditions, and the initialization of the procedure. 

Defining 

(4.1a) Zn,m = [I- 2bn+ 1Q1j un+1 

then (2.9) becomes 

(4.1wb) G-2 +1+ ihZne = G n+ 

wihere Gjnl is the right-hand side of (2.9). 
Dividing (4.1b) by a7'm' and then multiplying by Qx, the solving of (4.1b) re- 

duces to 

(4.2a) LQx I 1i 2 
2 ZJ 

i (Q + ) 

n+1 12 x z7A'm Q n + aj, m _J ~~~~~~~~~\ai m 
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which only requires the solution of a tridiagonal system for each m. 
Similarly, reduce (4.1a) to solving a tridiagonal system for each j by dividing by 

bn m 1and then multiplying by Qy to obtain 

(4.2b) QY 1 + 22 zn+1 Q m 
b0+ 12y i'm a + 

Note that the right-hand side of (2.9) is G + 1 Thus, 

Gn+i -2 Xa 0 Ql6 52lFI xbn Q162l Un G ml 2 12 al m x x 12 bjm y by]rm 

-[ -2al m lQx 16 2][ 2b, jI6]U, m 

+ X2 [an Q-j'6r + b7 mQ; 2]U7m 

2G1m m-G ' + X2 [an Q152 + b Q 12] Un 

Hence, the first two terms in Gn+ 1 are known from previous time steps and need not 

be computed. Also known from the previous time step is that 

(4.4) W, b7mQ;'6y inm =b(Ui7m Z7m)'2- 

Thus,it is only necessary to compute 

(4.5) 1, m x x in 

i.e., we solve the tridiagonal system, 

(4.6) QxV7m = bim 

for each m. 
From (4.2a), (4.3), (4.4), and (4.6) we see that the intermediate boundary con- 

ditions that must be computed are for Zn +1 and Vi . From (4.1b) and (4.5) it is 
clear that Zin 1 and Vi are respectively approximations to 

Z(x, y, t) U(x, y, t) - 12 b(x, y, t)Uyy + 0(k2h4) 

and 

V(x, y, t) -h2Uxx(x, y, t) + 0(h6). 

To solve for the Z7m and VFm values, it is sufficient to approximate UXX and UYY on 
the boundary up to fourth order of accuracy. 

On y = constant lines Uxx may be computed from (4.6); however, Uyy may not 
be computed. Similarly on x = constant lines Uxx is not computable and UYY may be 
computed by solving the tridiagonal system 

_ 2 

Uyy=Q7 h2 j,M' 
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However, on both these lines U may be computed. Therefore, on y = constant lines 

U is obtained from the formula 

U,, t = - a(x, y, t)Uxx)/b(x, y, t), 

and on x = cofistant lines Uxx is obtained from 

Uxx = (Utt - b(x, y, t)Uyy)/a(x, y, t). 

The above computation of,Uxx and Uyy on y = constant and x = constant lines re- 

quires the value of these functions at the corners. These corner values are obtained by 

using the fourth order explicit difference formula (2.1) and then a fourth order extrap- 

olation at the two fictitious points required in (2.1). Thus a fourth order approxima- 
tion at the corner of Uxx and Uyy requires six points. 

As initial conditions for this problem, we are given the value of U and Ut at t = 0. 

From these values there are many ways (e.g. Taylor series) to obtain a fourth order ap- 

proximation to U at t = At. Therefore, assume that U is known at t = 0 and t = At. 

The problem of initialization is the one of computing the right-hand side G 2 i.e., 

G. 
2 

2 [I-2 aIm Qx 12 [I-2 bl,Q tIy s, 

[ 12 "L,m Qx s][ 12 b? y 1]U?m 
(4.7) x2[I 2bm ;6j m 

+ X2 [alm Q 162 + bmQ;162 i Ulm 

It is necessary to compute the last term of (4.7) on every time step, so the pro- 

cedure for doing this is the same as described above in (4.4)-(4.6). The first and sec- 

ond terms, G! and Go are computed in the same fashion, thus it is only necessary 

to discuss the first term G! This term is computed in the opposite way to (4.1), i.e., 

U1 is known and we want to compute 

(4.8) Gi m[I - aimQx4 E' 2 - 2bbimQ; 72JUm 

Noting the definition of WV/r and Vaim, (4.4) and (4.5), we see that by computing 

these terms separately that 

(4.9) GIm IU'm 12 ,, m j, m 12 j1,m 144 l,mQx x Lm 

Thus we only have to compute (X4/144)aj'mQ 1W!m, which requires the solution 

of a tridiagonal system. The boundary conditions for this system are obtained by 

appealing to the corresponding analytical expression as was done previously for Z7m 

and Vflm above. For consistency one should use fourth order accurate boundary con- 

ditions; however, for convenience on the initial step, only second order accurate meth- 

ods were used. This did not change the order of accuracy of the method in the cal- 

culations we performed. 
Let us perform an operation (multiply and divide) count per time step for the 
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solving of (2.9). Let J and M be the number of x and y unknown grid points, respec- 
tively. For the computation of VFm there are M backsolves, each of which requires 
(see [2] ) 3J - 2 operations. Solving (4.2a) requires M decompositions and backsolves 
each of which takes 5J - 4 operations. Similarly, (4.2b) requires J(SM - 4) operations. 
Finally, the computation of the boundary conditions requires 2 backsolves with 3J - 2 
operations and 2 backsolves with 3M - 2 operations. Thus, the total number of opera- 
tions is 13J M + 2J -8. 

