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A Comparison of Global Methods 
for Linear Two-Point Boundary Value Problems 

By R. D. Russell and J. M. Varah* 

Abstract. Recently there has been a great deal of interest in numerical methods of a 
global nature for boundary value problems. In this paper we discuss and compare 
these global methods from a computational point of view, for the case of a single 
linear two-point boundary value problem. 

I. Introduction. Consider the (2m)th-order linear two-point boundary value 
problem 

m 
(1.1) Lu(x)= (-l1)D'(ai(x)D1u) =f(x), a Ax < b, 

i=o 

(1.2) D1u(a) = D1u(b)=O, O<iSm- 1. 

Three well-known methods which give global continuous approximate solutions to this 
problem are the methods of collocation, Galerkin, and least squares. In this paper we 
shall relate and compare these methods from the point of view of practical machine 
computation. 

First, in Section II, we show how these methods are related in general, using 
arbitrary basis functions to determine the finite-dimensional subspace in which the 
approximate solutions are constructed. Then in Section III, we relate the available 
error estimates for the common choice of piecewise polynomial bases. Finally in Sec- 
tion IV, we compare the amount of work required to compute these solutions by 
forming and solving the relevant matrix equations. 

II. Description of the Methods. All the methods we consider find approximate 
solutions of the form yNC1oi(x), i.e. the solutions are elements of a finite-dimensional 
subspace 

Sn = span {l 1(x), , (X)} 

whose basis elements all satisfy the boundary conditions (1.2). The methods only differ 
in the way the coefficients {ci} are chosen. 

1. Collocation. Here the approximate solution w(N)(x) - Nw1?b(x) is deter- 
mined by satisfying (1.1) exactly at N points, i.e. 

(2.1) Lw(N)(xi) =f (xi), i = 1, . .. ,N. 
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The resulting linear system to solve for the coefficients {wj} is 

(2.2) Cw = f, cij = 
Lq1(Xd), fi = (xi). 

2. Galerkin. The Galerkin solution u(N)(x) = 
YN 

ug1(x) iS determined by forc- 
ing the residual (Lu(N) - f ) to be orthogonal to each basis function: 

(2.3) s Lu(N)(x)qi(x)dx fb(x)0j(x) dx, i = 1, ... , N. 

This gives the linear system 

b rb 
(2.4) Au = g, ai1 = |(LOj)O1dx, gi = fidx. 

Since integration by parts gives 
rb rb 

(2.5) aid = Ja (Lo)di dx =JM(qj,, qj) dx, 

where M(u, v) = Y T ai(x)D'uD1v, the Galerkin solution is eauivalent to the so-called 

Ritz solution derived from the variational principle for (1.1), (1.2). This also shows 

that the matrix A is symmetric, and in fact it is positive definite when the operator in 

(1.1) is elliptic. 
Computationally of course, these integrals must be replaced by quadrature sums 

in all but the most trivial problems. This can be done in a variety of ways: we assume 

in what follows only that the integrals on both sides of (2.3) are evaluated by the 

same quadrature rule, namely 

b Q 
JaP(X)dx!: E CjkP(Xk)- 

k=1 

The resulting discretized problem depends on whether we choose the Galerkin or Ritz 

form of the integral in (2.5), so the two formulations are no longer equivalent. We 

prefer to distinguish them by the terms discrete Galerkin and discrete Ritz. 

(a) Discrete Ritz. Using the Ritz form of the integrals leads to Au = g, where 

Q Q 

(2.6) ai1 CO kM(Oj(Xk) Oi(Xk)) gi = Z k f (Xk)Oi(xk). 
k=1 k=1 

This is the form normally used since it retains the matrix symmetry, and we refer to 

Strang and Fix [7] for estimates of the number of quadrature points Q necessary to 

ensure no loss of accuracy from the discretization (for piecewise polynomial bases). 

