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A Finite Element Method
for First Order Hyperbolic Equations*

By Garth A. Baker

Abstract. A class of finite element methods is proposed for first order hyperbolic
equations. The expository example chosen is of a single equation in one space di-
mension with constant coefficients.

Optimal L? error estimates are derived for both approximations continuous in
the time variable and an approximation scheme discrete in time.

1. Introduction. In this work, two finite element schemes for a mixed initial-
value boundary value problem for a single first order hyperbolic equation in one space
dimension are proposed, using a nonstandard variational formulation.

The results are obtainable for the corresponding Cauchy problem and for more
general first order hyperbolic systems. The simple example chosen here is for ease of
exposition.

The schemes fall in analogy with the so-called H~! Galerkin methods proposed
by Rachford-and Wheeler [5] for two point boundary value problems.

In this work, the Galerkin approximation is obtained by the use of specially
chosen spaces of trial functions and test functions in a weak-weak formulation of the
boundary value problem. The above spaces are chosen to be compatible with this
variational formulation.

The first scheme produces an approximation continuous in the time variable with
optimal L? error estimates of O(h"), where the solution is approximated in a space of
discontinuous (nonconforming) piecewise polynomial functions of degree r — 1,7 > 1.

Secondly, a Crank-Nicolson type time discretization yields approximations discrete
in time with again optimal L? error estimates of O(h" + 72), using the above space of
functions: 7 denotes the discrete time step. The method is unconditionally convergent
and stable.

2. Notation.

2.1. Function Spaces. Let = (0, 1), and let 0 < T < e be fixed. For s >0,
H() will denote the Sobolev space W3(S2) of real-valued functions on £, and Il I
will denote the corresponding norm.

For definitions and the relevant properties of these spaces, see for example [4].
For s < 0 the spaces H*(2) are defined following [6], as the completion of C*(2), the
set of infinitely differentiable functions on £, with respect to the norm:

3oy dx|

llvlls = SUP —W,

vECT(Q)

v E CT(Q).
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For v a mapping v: [0, T] — H*(2), the following norms are defined,
T Y%
ol = (70, 012),

lolll,, = SUP I -, D)l

<t<T
Following [4], we also adopt the notation

LPO, T; HS(2)) = {v: [0, T] — H(Q): lblll, <o}, p =2, 00

and

We note also that HO(2) = L?(S2), the Hilbert space of real-valued functions
square integrable with respect to Lebesgue measure on Q. We shall write

1
W, v) = -fo wdx, u, v€LYQ).
Also, we define the space
HES) = {v€ H'(Q): v(1) = 0}.

2.2. The Boundary Value Problem. We shall be interested in approximating the
solution of the following mixed initial-value boundary value problem. A function
u: Q x [0, T] — R is sought satisfying

%t;l(x, n+ g—z(x, H=fx, 1), &HENx(O,T],

@n u(,1) =g(), t>0,
u(x,0) =uylx), x€Q.

The functions f, g and u,, are given. Henceforth it will be assumed that f, g and
u, are such that a unique solution u exists, for t = 0. In the appropriate places to
follow, precise conditions on the smoothness of u sufficient to guarantee the conver-
gence results will be imposed.

Define the following bilinear form b( - , * ): L%(2) x H'(Q) — R! by

22) b(u, v) = —(u, 9/3x).

Observe that the boundary value problem (2.1) has the following weak-weak
formulation: u € L2(0, T; L%(Q)) satisfies

(@u/ar)( -, ), v) + bu( -, 1),v) = (-, 1), v) + g)(0)

for all v € H(S), t > 0.
2.3. The Finite-Dimensional Function Spaces. Let TI(2) denote the set of parti-
tions A of £, of the form

A:0=xy<x; < <xy=1 forN=1.

Given A € II(2), set 7 = max, <;«yX; ~ Xj—1-
For D C § and integer r > 0, P,(D) will denote the set of polynomials of degree
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<ron D. We now define certain finite-dimensional function spaces relative to A,
which will be used to obtain the approximations.
For r = 1, define

Gh(Q)= {v:v€EP,_ (x;_;, x), i=1,2,..., N},
and

H(Q)= veECQ):vEP(x,_,, x), i=1,2,...,N, v(l) =0}
A Pri—1 i

It is easily see that G/, () is a subspace of L?(Q), that [SIZ(SZ) is a subspace of
H(), and that

Dimension G, (£2) = Dimension A A(Q) = Nr.