V. Numerical Examples. In this section we present three examples demonstrating 
the fourth order accuracy, the effectiveness, and the stability of the method. The first 
example was also presented by McKee [4]. We compare our results to his. However, 
we are unable to explain the different stability characteristics of the two methods. In 
the second example the solution grows exponentially with time; however, we shall see 
that the fourth order accuracy and the stability of the method are retained. Finally, 
the second example is repeated on an L-shaped domain. 

Example 5.1. Let Q2 be defined by [? S x, y S 1] and let us define the coef- 
ficients, initial conditions, and boundary conditions of (2.5) by 

a(x, y) = ?(I - sinx sin y), 

b(x, y) = cot2x - cotx siny cosx + sinx siny, 

f(X, y) = 0, 

g(x, y) = sin2x siny, 

h(x, y, t) = sin2x siny sin t on a2. 

The exact solution is 

u(x, y, t) =sin2x siny sint. 

The first experiment shows the O(h4 + k4) accuracy of the method. First the 
problem was solved with k = h/2 = .05 then with k = h/2 = .025. The fourth order 
accuracy predicts a factor sixteen decrease in the error. The results of this experiment 
showing the fourth order convergence are in Table 5.1. 

# TIME h k L2-ERROR L2-RATE MAX-ERROR MAX-RATE 
STEPS 

15 .1 .05 2.361129-09 41184 1.25968-08 42207 
30 .05 .025 1.359418-10 4 6.75579-10 

20 .1 .05 4.610927-09 1926590 4.4534 
40 .05 .025 1.870124-10 4 8.7666-10 

30 .1 .05 4.496657-09 43577 2.3732-08 4.5980 
60 .05 .025 2.193196-10 9.8161-10 

TABLE 5.1 
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In verifying the accuracy of (2.9) as compared to McKee's method, we see that for 
X = .5 and 200 time steps (i.e., h = .05, k = .025, T = 5) McKee had an absolute max- 
imum relative error of 2 x 10-8 while (2.9) had an absolute maximum relative error of 
3.4 x 10-9. 

McKee wams the user that his method has a possible weak instability and an ex- 

ponential instability when the coefficients depend on time. McKee does not indicate in 
what type of situations this occurs. For the example which we considered below, (2.9) 
does not seem to possess time-dependent instabilities. 

Example 5.2. Let Q2 be defined as above and let us define 

x2 y2 
a(x, y, t) = , b(x, y, t)= 

2(t + 5)2 2(t + 5) 2 

f(x, y) = e XY, g(x, y) = xye5XY, h(x, y, t) = exY(t+5) on a3. 

The exact solution to (2.5) with the above conditions is U(x, y, t) = exY(t+ 5). 
Similar experiments to those that were run in Example 5.1 were run for this 

problem to study the accuracy and stability. The results are in Table 5.2. However, 
due to the size of the solution, we are concerned with maximum relative error. 

# TIME h k L2-ERROR L2-RATE RELATIVE RELATIVE 
STEPS MAX-ERROR MAX-RATE 

10 .1 .06 5.904951-04 50130 6.13764-05 
20 .05 .03 1.828673-05 4.0087 1.5200-06 3.6767 
40 .025 .015 1.136046-06 1.1886-07 

TABLE 5.2 

Example 5.3. ADI type methods that require commutation of difference opera- 
tors have been limited to rectangular domains [6]. However, no commutation of oper- 

ators occurred in the derivation of (2.9), hence (2.9) is still fourth order on nonrectang- 
ular domains. In order to test our method in a region where the solution has large 
truncation error near the reentrant corner, we define Q2 as the L-shaped domain derived 

by taking the rectangle [1. S x, y S 1.5] and removing the rectangle [1.25 < x, y < 1.5]. 
Let us solve for the same solution as in Example 5.2. Table 5.3 shows that the fourth 

order accuracy still holds on the L-shaped region. 

# TIME h k L2-ERROR L2-RATE RELATIVE RELATIVE 
STEPS MAX-ERROR MAX-RATE 

100 .05 .03 1.37503+01 4.49 1.0267-03 6.49 
200 .025 .015 6.0967-01 3.92 1.1451-05 4.35 
400 .0125 .0075 4.0108-02 5.5963-07 

TABLE 5.3 
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VI. Conclusion and Remarks. The type of factorization given in (2.9) may be 

achieved also when the equation (2.5) contains lower order terms, i.e., 

(6.1) Utt = a(x, y, t)Uxx + b(x, y, t)UYY + c(x, y, t)Ux 

+ d(x, y, t)UY + e(x, y, t)U. 

As in Section II for second derivatives it is easy to see that the difference operator 

( 5 2 )-1 SX0U 

is a fourth order approximation to Ux, where SxUJ (Uj+ 1 - UH_1)/2 is the first 

central difference. Denoting (I + S2/6) and (I + by/6) by Rx and Ry, respectively, one 

obtains the following fourth order in time and space difference approximation to (6.1). 

52rn (I - >2ai mQx152)(I-X2hcmi7R 18x) 

. i_t2b -,6)(1 -12 I'm y 0 I'm 
(6.2) X2(aiQm8x ?ix + bjsmQ 182 + hQmR718x + hd7mRii 8Y)Urnm 

where r = ( - 2 em) and where symbol = 12r symbol. 

Details on intermediate boundary conditions still must be looked into for (6.2). 

In general, (2.9) represents -a highly accurate stable method for the solution of second 

order wave equations. Extension of these ideas to equations with lower order terms are 

now in progress. 
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