(b) Discrete Galerkin. This gives Au = g where 

Q Q 
(2.7) ai1 = z 

kLOj(Xk)i(xk)5 gi = E kOi(Xk)f(Xk)- 
k=1 k=1 

If we define the matrix B by 

btikh=.i(Xk)) i=c..xN,pkr=s...sQ 

then (2.7) can be expressed as 
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(2.8) BDC u = BDf, 

where C and f are defined in (2.2) and D = diag(coi). This gives easily 

THEOREM 2.1. If N = Q, the discrete Galerkin method (2.7) is equivalent to the 

collocation method (2.2) using the same points, provided 
(i) none of the quadrature weights Wk are zero, 

(ii) the mattix B is nonsingular. 
Note: (ii) is guaranteed if the functions {Ji(x)} are unisolvent. 

Thus collocation can be viewed as a discrete Galerkin method using the same set 

of points, and of course is much less work since C is easier to evaluate than A = BDC. 

Normally however, to obtain the same order of accuracy as the undiscretized Galerkin 

method (2.3), we need Q > N. But for some special choices of piecewise polynomial 

bases and quadrature points, Q = N is sufficient; we shall discuss this in Section III. 

3. Least squares. This solution v(N)(x) = E4 vo,j(x) is found by minimizing 

fb (LvT(N) - f )2dx with respect to the coefficients {v1}'f. Again the solution is char- 

acterized by an- orthogonality condition: 

(2.9) JLv(N)(x)(Lq5)dx = f f(Lq)1)dx, i = 1,... , N. 

Discretizing with the same quadrature rule on both sides, we obtain 

(2.10) CTDCv CTDf 

From this we easily obtain 
THEOREM 2.2. If N = Q, the discrete least squares method (2.10) is equivalent 

to the collocation method (2.2) using the same points, provided 

(i) the quadrature weights {Sk} are nonzero, 

(ii) the collocation matrix C is nonsingular. 
Again we normally use Q > N here, but even in this case we can consider discrete 

least squares as an extension of collocation: if the weights {Ck} are all positive, (2.10) 

is precisely the set of normal equations for the discrete linear least squares problem 

(2.11) minIID'/2(Cv - f)112 

Thus we merely "collocate" at more points (Q) than functions (N) giving an overdeter- 

mined set of linear equations; scale these by D/2 and solve by the familiar linear least 

squares method. We will return to this idea later. 

III. Convergence Results for Piecewise Polynomial Bases. Now we specialize the 

choice of basic functions {ki(x)} to piecewise polynomials: given a mesh a = x0 <xi 
< ... < XN = b and h = maxlxi+ 1 - xi4, we demand that each basis function be a 

polynomial of degree 2n - 1 in each subinterval, with k derivatives matching at the 

knots {xi} so the functions are globally C(k). This is (N - 1)(k + 1) continuity con- 

ditions, and counting the 2m boundary conditions (1.2), there are [(2n - 1 - k)N + k 

+ 1 - 2m] free parameters left, and thus the same number of basis functions. Com- 

putationally, it is important that the basis functions used have support over as small an 

interval as possible; we refer to de Boor [11] for a discussion of the B-spline basis for 
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this space of functions, which has minimal support. Particular choices of interest are 
(i) splines (Sp(')): degree 2n - 1, globally C(2n-2); support 2n subintervals, 
(ii) Hermites (i4n)): degree 2n - 1, globally Cn); support 2 subintervals with 

either B-spline or natural Hermite bases. 
Our purpose here is to give a uniform presentation of the known convergence 

results; for more details the reader is referred to other papers. Before giving the con- 
vergence results, we mention some standard preliminary results. For u(x), v(x) satisfy- 
ing (1.2), define 

(3.1) a(u, v) = r Ea aj(x)D'u(x)D'v(x) dx. 
i=O 

Integrating by parts and using (1.2), we have 

b b 
a(u, v) = S:u(x)Lv(x)dx = X (Lu(x))v(x) dx. 

We also define the norm 

IIVI12 la (D iv(x)) 2dx. 

It is well known that if (1.1) is sufficiently smooth and elliptic (e.g. a1(x) > 0 (0 < i 
< m - 1) and am(x) > 6 > 0) we have 

(3.2) CIV|12 6_ a (v, v) 6_ C IIIV11 

and 

(3.3) ja(u, v)I < C'IIUIIDIIVIID. 