Let {a;, &, ..., a,} be a basis for GA(Q), and let {8,,8,,...,B;} be abasis
for A (Q), where d = d(r, A) = Nr.

The following simple result will be needed.

LEMMA 2.1.  The matrix G = (&, B)); j=1 2,...,.q IS nonsingular.

Proof. We show that if &t = (@, @i,, . . . , ig) € R, with & # 0, then there
exists a & = (B;, Oy, - - - , 0y)7 € R? such that 7 G > 0.

To this end, let # € RY, 7 # 0. Observe that

TGt = (u, v) for all € RY,
where

d
ey and v= 3" U .
1 k=1

INg
Il
T™Ma

Letj=min{i: u #0 on (x

i_ 1 X)}. Now suppose thatfi;_lu(x)dx # 0. Then
define

.
) {j’u@ds, 0<x <x;.
ux) = X

0, xj<x<l.

Then v € ISIZ(Q)‘ Hence v = E‘,lef)kﬁk, for some § € RY, and
*j
TGa = (u, v) = fo u(x)(x) dx

Xx: 1 x- N
= [ oy ax = SwOP =3 l [} woa >o.

Now if [,/ u(s)ds =0, then define

ule;_;+) — ulx;-), 0sx<yx

j—1°
u(x) = {u(x) —ulx;-), xi_y <x<xj
0, x;<x <1

Again v € ;IZ(Q), and
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5762 = G ) =[ " uColux) - ulx; )] d
xji_1q

= fxi [u(x)]? dx — u(xj_)ij ux) dx = f j . [u()]? dx > 0.
Xj_q Xj—1 *j—

Finally, if .
Gu =0 forsomeit ER? i #0,

then
9'Ga =0 forall € RY,
which is not possible. Hence G is nonsingular.
The following result is easily obtainable by appropriate local Taylor expansions.
LEMMA 22.  There exists a constant 0 < C* < oo, such that for all u € H(Q),

INF -l = xlly < C*hfllull, 0<s<r,
XEG L (Q)
and for all u € HY(Q) N H(Q),
INF  lly —xl, <C~Hul,  1<s<r+1.
XEA{ ()
C* is independent of A (and h) but depends on r.
The bilinear for b( - , - ) defined by (2.2) possesses certain properties on the sub-
spaces G4 (§2) and 1?12(52) which we now display.
LEMMA 2.3. Let b( -, - ) be defined by (2.2), then

23) b, v)l < luly ol

for all u € L*(Q), v € H\(Q), and

(2.4) SuP b, v)| =

Nully,
o
VEH (R2);lvl <1

G-

2

for all u € G\ ().
Proof. Clearly (2.3) follows from Schwarz’ inequality. To derive (2.4), let
u € G’y(Q). Then define

(2.5) u(x) = —flx u(s)ds, xeQ.

Then v € 132(9), and by Schwarz’ inequality,

(2.6) loll, <+/2lully.
From (2.2) and (2.6),

Q.7 b(u, v/lvl}) = lvlT (= u, dv/dx)

= lul2loli7 ! = (12 Nully.
The result (2.4) now follows.

3. A Projection Theorem. The following theorem will be used in obtaining the
error estimates. The result is motivated by the analogous result in [1].
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THEOREM 3.1. Let G and H be two normed linear spaces with norms -1, and

- Iy, respectively. Let G be a nonempty linear subspace of G, and H a nonempty
linear subspace of H, with

DIMENSION G = DIMENSION H < oo,
Let b(-,-): G x H— R! be a bilinear mapping satisfving
3.1 b, v)l < C, IlullG ol

forall u € G, v € H, where C; < is a constant.
There exists a tonstant C, > 0 such that

SUP  |b(u, v)l = C,llully  forall u € G.

(3'2) vEH llvlly <1

Then if uy € G, there exists a unique ity € G such that

3.3) b(iy, v) = b(ugy,v) forallv€EH,

and

(3.4) lug = f1ollg <1+ CC31) INF lug —xlg.
xXe

Proof. The Eq. (3.3) is equivalent to a system of d linear algebraic equations,
the unknowns being the d coefficients of 120 relative to the chosen basis for G, where
d = DIMENSION G = DIMENSION H.

