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Cubatures of Precision 2k and 2k + 1 
for Hyperrectangles 

By Dalton R. Hunkins 

Abstract. It is well known that integration formulas of precision 2k (2k + 1) for a 

region in n-space which is a Cartesian product of intervals can be obtained from one- 

dimensional Radau (Gauss) rules. The number of function evaluations in these product 

cubatures is (k + 1)n. In this paper, an algorithm is given for obtaining cubatures 

for hyperrectangles in n-space of precision 2k, in many instances 2k + 1, which uses 

(k + 1)(k)n-1 nodes. The weights and nodes of these new formulas are derived from 

one-dimensional generalized Radau rules. 

1. Introduction. In this paper, we obtain multiple integration formulas exact for 

polynomials of degree S 2k or 2k + I which use (k + 1)(k)'- 1 nodes when the region 

of integration is a Cartesian product of intervals. The number of function evaluations 

is less than that of the product Radau or product Gauss rules which use (k + 1)n nodes. 

The main results given in Section 3 state explicitly how to obtain the nodes for these 

new cubatures; the weights in these new formulas are all positive. Examples are given 

in Section 4 which are constructed from the results of Section 3. 
Even though the results are stated for the n-Cube, In = [_ 1, 11 x [- 1, 11 

x ... x [- 1, 1 ], and for a constant weight function, this is done only for convenience 

of presentation. The development given for cubatures of precision 2k remains unaltered 

if we include in the integral an n-dimensional weight function which is a product of n 

distinct one-dimensional weight functions. For the 2k + 1 case, the additional assump- 

tion that these weight functions be symmetric is necessary. By restricting our attention 

to the n-Cube, we need only consider one set of orthogonal polynomials in one vari- 

able. It will be apparent how the statement of the theorems must be modified to en- 

compass the more general situation. 
The following notation will be used throughout this paper: 

qi(x): The normalized Legendre polynomial of degree i. 
(D (X): A polynomial in n variables. 

Pn, k: The real linear space of polynomials in n variables of degree k or less. 

Pk(X): The real linear space of polynomials in x of degree k or less. 
W - U: The set {p - q: p E W and q E U}; W and U are sets of polynomials. 

Sp W: The real linear span of the set of polynomials W. 
W - U: The set complement of U relative to W. 
For ease of reference, we begin with a statement of those results which are essential 

to the proof of the main theorems of this paper. 
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2. Preliminary Results. For functions of one variable, we have the following 
lemma which is a restatement, in a slightly different form, of a result given by Boland 
and Duris [1]. 

LEMMA 2.1. Fix an integer k > 1 and a real number mt1 such that Mk(AO1) # O. 
Then the polynomial 

kk(II1)0kk+ 1(X) - Ok+ 1(91 *(X) 

has k + 1 real distinct roots Al1, ,2, ... . Pk + 1 of which at least k lie in the interval 
(- 1, 1). Furthermore, these roots can be used as the nodes of a quadrature which is 
exact for all p E P2 k 

Observe that if Ml- 1, then the quadrature obtained is the Radau rule. Thus, 
the quadratures of the above lemma can be considered as generalizations of that rule. 
Also, if Ml is such that Ok+ 1(i'l) = 0, then the nodes that are obtained are those of 
the Gauss quadrature. 

The following corollary can be easily derived from Lemma 2.1 and therefore its 

proof is omitted. 
COROLLARY 2.2. Let a be real. The polynomial ?k+ 1(x) + aqk(x) has k + 1 

real distinct roots of which at least k lie in the interval (- 1, 1) and which can be used 
as the nodes of a quadrature exact for polynomials of degree S 2k. 

The construction of the formulas given in the next section are based upon the 
following theorem. 