We also need the bilinear form 

(3.4) b(u, v) =f:Lu(x)Lv(x) dx 

and the norm 

b 2m 
112IE J D (iV(X))2 dX. 

i=o 

Again if (1.1) is sufficiently smooth and elliptic, 

(3.5) KI IVII 6 b(v, v) < K 'IIVII1 

and 

(3.6) Jb(u, v)l < K'IIUIIEIIVIIE. 

1. Collocation. Convergence for the collocation method is given by the follow- 
ing theorem of de Boor and Swartz [2]. 

THEOREM 3.1. Suppose (1.1), (1.2) has a unique solution u(x) and the coeffi- 
cients of (1.4) are sufficiently smooth. Then using a B-spline basis of degree 2n - 1 

and continuity c(2m-1), and collocating at the 2n - 2m Gaussian points in each sub- 

interval, produces a unique solution w (N)(x) for sufficiently small h, which satisfies 
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(3.7) Iu - w(N)12 O(hmin(2n,4n-4m)) 

and 

(3.8) Iu(xj) - w(N)(xi)l =O(h4n-4m), 1 < i < N. 

The rather unusual continuity class required here (e.g. only C(1) for a second-order 
problem) is necessary because this gives exactly 2n - 2m collocation points in each 
subinterval (see the formula in the first paragraph of this section). From our point of 
view, (3.7) is natural from Theorem 2.1: collocation at the 2n - 2m Gaussian points is 
equivalent to a discrete Galprkin method using Gaussian quadrature (error bound 
O(h4n-4m))) and the corresponding Galerkin method, at least for a smooth basis, has 
error bound O(h2n), as we shall see later. With this in mind, we give our own proof 
of part of Theorem 3.1. 

Proof of (3.7). Let 4 be the solution of Lo = v = (u - w(N))IIIu - w(N)112 as in 
Nitsche [4]. The Green's function for L is sufficiently smooth that 1100i11., < K, 0 < 

j < 2m. Then 

Iu - w(N)(N2 = i u w(N))dx = a(b, U - W(N)) =jrb ff)dx 

where I = Lw(N) satisfies A(t,) = f(t;) at the 2n - 2m Gaussian points in each subin- 
terval [xi, xi+ ]. If pi(x) = rJ2pn2m (X - t1), then 

xi+1 

(3,9) p1(x)r(x) dx = 0 

for all polynomials r(x) of degree less than 2n - 2m. On [xi, xi+ 1 ]f - f = p1(x)qi(x) 
and ljpi(x)ljj0 = O(h2n-2m). The standard existence proof for w(N) implies 
ll(u - w(N))(/)ll = O(h2n-2m) for 0ij < 2m, from which follows boundedness of 
derivatives of w(N) and hence f. Thus 

N-1 x- 
I|u - w(N) 112 = f O(f -)dx = E J p1(x) [4(x)q1(x)] dx- 

Now expanding [/qi] in a Taylor series about xi with k = min{2m, 2n - 2m} terms 
and using (3.9), 
IIu - wN1(xN)11] (k2 x llu (Nf)ll2 = E r pi(x) k ! (x-x1)k dx- O(hmin(2n,4n-4m)). 

Q.E.D. 

This collocation at Gaussian points has proven very successful in practice especially 
for n = 2m, in which case we are working with the Hermite space H(n) which has a 0 
very convenient natural basis (see [9] for some numerical comparisons with finite-dif- 
ference methods). However, for n = 2m the computations require a B-spline basis; it 
might be more attractive computationally to use the Hermite space H( r) with continuity 0 
C(r1-) rather than C(2m-i), with r chosen so the order of accuracy is the same. For 
this space, the number of collocation points required is [rN + r - 2m], so we can use 
r in each subinterval except for r - 2m intervals where we use one less point if r < 2m 
or one more if r > 2m. 
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If we use Gaussian points in each subinterval, and assume that the collocation 
solution exists, the above proof of (3.7) shows 

IIu - w(N) 112 = O(hmin(r+2m,2r)) 

for the Hermite space 14r)* (One fewer point in some intervals only affects the local 
error by h, leaving the same global error.) Notice that we get the same convergence as 
with the B-spline basis of degree 2n - 1, continuity 2m - 1, if we take r = 2n - 2m. 
That is, we can collocate at the same 2n - 2m Gaussian points, but with a natural 
Hermite basis rather than B-splines, and obtain just as much accuracy. In Section IV, 
we show that the amount of computation involved is the same. 