The condition (3.2) dictates that the associated matrix is nonsingular. Hence #,
exists uniquely.

The estimate (3.4) may be derived as follows.

Since G is a finite-dimensional linear subspace of the normed linear space G,
there exists a £ € G such that

3.5 lu, — £, = INF lluy, — x| ..
( ) 0 é G XEG 0 X G

Now from (3.2), (3.3) and (3.1),

lig —tl, <C;1 SUP (b, - &,
(3.6) 0o Ele <G veH; Ivly <, o = £V

=c;! SUP by — £ 0)l < C C5 tlug — £l
vGH;IIuIIH <1

Hence (3.6) gives
[[798 —QOIIG < llug — gl + g — g, IIG
<1+, Hlug - £l
=(1+C,C;Y)INF llu, —xl ..
( 142 )xec o Xlg
An application of Theorem 3.1 yields:

THEOREM 3.2. Let u be the solution of the boundary value problem (2.1); then
for each A € TI(Q) there exists a unique mapping w,: [0, T] — G4 () which satisfies
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3.7) b(wa(+, 1,v) = bu( -, 1), v),
forallve " “(). Furthermore, if for some integer k > 0,
dku/otk € LP(0,T: HS (), then 0%w,/3t* € LP(0, T; G’y (),
and there exists a constant C** independent of h such that
(3.8) M@ /") [u — wp]lll, _; < C**hs""'“lbku/atklllp’s, 0<s<r0<;<l1.

Proof. The existence and uniqueness of an w,: [0, T] — G% () satisfying (3.7)
follows from Lemma 2.3 and Theorem 3.1 by making the identification G = L%(Q),
H = H(Q), G = G4(Q), H = H,(Q). The estimate (3.8) for j = 0, follows from (3.4)
and Lemma 2.2. We now show (3.8) forj = 1. Sete=u — w,, and let ¢ € C7(Q).
Now define

(3.9) Yx) = —L" #(s)ds, x€Q;

then Y € C*(Q) N H(Q), and
(3.10) Il <+/2lgl,.
Now let ¢, € H% () be such that
(3.11) Iy =yl < C*rlly I, </2C*n ol .
Then from (3.9), (3.7), and (3.11),
(e, ) = ble, ¥) = ble, ¥ — ¥,)
< lelly Iy — i, I, < VZC*hlllllely;

hence

lel_, =  Sup %%k\/ic*hueuo.
pECT(Q)9#0 1

The result now follows.

4. The Continuous Time Galerkin Approximation.
THEOREM 4.1. Let u be the solution of the problem (2.1). Then for each
A € 1I(R2), there exists a unique mapping U, : [0, T] — G () satisfying

“4.1) (QUA/ND( -, 1), v) + b(UL( -, D), v) = (f( -, 1), v) + g(t)v(0)
for all v € B, (Q), t >0, and
“4.2) (Ua(-,0),v) = (uy,v) forall veE GL(Q).

Furthermore if u € L™ (0, T; H'(R)), 0u/dt € L™(0, T, H"~ () and 3u/3s® €
L*(0, T; H"~Y(2)), then there exists a constant ((T), independent of h, such that

2
e,
oo p—1 ot 2. r—1

43 llu-v,ll < C(r)h'g .., + |24
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Proof. That Upy( -, t) = E‘,Z= 1 M (Dey exists uniquely follows from the fact that
the Egs. (4.1). and (4.2) are equivalent to the initial-value problem for the system of d
linear ordinary differential equations of the first order,

(44) G@Ndn(e) + B = 1), O0<t<T
“.5) AX(O) = u,,
where

XD = 0 0. 20, . . ., A,
O = 0.8 (R, 0,8,), -, (U, ), BT
+ (g(1)B8, (0), g(1)B,(0), . . . , £(B4(0))T,
Uy = (g, @), (Ug, @), - - ., Uy, ax))T,

and G, B and A are the d x d matrices G((¢;, B;)), B = (b(ey;, B;)) and A = (o, &),
i,j=1,2,...,d Since A is clearly nonsingular, and from Lemma 2.1, G is non-
singular, the system.(4.4) and (4.5) has a unique solution.

The estimate (4.3) may be derived by arguments analogous to those used for
standard Galerkin methods for parabolic equations found in [6].