THEOREM 2.3. Let B = {(J1, (F2 ... 4 FN} be a set of N polynomials in n vari- 
ables, orthornormal with respect to integration over the n-Cube. There exists a cubature 

1 N~~~~~~~= J 1 1 | 1 p(Xi 9 n)dxl ***dn- ij(, 

which is exact for all polynomials in SpB * B if and only if the rows of the matrix 

(Di(Xi) (D2(X1) . (FN(Xl) 

'D1 (X2) (F2(X2) . (FN(X2) 
(2.1) 

\ 1 (XN) 'F2(XN) . (FN(XN)/ 

where -= (x 
1j, X2,1, ... ., xd,), form an orthogonal basis for RN with respect to 

Euclidean inner-product. Furthermore, the weights are given by w - (j;N 12(2 X))- 1 

Proof This result is a generalization of a theorem given by the author [3, Theorem 
4.2]. Since the proof of this more general case is essentially the same as that given in 

[3], it is omitted here and the interested reader is referred to [3]. 
For one-dimension, if we apply the above theorem with B = { k0, 01 (x), . .., ?*(x)} 

and the Christoffel-Darboux identity, we obtain the converse to Corollary 2.2. With this 
observation, we state Corollary 2.2 and its converse as 

COROLLARY 2.4. There exists a quadrature 
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k+ 1 

{?1p(x)dxi w, p(xi) 
-1~~j= 

which is exact for all polynomials in P2k(X) if and only if the nodes are roots to a 
polynomial Ok+ 1(x) + aqk (x), a real. Furthermore, the weights are given by w; = 

(Ik= 00g2 (Xj))- 1 

3. Cubatures of Precision 2k and 2k + 1. Before giving the results of this paper 
in their most general form, let us consider the construction of a cubature, exact for all 

polynomials of degree 2k or less, on the square [- 1, 1] x [- 1, 11. 
If we form the product of two one-dimensional generalized Radau formulas, 

k+1 1k 

Y p(x)dx E A,p(g,) and L q(y)dy EBlq(X), 
j=1 j1 

then the resulting product cubature 
k+1 k 

(3.1) f1f p(x, y)dxdy E E A1B1p(1ui, Xi) 
i:=1 j=1 

is exact for all polynomials in Sp P2k(x) * P2k-2(y). From Corollary 2.4, the nodes 

of each of the one-dimensional rules, and therefore of (3.1), need only be roots of a 

polynomial 4k+l(x) + aqk(x) and M(y) + bbk_l(y), respectively. Therefore, the 

ordinates, X,, j = 1, 2, ... , k, of the point (pi', X1) in (3.1) can be obtained indepen- 

dently of the abscissa pi. Thus, let us consider a cubature of the form 

1 1 k+1 k 

(3.2) p | p(x, y) dx dy E E A iPi, Ai1), 

where the p,'s are roots of a polynomial q5k + 1(X) + aOk(x) and for each i = 1, 2, ... 
k + 1, the Xki's are roots of a polynomial MY(y) + bi?bk- 1(y). The parameters a and 

bi, i = l, 2, . . ., k + 1, shall be determined so that (3.2) is exact for all polynomials 
in P2,2k' 

Define 

W = {q5(x>k,(y): 0? i S k and 0 < j S k - 1}. 

Since the sum in (3.2) will integrate each polynomial in Sp P2k(x) - P2k-2(y) and 

since Sp W W = Sp P2k(x) * P2k_2(y), we have from Theorem 2.3 that for two 

distinct nodes (pr, Xrs) and ("t, Xt,) 

k k-1 

(3*3) E Oi(llr)Ni(Idt) E 4i(Xrs)Oi(Xtw) = 0- 
i= O i=O 

In order to apply Theorem 2.3 so that (3.2) is exact for p E P2,2k' we need a 

set W of (k ? 1)(k) orthonormal polynomials for which Sp W * W contains P2,2k. Thus, 
define W = (W U {,fl k(y)}) -{k(X)Ok-1(Y)} 

For the cubature (3.2) to be exact for each polynomial in Sp W - W, it is neces- 

sary that for two distinct nodes (P'r, Xrs) and (p, XtW) 
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k-2 k 