2. Galerkin. The convergence rates for the (continuous) Galerkin method are 
well known (see for example Varga [10]): 

THEOREM 3.2. Suppose (1.1), (1.2) has a unique solution u(x), the coefficients 
of(1 .1) are sufficiently smooth, and (3.2), (3.3) hold. Then using piecewise polynomials 
of degree 2n - 1 and continuity at least C(n-1) [a, b], there exists a unique Galerkin 
solution U(N)(x) for h sufficiently small, and it satisfies IIU - U(N)112 = O(h2n). 

For the discrete Ritz method, the number of quadrature points required to main- 
tain this accuracy is still not completely understood. Discretizations of only the right- 
hand side of (2.3) have been considered by Herbold et al. [3] and Schultz [5]. More 
recently, Strang and Fix [7] have considered the more realistic problem of discretizing 
both sides as in (2.6). They show that using (2n - 1) Gaussian points in each subinter- 
val maintains the O(h 2n ) accuracy. 

3. Least squares. Convergence of the (continuous) least squares method for 
very general problems has been analyzed by Bramble and Schatz [1]. For the sake of 

completeness, we give a convergence proof for our particular problem (i.e. (2.9) applied 
to (1.1)). 

THEOREM 3.3. Suppose (1.1), (1.2) has a unique solution u(x), the coefficients 
of (1.1) are sufficiently smooth, and (3.5), (3.6) hold. Then using piecewise polynom- 
ials of degree 2n - 1 and continuity at least & -1)[a, b], the least squares solution 
v(N))(x) exists for h sufficiently small, and satisfies IIu - v(N)1i2 - O(hs), where s = 

min(2n, 4n - 4m). 

ProofJ (The proof models Schultz [6] for the Galerkin solution.) From (2.9) 
and (3.4), the exact solution u(x) satisfies 

b(u, v) = f (Lu)(Lv) dx = f (Lv) dx 

for all v, and the least squares solution v(N)(x) satisfies 

b(v(N), v) - f (Lv) dx 

for all v E SN. So for any v, w E SN, 

b(w - v(N), v) = b(w - u, v). 

Take v = w - v(N) and use (3.5): 
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Iw - v(f)iiE < (1/K)lb(w -v(N), w-v(N))I ? (K/K)11u - wlIE11v(N) - WIlE. 

Now let w be the interpolate of u in SN; it is well known that 

jlu G) - w(j) 12 = 0(h2n-)11u(2n) 112, 1 <j < 2m. 

Thus 

Ilu - v(N)IIE fIIU - WIIE + IIW -V(N)IIE (1 + K'/K)IIu - WIlE = 0(h2n-2m). 

To get the higher-order convergence in the L2 norm, we again use the device of Nitsche: 

Let 4, 4 be defined by (1.2) and Lo = 4, L4 = (u - v(N))/IlU - v(N)112. From con- 

tinuity of the Green's function for L, we know 10(j)112 < K, 0 j < 2m, and 110(j)112 
AK, 0< j<4m. Now 

-V(N)lI2 - J (L(L4))(u-v(N)) dX = b(u - V(N), 0) 

= b(u - v(N), q5 - W) 

for all w E SN. Let w be the interpolate of 4 in SN; since we know 110(i)112 < K for 

0 j? 4m, we have 

flu - v(N) 12 S K|lu - v(N)IlEEII' - WIlE < Kh2n-2mhrII4(r)II2 r = min(2m, 2n - 2m). 

Q.E.D. 