Let w, be defined by (3.7),and let n =u —w,, ¢ = U, —w,,and e =u —
U,. Then from (4.1), (3.7) and (2.3), for any v € H% (%),

((3¢/20)( -, 1), v) + b(g( -, 1), V)
= (-, 1), v) + g@WO) = ((0wa/BN( -, 1), V) = b(wa( -, 1), V)

(4.6)
=((-, 1),v) = bu( -, 1), V) = ((Bw,/3t)( -, 1), v) + g(t)(0)
= ((0n/or)( -, 1), v), t>0.
Now choose
U, 1) = —f: g—f(s, ds, t=0,x€Qq,
and define
4.7) U(x, 1) = —flx o, H)ds, t=0,x€Q.

Then (4.6) becomes
= (@0/ax)( -, ), 0( -, D) + (@ -, 1), (3/0)( -, 1))
= (@n/or) -, 1,0, 1), >0,

or

(0, H)I2 + %% lg( -, HIZ = (%;l( 0,0, t))

=(3"( 0,9, )), >0,

N | —

(4.8)
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Now integrating (4.7) from ¢t =0tot =£(< T,

Ean

o+ oI < lo(-, O +2f | o2, nacar

- ||¢( ., 0)"2 + 2(31‘]( LE), U( -, g)) - (?;Z( ,0), ¥( - ))
4.9) _2ff (a_;l L0, v, t)) dt
<o, oo + 4|61 i,

2
+ 2‘/7”‘37?“'2 Il

Now from (4.7),

(4.10) ||I11/III‘,‘,’1 <\/§lll¢lllw’0.
Hence, using (4.10) in (4.9),

loC -, B)IZ < lg( -, 0)IZ + 34“%}'“,’_1 * m/Tl“%%“L)_f

—|||¢|n,, o0 O<EST

4.11)

On taking the supremum over £ in (4.11),we get, on using (3.8),

o <veloc on vl e B |

<V2

on
WAC-,0) = uglly + lug —wn (-, 0l + 4|”8—t|“w’_1

2
el |

au” |“a_72u|
= *n" + ’
<VIC**h g2||u0||,+4|”a_t L TRz,

Hence finally again by (3.8),

lelll,, o < MIglll, o + llll, o

au” ||82u|
r
< (T 3|||u|||w’r + “I‘at + }—fat

2,r—1 g ’
where C = C** MAX {4, 24/T}\/2. This concludes the proof.
We remark that the definition of U, ( -, 0) in G} (2) is arbitrary up to being an
optimal L? approximation to ugy. (4.2) defines one such choice.

o, r—1
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5. A Discrete Time Galerkin Method. A Crank-Nicolson type Galerkin method
based on the weak formulation (2.3) is analyzed here. Analogous schemes for parabolic
equations have been proposed in [2] and [3].

Let T = J7 for some integer J = 1. For a sequence {Vn}ﬁ=0C L?*(2), we define

aTVn = T—l [Vn+1 — Vn],
yrth = yyntl 4y, p=0,1,...,J -1,
2ym =772yt —ym + v, n=1,2,...,J-1,

and

WVl g = max 1771,
’ o<n

For a mapping V: C[0, T] — L?(£2), we shall write
Vi=V(-,nn, n=0,1,...,J

Throughout the rest of the paper, C will denote a generic constant, not necessarily
the same in any two places.

The following result defines a fully discrete Galerkin approximation, and gives
the error estimates.

THEOREM 5.1. Let u be the solution of the boundary value problem (2.1), then
there exists a unique sequence {URY] _, C G, () which satisfies

(5.1) (U, X) = (ug, X) forall x € GL(),

and

(5.2) @,Ux, X) + bURT%, x) = (F"**, x) + g"+#x(0)
forall x € Hy(Q),n=0,1,...,J-1.