2: Oirs)OA(?tw) L ?0i(dri(Adt 
i=O i=O 

(3.4) k-1 

+ *k- 1 Q(rs)'Pk-i (xtw) Z 0ti(I4)ki(Idt) + 0?kQ(rs)0k(tw) ?0 i-O 

Comparing (3.4) to (3.3), we see that (3.4) will be satisfied if the node (pi, Xjj) 
is chosen so that pi is a root of a polynomial Ok+ I(x) + a45k(x) and X,, is a root of the 
polynomial O4'k(Y) - Ok(idk - 1 (Y)y 

The sufficient condition just indicated for n = 2 generalizes to arbitrary n and 
this result is given in the following theorem. 

THEOREM 3.1. Let n > 2 and k > 2 be fixed integers. Also, let Al be real and 
fixed and such that Ok(A 1) # 0 and let 92' A . . . - Pk+ 1 be the remaining roots of 
the polynomial Ok(P1 )Ok+ I (X) - Ok+ 1 ( 1)k(x). For each i = 1, 2, ... , k + 1, let 

Xi4, j = 1, 2, ... , k, be the roots of the polynomial 

(3.5) 00 k (X) - k (Ad0k-1 (X) 

Then the cubature 

r 1J 1 | 1 Axi, X2, - 
.oxn) dxn ...' dX2dX 

(3.6) k+1 k k 

_ E I *-E lBjl j2 **Bjijnp(jii2 ' ilj2l 1Xinl 
1i=1 12=1 in='11 

where 

A1=0 

and 

k-1i Bi = 1 I i1ii 

is exact for all p E Pn,2k' 

Proofi For the case n = 2, the proof has been indicated in the discussion given 
prior to the statement of the theorem. 

In general, for n > 2, we define 

Wn,k = ({3(x1, X2, * *Xn- )Ckj(xn): 

j O, 1 ...,k- and F E Wnfllk} U {0 O*k(xn)}) 

- fo k(X1)k-i1(Xn)}, 

where Wl, = {Op(xl): j = 0, 1, ... , k}. 
It follows from an induction on n that Pn,k is a subspace of Sp Wn,k and there- 

fore, since Pn,2k = Sp Pn,k * Pn,k Pn,2k is a subspace of Sp Wn ,k * Wnf k. Further- 
more, Wn k contains (k + 1)(k)n1 orthonormal polynomials 
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Again by an induction on n, it follows that for two nodes (lr, Xrs2, Xrs3. 

Xrsn) and (itt, Xtw2' Xvtw3' .., Xtwn) chosen as described, the Euclidean product of 
the two rows of the matrix (2.1) with the polynomials given in Wn,k can be written as 

k \n k-1 

(3.7) E Oi(r)?i('t)) JrI E ki(Xrs1)0k(Xtw1). 
i-O /j=2 i=O I 

If the two nodes are distinct, we have that (3.7) is equal to zero and therefore, 

from Theorem 2.3 the cubature (3.6) is exact for all polynomials in Sp Wn,k ' Wn,k 

which in turn gives us that it is exact for p E 
Pn,2k' 

Furthermore, setting (Pr' Xrs2 ,.. ' Xrsn) = (t'Xtw2 ' Xtwn) in (3.7), we 

obtain the reciprocal of the corresponding weight. This completes the proof of the 

theorem. 
We see that in the above theorem there is some freedom in the choice of 1M. By 

restricting M, to be a root of the Legendre polynomial of degree k + 1, then for certain 

values of k the cubature (3.6) will be exact for all polynomials in Pn,2 k + 1 This result 

is given as 
THEOREM 3.2. In Theorem 3.1, if k is odd and Ml is chosen so that Ok+I(hI1) 