If we discretize the least squares problem as in (2.10), we need to ensure that this 

convergence rate is maintained. As we mentioned at the end of Section II, this amounts 

to collocating at more points than there are functions and solving the resulting discrete 

linear least squares problem (2.11) by familiar methods. For example, we could use 

piecewise polynomials of degree 2n - 1 and continuity C(k), k > 2m - 1, and "collo- 

cate" at the 2n - 2m Gaussian points in each subinterval. We conjecture this keeps 

O(hmin(2n,4n-4m)) accuracy. The advantages are that we obtain higher global contin- 

uity of the approximate solution, and we can use other basis functions than B-splines 

(e.g. the natural Hermite basis for 1O4)) without going to higher degree as was necessary 

with collocation. One can even use splines (i.e. continuity C(2n-2)); as we shall see in 

Section IV, this is more economical and can even be less work than collocation. Ex- 

periments of P. Sammon have shown 0(h4) convergence with cubic splines, using the 

two Gaussian points in each subinterval as data points, and solving the resulting over- 

determined linear system by familiar linear least squares methods. 

IV. Comparison of Methods. Here we compare the computational work involved 

for methods of the same global accuracy on problem (1.1), (1.2), using piecewise poly- 

nomial bases. All the methods compared have global error 0(h2n); normally the poly- 

nomials have degree 2n - 1, and we assume a fixed mesh a = xo <xi ... < XN = 

b. 
1. Collocation. As we saw in Section III, we can get 0(h2n) global error by 

collocating with the B-splines of de Boor-Swartz of degree 2n - 1, or by using the Her- 

mite space i(j), r - 2n - 2m. In what follows, we assume n > 2m so r > n. 
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(a) B-splines of de Boor-Swartz. These functions have degree 2n - 1, continuity 
C(2m-l), and we collocate at the r = 2n - 2m Gaussian points in each subinterval. 
With the boundary conditions, this gives a total of rN + 2m equations. There are r 
basis functions associated with each interior knot and n at each endpoint, giving the 
same number of unknown coefficients to solve for. 

Two components to the work are involved in any of these methods: forming the 
matrix elements and solving the resulting linear system. For collocation, each matrix 
element involves an evaluation of (1.1); we denote this by EL. Although the evaluation 
time depends to some extent on the basis function used (since we need O1(xj), ;(xd), 
etc.), this work does not depend on N (i.e. on h) since the evaluations are always at 

the Gaussian points, and we assume these coefficients can be stored beforehand, no 
matter what h is. Thus EL is only a function of m, the order of the differential 
equation. Also, we do not consider the work involved in evaluating the approximate 
solution for given values of x after it has been computed; this also depends on the basis 
used. 

These B-splines have support over something less than two subintervals (their 
continuity is less than the Hermite basis M'(n) for n > 2m) but to simplify the matrix 0 
analysis, we assume it is in fact two subintervals. Then the matrix has the form 

(4.1) r LLi jl 3 

n n3 

n 

We solve (4.1) by block-tridiagonal factorization; i.e. we write it in the form 

Bo CO 

A1 B1 C1 

(4.2) 

CN- 

AN BN 

withBo n x n,Al r x n, COn xr,BNn x n,ANn x r, CNl r x n, andthe other 
blocks r x r. Since r/2 = n - m, this cuts each Fi, Gi block in half horizontally, so 
the top half of C1 and bottom half of A, are zero. Thus,we can use the analysis of 

[8, p. 867] to show the solution time is (13r3 12 + 2r2)NM, where M denotes the 

average time for a multiplication/division. This together with the setup time for the 

matrix elements gives a total time estimate of 
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(4.3) (13r3N/12 + 2r2N)M + 2r2NEL. 

