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The Distribution of Ideal Class Numbers
of Real Quadratic Fields

By M. D. Hendy

Abstract. A table of class numbers of real quadratic number fields Q(\/d) with square-
free determinant d, 1000 < d < 100000 is examined and several analyses of the distri-
bution of the class numbers, and the number of classes per genus are made. From these,
two conjectures on the possible distributién of the class numbers as d —> o are made,
which are consistent with Gauss’s related conjecture.

1. Introduction. In 1965 K. E. Kloss [4] announced the production of a table
listing the primes p =1 (mod 4), p < 120000 which are the determinants of real
quadratic number fields whose domains of integers are unique factorization domains.
He notes that approximately 80% of the primes considered are in the table. In addition,
a table of ideal class numbers h(p) for Q(\/p), p =1 (mod 4), p prime < 95000
was produced.

Subsequently, a table of class numbers [5] containing A(p) for the first 5000
primes p =1 (mod 4), (5 < p < 105269) was deposited in the UMT file. In his review
of this file, D. Shanks [7] analyzed the data in two ways. Firstly, he followed up
Kloss’s observation on the proportion of fields with A(p) = 1, producing a table showing
the number of primes p in each portion of 1000 values, which had. a given class num-
ber. He noted that the proportion of values p with class numbers & = 1, 3,5, 7 and
9, respectively, was 80%, 10%, 3.6%, 2% and 1.2%; and further that these proportions
were remarkably stable in the smaller intervals. This distribution reinforces Gauss’s
related conjecture [1, Section 304] that the number of fields with one class per genus
is a fixed proportion of the population as the determinant goes to infinity. Shanks
raises the question on what is the nature of this distribution.

Another more recent tabulation, by Richard B. Lakein [6], is a table of class
numbers of the quartic fields K = F(n”*) where F = Q(i) for 5000 Gaussian primes
7 =t1 (mod 4). This distribution of class numbers of these fields is strikingly similar
to that noted earlier by Shanks [7].

Shanks’ second analysis was a table of the exceptionally large class numbers, or
more specifically, those primes p, for which A(p) is larger than any preceding class
number. This list contained 12 primes ranging from p = 229 (k& = 3) to p = 90001
(h = 87). We can note that these values are bounded above by +/p, with the ratio
h//p ranging from 0.20 to 0.36.
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Recently the opportunity arose during the testing and early operation of a
Burroughs B6700 computer to run a job which was “computer bound” for long intervals
with little input output and a small usage of core.

A program was written based on a class number algorithm which is similar to
Ince’s procedure of counting periods. Briefly, this algorithm was based on an adaption
of Lagrange’s algorithm for calculating the continued fraction coefficients of a quadratic
surd as described in [2]. If we apply this algorithm to the quadratic surd §/b, where 8
is a primitive algebraic integer of the real quadratic field of discriminant D, and b || N(B),
b < D", then we find that the sequence Q,, in the algorithm includes the norms of
all the primitive ideals in the same class as B = (b, f8), with norm <uD"%. Hence, by
using the Minkowski bound, we can calculate the class number. The program calculated
the class number, A(d), the number of ideal genera, g(d) and the number of ideal classes
of the principal genus, f(d) for each field Q(v/d) with squarefree determinant d, 1000
<d < 100000. A table was produced, in 99 sections, each section giving d, f(d), g(d),
h(d) for each squarefree d in an interval of 1000 integers, followed by a count of the
number fields with each combination (g(d), f(d)) that occurred.

2. Checking the Table. Several partial checks were made. The most important
was that g(d), h(d) were calculated independently, and a check was made to ensure
that their ratio f = h/g was integral. This check is, of course, of no value for g = 1.
Secondly, the values of h(d) for the first 1227 values 1 <d < 2025 were computed
and compared with the corresponding class numbers in Ince’s table [3]. Finally, the
16 extreme values of A(p) extracted by Shanks in [7] were checked against the table.

3. Distribution. The distribution of the class numbers of the fields is given in
Table 1. For squarefree integers d in a given interval, let N, be the number of fields
Q(/d) with g genera, and let Nfg be the number of these which have f ideal classes per
genus. The entries in Table I are the values NV, and N, for values of d in intervals of
10000 integers. If we consider the proportions Nfg/Ng we find for small values of A,
these proportions appear to be independent of d, although in the tail of the distribution
with & relatively large, the proportion increases with d. A plot of the value Nfg/Ng
against f on log-log paper suggested that for small values of &, Ny, #Ng/f 2. This
would mean that for g = 1, N/N, % 8n %2 (odd values of f only), and for g > 1,
N /N, % 6m2f 2.