Furthermore if u € L*(0, T; H'()), du/dt € L™(0, T; H~1(Q)), 8%u/dt*> €
L%(0, T; H"~ (), 3u/3r® € L™(0, T; H~ (), and 8*u/3t* € L2(0, T; H~1(Q)),
then there exists a constant C = C(u, T) such that

(5.3) max lu( -, nt) = UZlly < C{H" + 7%},
osn<J
Proof. Clearly Ug € G, (2) is uniquely defined. Now forn =0,1,...,J -1,

UR*! satisfies
[U2*, x]=F,x forallx € (),
where [ -, - ]: GL(2) x fIZ(Q) — R! is the bilinear form given by
[T x1 = (U, ) = (7/2)(U, 9y/dx),
and F,: H’,(2) — R is the functional given by
Fax = (U, ) + (r/2)UR, 0x/0x) + (F"+%, x) + g™+ %x(0).
Since if U € G4(2) and
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X (]
Vix) = - fl U(s)ds, then V € H"(Q),
and

(U, V1= (/)W + %IV(0)2 = (r/2) IV

Hence the matrix ([o;, §;] )i,j=1,2,.-. . is nonsingular, and so UR exists uniquely,
n=0,1,...,J

We now derive the estimate (5.3). Again let w, € G, (2) be defined by (3.7),
and set n =u —w,, ¢" = U" —wh and " =u" - Uj}.

From (2.2) it follows that

(54) 4", X) + b, x) = ("% + p", x) + " x(0)
for all x € H(S), where
(5.5) p" = u" —out”Rr,  n=0,1,...,J-1.
Hence from (5.2), (3.7) and (5.4), for x € H"(),
3,9", %) + b(¢" ", %)
= (" %) + £ AX(0) ~ (3,w", X) — B(wht”, %)
= ("%, 0 - b, x) — (3,w", X) + £ x(0)
=@m"-p"x), n=0,1,...,J-1

(5.6)

We now make the choice
(5.7) e = 1" 2,0"(s)ds, x € Q.
Then {X"})._, C HL(Q).
Using (5.7) and (5.6),
af(n on n+ % Yy = (3 " — o". "
X)) T , 0,9M) = @,n" = p", X")

or

BIFO)2 + %r~ (" T HIZ — g™ 112)

=@m" -p"%"), n=0,1,...,J-1

(5.8)

Now define Y"(x) = f5[9,1"(s) — p"(s)] ds. Then since y"(0) = 0, it can be easily
verified that

(5.9) W™ lly < Clay™/oxl_, = o n" = p"lI_;
also
(5.10)  (@,n" —p", X" = @yY"/ox, X*) = —(Y", 9xX"/ax) = (Y", 3,9™).

Hence if we substitute (5.10) in (5.8), and sum for n =0 ton =1- 1, for some
1 <1<, then
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-1
lp?12 < 1g°12 + 27 Zo ", 8,9"
n=

(5.11)
-1
= 1g%12 + 2[(@", Y"1 = (#°, YO + 21 T (", 3, 4" ).
n=1
From (5.5) one may prove that
(5.12) lplll, _, < crlli3u/orlll, _ g,

and so from (5.9), (5.5) and (3.8),for 0 <n <J -1,

lyll, < Cla,n"I_, + Clop™I_,

+ ‘—‘ .
t‘al o, r—1 r at3 o0, —1

(5.13)

< C; n
Also, since
0,971 = [12 ) - 0,07 0)] s,

it follows that
(5.14) o, ¢~y < Cll2n™ —3,p" M.

Using (5.14) and (3.8), we obtain

-1 a2 2 a4u 2
g <A+ 5
Tngl o,y IIO\C; ol |57 -
eyl el L
0t llly g o™ My, 4

Returning to (5.11) with the estimates (5.13) and (5.15),

(5.15)

<C3h’

112 < 9012 + 4lliglil, oIyl
-1 1/2f 1-1 - 1/2
+2T(z P AR Bt -
n=1 n=1

< 16012 + im(pmw,o + 43 NIYIe

(5.16) i
+ 2IBIR o + 16727 3 T,y I

ol < L, ]
oI,

<161 + Sl o + C(T)%h’[
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Hence taking the maximum in (5.16),

ot

5

Mgl o < CM){Ng°ll, + h'[

82u|
+|
o, r—1 a—tT 2,r—1

03u 0%u
gl e
Now from (3.8)

(5.18) 1g% 1y < Nelly + Nn°ly < CA"lluy

(5.17)

s
hence
man, < linlll, + Higlll,

ou a2u
<Cin “_l “ I
cin [mum.,,,,+ arll,_, T llaAZ L, ,_,

93u *u
sl I+ B
LIRS, + IRl

The result (5.3) now follows.
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