(b) Collocation with H(r). These are piecewise polynomials of degree 2r - 1, con- 
tinuity C(r-1), and we need r = 2n - 2m to give O(h2n) convergence. We use the 
natural Hermite basis, having r basis functions associated with each interior knot and r 
at each endpoint, giving r(N + 1) functions in all and the same number of coefficients 
to determine. We again collocate at the r Gaussian points in each interval; this and 
the boundary conditions make (rN + 2m) equations. Thus we need r - 2m = 2(n - 2m) 
extra equations when n > 2m; we get these by collocating at (n - 2m) extra points in 
the first and last interval. This maintains O(h2') accuracy and makes the matrix 
analysis easier than using one more point in each of several intervals, as we did for the 
convergence results in Section III. (However, if m < n < 2m, this messier approach 
would be necessary as there would be fewer points in some intervals.) 

Since these basis functions have support over exactly two subintervals, the matrix 
has the form 

r 
mLf 

n-2m F 

Gg GE n - 2m 

r 

Go m 

r 

Again we put this in the form (4.2), this time with Bo r x r. Again exactly half 

of the A 5 Ci matrices are zero, so the solution time is the same as for the B-splines of 
de Boor-Swartz. The setup time is also the same, so we again get (4.3) as our work 
estimate. The only difference in computation time will be in evaluation of the approx- 
imate solution as we alluded to earlier. This will probably be less for the Hermite 

basis, as the B-splines are somewhat cumbersome to evaluate. 
2. Discrete Ritz. For the discrete Ritz method (see (2.6)) the two obvious 

choices for bases giving O(h2') accuracy are the piecewise Hermite polynomials of 

degree 2n - 1 (14n)) and splines of degree 2n - 1 (Sp(n)). 

(a) H(n): Since these are C(n-1) at the knots, there are n basis functions associ- 
ated with each of the (N - 1) interior knots and n at each endpoint. Thus we find 
u(nN+n)(x) = ,.nN+n Ui1q5(x) by solving Au-b 
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qN qN 

(4.4) =ij Z kM(OjQ(k), Oi(Ok))' b E kO f 
k=l k=l 

The homogeneous boundary conditions (1.2) imply ui = 0 for 1 < i < m and nN + 1 
? i < nN + m and we include these as the first and last m eqqations of the linear 
system to simplify the matrix analysis. 

We assume the quadrature rule uses q points in each subinterval; as we mentioned 
earlier, the value of q necessary to maintain O(h2n) accuracy is not completely under- 
stood, but for example one could use q = 2n - 1 Gaussian points in each subinterval 
(see Strang and Fix [7]). We believe q = 2n - m is in fact sufficient for the general 
problem (1.1). Using fewer points seems not to work: in fact, solving the problem y" = 

f(x) using a two-point Gauss rule for cubic Hermite polynomials (n = 2, m = 1) with 
equally spaced knots leads to a singular matrix A in (2.6). 

These natural Hermite basis functions have support over two subintervals and the 
quadrature sums are only over the intersection of the supports of the functions used. 
Thus q>i n+(x) has support (xi-,, xi+ 1) for 1 6j < n and A has the block-tridiagonal 
form 

Bo CO 

(4.5) A1 B1 C1 

CN-1 

AN BN 

with each block n x n. 
Now consider the setup time for (4.5). It is symmetric, so we need only consider 

the upper triangle. For an element of Bi, both functions in (4.4) have support (xi-, 

xi+,) so the quadrature sum is over 2q points; for Ci, the sum is only over the q 
points in (xi, xi+ 1). This makes a total of (2n2 + n)Nq evaluations of M(Qp, pi) 
(denoted EM) and subsequent multiplications to form A from (4.4). For the right-hand 
side b we have an additional 4qnN multiplications (and qnN evaluations of qi, f which 
we ignore). 

Solution time for a matrix like (4.5) using a block-Cholesky factorization is 
essentially 5n3N/3 multiplications, giving a total for discrete Ritz using Hermite func- 
tions of 

(4.6) [(2n2 + 5n)qN + 5n3N/31M + (2n2 + n)qNEM. 

(ii) Sp$n): For regular splines of degree 2n - 1, continuity C(2n-2), there is just 
one B-spline basis function associated with each interior knot and n at each endpoint. 
Each has support over 2n intervals so for the n additional functions at x = a we use 
B-splines centered at xo = a, x-1, ... ., xn + 1 (defined by reflection through a), and 

similarly for x = b. The m boundary conditions at each endpoint involve linear com- 
binations of all 2n B-splines which are nonzero there. We take care of these implicitly 
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by using as our basis the 2n - m appropriate linear combinations of these 2n B-splines 
which automatically satisfy the boundary conditions. 