In Table II we compare the proportions N, f/N , for the total population, with

TaBLE I
f= 1 3 5 7 9 11 13 15 17 19 +
o 2£ 72 81,1 9.0 3.2 1.7 1.0 0.67 0,48 0.36 0.28 0.22 2.0
Ny /Ny 80.5 10.3 3,7 1.8 1.2 0.65 0.48 0.38 0.20 0.16 0.60
Ngi)/sooo 79.7 10.4 3.6 2.0 1.3 0.58 0.56 0.40 0.22 0.22 0.90

N§2)/5000 79.9 10.5 4.0 1.7 1.1 0.56 0.60 O0.42 0.38 0.12 0.76
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the values of 677 2f~2. For comparison we also include N}l )/5000, and N}”/SOOO,
where the N(fl) are the corresponding values obtained from Kloss’s table [7] and the
N}z) from Lakein’s table [6]. The three distributions agree closely although they are
from dissimilar populations. Each value is expressed as a percentage.

In Table IIT we compare the proportions Ngf/Nf for g = 2, 4, 8 for the total
population, with the values of 67~ 2f 2 each proportion being given as a percentage.

TaBLE I
£ = 1 2 3 4 5 6 7 8 9 10 +
g =2 66.5 13.0 8.4 3,2 3.0 1.7 1.3 0.75 0.86 0.47 1.7
" 64.6 15.0 8.3 4,5 2.8 1.8 1.1 0.60 0.55 0.23 0.57
8 67.1 18.2 8.4 3.4 1,8 0.60 0.18 0.18 0.05 0.00 0.09
6£ %2 0.8 15.2 6.8 3.8 2.4 1.7 1.2 0.95 0.75 0.61 5.8

It can be seen that when 4 is small (h < 25), Ny, /N, is independent of g for
g =2, 4 and 8. Again, the behavior of the tail, for large values of A differs markedly
from 6f 272, indeed if Ngf = 6f_21r_2Ng, we would find the average value of f over

all fields in the interval with g genera was

2 [Ny /Ng =682 2 ! =,

f=1 =1
as opposed to the measured average values, 1.96, 2.09, 1.89, 1.59 and 1.31 for the
values g =1, 2, 4, 8 and 16.

If we compute the values of 7~ 'f —1(6(8)Ng/Nfg)'/2 for 5 < e < 10, we find that

for values of 2 < 25, this value ranges from 1.46 (V, ,3 = 6) to 087 (Ng 3 = 118),
with an average value of 0.94. Hence, we conjecture, for a range of values of d in the
neighborhood of the integer a,

TABLE IV

£ d £ d f d £ d £ d
g=1 43 14401 13 13321 36 45511 19 99295

1 2% 45 32401 14 11794 37  38026% 20 94546

3 79% 47 78401 15 11321 38 93619 21 77779

5 401 49 70969 16 25282 47 99226 24 50626%

7 577 51 69697 17 19882 g=4 g=8

9 1129 53 69694 18 25279 1 130 1 1155
11 1297 57 41617 19 19834 2 399 2 4354
13 4759 63 57601 20 41599 3 730% 3 10455
15 9871 87 90001 21 47959 n 3026 4 16555
17 7054 =2 22 59203 5 3970 5 19210
19 15409 1 10% 23 49321 6 9790 6 33490
21 7057 2 82% 24 79522 7 5626% 7 48399
23 23593 3 235 25 54769 8 16555 8 81130
25 24859 y 226% 26 77842 9 18226 9 65026
27 8761% 5 1111 27 49834 10 16899 11 56170
29 49281 6 1522 28 84679 11 11026% g=16

31 97753 7 1534% 29 27226 12 21610% 1 15015
33 55339 8 2305% 30 78745 13 23410% 2 39270
35 25601 9 4954 31 68179 14 39999 3 81510
37 24337 10 3601% 33 87271 15 88231

39 41614 11 4762% 34 53362 16 71290

41 55966 12 9634 35 56011 17 63505
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CONJECTURE A. For a large, 2 small, Ng]/Ng is independent of a.

CONJECTURE B. For a large, h small, N, - = N, /f>.

4. Extreme Values. In Table IV we list the least determinant d (d < 100000)
which generates the quadratic number field Q(\/d) with g genera and f ideal classes per
genus.

In Table IV the values of d with an asterisk are those values d for which h(d) is
larger than any preceding class number.

h can be obtained analytically from the Dirichlet series L(1, x) where X is the
character of the field Q(+/d) using the formula, & = L(1, x)\/D/2 In €, D being the
discriminant of Q(v/d), € the fundamental unit. In [7] Shanks notes L(1, x) =
O(In \/d). Also as € = (x + yv/D)/2, with x, y = 1,x2 —Dy? =+4=x>+/D -2,
€ >+/D — 1, and hence & = O(/d). In Table V we give those values of Table IV for
which #/r/d > 0.4.

TABLE V
d 2 10 226 82 730 50626 11026 399
h 1 2 8 n 12 96 Ly 8
h/y/d 0.71 0.63 0.53 0.u4  O.44 0.43 0.42 0.40.
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