= 0, then the cubature formula (3.6) is exact for all pC E Pn, 2k+ 1P 

Proof. Since we have that (3.6) is exact for p E Pn,2k' with the additional as- 

sumptions it suffices to show that the cubature sum applied to each orthogonal poly- 

nomial Hlln l (x,), with En i, = 2k + 1, is zero in order to obtain the desired con- 

clusion. 
Since k is assumed odd, by letting 2m = k + 1, we can order the roots of Ok+l(x) 

so that b92m-i+ 1 = - i, i = 1, 2, ... , m. Therefore, for any 1, 01(92m-i+ 1) = 

(- 1)'f(i). Also, since symmetric nodes in Gauss quadrature have equal weights, 

A2m-i+ i =I Ai. Lastly, for i=1, 2, . . ., m and for j=1, 2, . .., k, we can set 

X22m -i+, 1, = - 
Xi, since - Xi, is a root to the polynomial 0 Ok k(X) - k k(22m -i+ 1i) 

Ok -1(x). Thus, we see also that for any 1, q 21(2m _-i+ l, j) = (-l)'?1(Xi1) Having 

X2m-i+ 1,j A= - X1 gives us that the two weights B2m-i+ 1,j and Bij are equal. 

Applying the cubature sum in (3.6) to H fin (x,), where Lm li = 2k + 1, we 

have 
m n k 

j1- j1)i (ll1 ) 1r2 E- Bjl1jl4,il(AX1ljl) E il fl i 
jl1 11 1=2 1l=1I 

n k 

+A2m-jl+loj1(lmjE) I B m~+,lklX2rn.j,l+jl)) 
2m-+1(2m-jl+) jlB2 m - + l,jl( 

which is equal to 

m /n k 

-l t ~~~ jf(ll)-I 2 j B}ilj,il(x^j,i,) 
11=1 Uz~12 I= I 

n k o 

+( )k+ 1Aj, Oi1tuj1) I j li(y 

and which we see is zero, This completes the proof of the theorem. 
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4. Numerical Examples. The algorithm indicated by Theorem 3.2 was programmed 
and examples were computed for several values of k. Since the examples were obtained 
for illustration, the computations were done in single precision, seven significant figures. 

The Gauss nodes and weights were entered, using the tables given in Stroud and Secrest 

[4]. The Newton-Raphson procedure was used to find the roots Xi1; however, they were 
obtained only to 5 decimal places. The values for Xij and Bij are given only for i = 1, 

2, ..., (k + 1)/2 since X2m- i+ij =-Xi,j and B2m-i+u,j = Bij. 

TABLE I 

k = 3 precision: 7 

ki Bii 

,U1 = 0.861136 0.905324 0.326846 

0.212374 0.966221 

- 0.708838 0.706934 

1-2 = 0.339981 0.694138 0.742512 

- 0.272274 1.011006 

- 0.974255 0.246482 

It is shown by Franke [2] that for a cubature, for a symmetric planar region, to 

be of precision 7, one must use at least 12 nodes. Thus, this cubature is a minimum 

point formula for n = 2. 

TABLE II 

k = 5 precision: 11 

) 
7-j Bii 

AI = 0.932469 0.944096 0.156115 
0.647156 0.435729 
0.114424 0.596903 

- 0.471752 0.537090 
- 0.891065 0.274168 

,2 = 0.661209 0.887200 0.283882 
0.453135 0.555783 

- 0.152812 0.616007 
- 0.699427 0.441015 
- 0.978752 0.103319 

/13 = 0.238619 1.000772 0.079262 
0.721144 0.446380 
0.167629 0.623893 

- 0.446102 0.562927 
- 0.885745 0.287544 
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We should observe that in the last example some of the nodes lie outside of the 
n-Cube. The cubature of Theorem 3.2 was computed for k = 7. For the Gauss node 

1 = 0.183434, one of the roots, Xi, is - 1.006044. Therefore, from these examples, 
we see that all the nodes need not lie within the n-Cube. 

We finally note that Theorem 3.1 does not include the case k = 1. However, it 
is not difficult to obtain directly from Theorem 2.3 cubatures of precision 2 which use 
n + 1 nodes. These cubatures will be minimum point formulas. 
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