Thus, in general Oi has support (Xi+ m-2n, Xi+ m) and the computation of Wij from 
(4.4) involves the intersection of the supports of qi and Oi which is (Xj+m2n, Xi+m) 

for j > i. So Oij 0 ? for li - il < 2n, or a has half-bandwidth 2n. Assuming q 
quadrature points per subinterval, this means the ith row of A takes q( fl k) = 

qn(2n + 1) evaluations of M(Qj, cPi) and subsequent multiplications. Each bi requires 4nq 

multiplications, and solving Au = b by band Cholesky takes 2n2N multiplications, 
giving a total for discrete Ritz using splines of 

(4.7) [(2n2 + 5n)qN + 2n2N]M + (2n2 + n)qNEM. 

Notice that (4.7) and (4.6) are almost identical, except that the solution time 

with the spline matrix is less. 
3. Least squares. In Section II, we saw that the discrete least squares method 

generalizes the collocation procedure when more collocation points than functions are 

desired. In particular, this provides a viable alternative to the Galerkin method when 

a smooth spline basis is used. We consider only this smooth spline basis (i.e. degree 
2n - 1, continuity C(2n-2)) because, as we saw with the Galerkin method, it is the 

most economical. 
Assuming q quadrature points (or "collocation" points) in each subinterval, the 

matrix C of (2.10) looks like 

2n -m 
q~ZZ 

2n 
q Z 

(4.8) 
C 

2n 

EI q 

LIq 
2n 

where there are N horizontal blocks of q rows each. Thus,formation of D'/2C takes 

(2nqN)EL + (2nqN)M. Now to solve the discrete linear least squares problem, we form 

the normal matrix (D/'C)T(D'/2C). This has precisely the same form as the spline 
Galerkin matrix A; namely, banded with half-bandwidth 2n. Formation of a general 
row of the normal matrix takes q(2n) + q(2n - 1) + * * * + q(l) multiplications. For 

the upper half of the whole matrix, this amounts to Nq(Sn k) = Nqn(2n + 1), plus 

2nqN for the right-hand side. Finally, solving by band Cholesky takes 2n2N multiplica- 

tions, giving a total for least squares of 

(4.9) [(2n2 + 5n)qN + 2n2N]M + (2nqN)EL. 
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We can draw the following conclusions about the relative efficiencies of these 
methods: comparing (4.7) and (4.9) we see that discrete least squares is more efficient 
than discrete Ritz, assuming (as we shall) EL = EM. The number of quadrature points 
for discrete Ritz is at most q = 2n - 1 and is probably q = 2n - m. On the other hand, 
for discrete least squares we believe q = 2n - 2m is sufficient, as conjectured in Section 
III. However, even if we take the same q for both methods, least squares with splines 
is always more efficient than discrete Ritz with splines, because of fewer function 
evaluations. 

The comparison with collocation is a bit more difficult; from (4.3) we see that 
collocation (with either H(14) or the B-splines of de Boor-Swartz) is cheaper than dis- 
crete Ritz because of fewer function evaluations. However, the relative merits of colloc- 
ation and least squares depend on the value of n and m (see the table below where 
we assume q = 2n - m for discrete Ritz, q = 2n - 2m for discrete least squares). 

m = l,n =2 m =l,n = 3 n large,m small 

collocation (162M + 8EL)N (101 3M+ 32EL)N (2fn3M + 8n2EL)N 

discrete Ritz (62M + 3OEM)AV (18 3M + 105EM)N (4n3M + 4n3EM)N 

discrete least (M + 8EL) (150M + 24EL)N (43M + 4n2EL)N squares 

Thus, for small values of n, collocation is cheaper; however, for large n least squares 
takes about half the time of collocation, and both are an order of magnitude better 
than discrete Ritz (because of fewer function evaluations). 
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