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Zeros of p-Adic L-Functions 

By Samuel S. Wagstaff, Jr. 

Abstract. The p-adic coefficients and zeros of certain formal power series defined 
by Iwasawa have been calculated modulo various powers of p. Using these results 
and Iwasawa's formula for the p-adic L-function Lp(s; x) of Kubota and Leopoldt, 
several p-adic places of the zero of Lp(s; x) were computed for the irregular primes 
p < 157. 

1. Introduction. Let p be an odd prime and let i be an odd index 1 S i < 

p - 2. Iwasawa [2] has defined various formal power series in T with p-adic integer 
coefficients, 

ig(T) - ioa + i,f3T + iyT2 +2 6T3 + ieT4 ? 

which play an important role in the theory of class numbers of cyclotomic fields. 
These power series are of particular interest when p is an irregular prime and p divides 
the numerator of the Bernoulli number Bi+ 1,using the even index notation of [1]. 
As we shall see, this condition is equivalent to the condition 'a =0 (mod p). Iwasawa 
and Sims [4] verified that ia t 0 (mod p2) and i:o #0 (mod p) for the irregular 
prime pairs (p, i) with p S 4001, and W. Johnson [5] has extended their result to all 
irregular primes p < 30000. This implies that 'g(T) has a unique zero 'i in the ring 
Zp of p-adic integers and that Wc- 0 (mod p). 

In this paper we report on computations of some of the coefficients of 'g(T) 
and of the zeros ix modulo higher powers of p. The zeros ix are related to zeros of 
certain p-adic L-functions which we also calculated. One important use of the latter 
numbers would be to test possible formulations of an analog of the Riemann Hypoth- 
esis for p-adic L-functions. 

2. 'g(T) and p-Adic L-Functions. We follow the notation of Iwasawa and Sims 
[4]. The rational numbers and the p-adic numbers are denoted by Q and Qp. Let F 
be the union of all the cyclotomic fields of p'th roots of unity over Q for n > 1 and 
r denote the subgroup of the Galois group of F over Q corresponding to the group 
of 1-units in Qp. Let V be the group of all (p - I)st roots of unity in Qp. 

For a E Qp, let (a) denote the, rational number b/pm, where pma b (mod pm) 
and 0 < b < pm. Thus (a) is uniquely determined by a, although b and m are not. 
For odd indices 1 S i S p - 4, we define 'g(T) in the ring A of formal power series 
with coefficients in Zp. For such i and for n > 0, let 

p-1 

'gn (T = E E2 (v(1 +p)mlpn+l)Vi(l + T)m. 
m=0 vEV 
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Then 1gn(T) is a polynomial in T with coefficients in Zp and degree less than pn. As 
n - o, 1gn(T) converges on each coefficient of Tm to a power series ig(T) in A, 
and we have 

(1) 1g(T) 'gn(T) mod(1 - (1 + T)P )A ( 0t > 0). 

Under the hypothesis that the first factor +ho of the class number of the field 
of pth roots of unity over Q is prime to p, Iwasawa [3] has proved that for odd i : 1, 

g((1 ? p)W - 1) = -L(s;x) (s E Zp) 

where Xi is the character of integers modulo p, with values in Qp, such that Xi(a) 
ap-i (mod p) for all integers a, and Lp(s; Xi) is the Kubota-Leopoldt [7] p-adic 
L-function. This hypothesis has been verified by the combined efforts of several 
authors [5], [6], [8] - [11] for all p < 30000. Iwasawa and Sims [4] and W. John- 
son [5] have shown that for p < 30000, if p divides the numerator of Bj+ 1, then 
ig(T) has a unique zero iw and that iw E pZp. It follows that, for such p and i, 

Lp(s; Xi) has exactly one zero s = E=E Z and that iK is determined by 

(2) ( 1 ~~~~+ p)- K 
= 

+ 
ix 

3. Computation of 'a. With n = 0 in (1), we have 'g(T) -go(T) (mod TA). 
Tlherefore 1a = 1g(0) = 1go(O) = Y2vev(vlp)vu. For 1 < a p -1, let va E V be such 
that va =a (mod p). Thus we have 

c=E ( =1 E av 
a \p/ a Y.a 

a 

For 1 < a < p - 1, it is clear that 

(i + I)avi-ivu+ 1 + ai+ 1 (mod p2). 
a a 

We sum over a. Since V is cyclic of order p - 1 and p -1 i + 1, we have 

p-l 
i:vJ+l = E v = 0. 

a=1 veV 

Hence 

p-1 p-1i (i ? 1) E ava E: ai+ -Bi+1p (mod p2) 
a=1 a=1 

Using (3), we find 

(i + 1 ) icap Bi+ 1P (mod p , 

which shows that 1a = 0 (mod p) if and only if p is an irregular prime and i is an 
odd index, such that p divides Bi+ 11 Assuming that p does not divide +h0, it follows 
that Lp(s; Xi) has no zero s E Zp unless (p, i) is such a pair. 

Using Eq. (3), 'a was computed modulo p7 for all irregular primes p < 157. 
Write 01 = Y)%ajp'. The values of a, . . , a6 are given in Table I. (The a2 of [4] 
is our a1.) We have seen above that a0 = 0 when p divides BR+1. 
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After Table I was computed, we wondered whether perhaps a, = 1 for suffi- 
ciently large j. But a calculation of 31cl (mod 3721) showed that this fails. The 
first 21 p-adic places of 31 a for p = 37 are: 

0, 23, 3, 23, 24, 1, 1, 29, 27, 36, 0, 21, 23, 2, 8, 27, 1, 1, 5, 0, 18. 

TABLE I 

p i a1 a2 a3 a4 a5 a6 

37 31 23 3 23 24 1 1 
59 43 20 17 14 42 24 1 
67 57 34 11 36 34 31 56 

101 67 16 72 15 83 44 70 
103 23 1 62 65 16 47 98 
131 21 34 7 41 68 0 110 
149 129 24 51 24 67 56 102 
157 61 66 97 114 33 142 145 
157 109 109 151 75 91 6 108 

4. Computation of 11, iz, etc. Let 1 S k < p and rik be the coefficient of Tk 

in 'g(T). Let 1 S n S p - 1. Then (1 - (1 + T)P )A C (pn, TP)A, so (1) implies 

ig(T) 'gn (T) (mod(pn, TP)A). 

Since va a pn (mod pn+l 1) for n ? O, we have the following congruences modulo 
pn 

17k E E (V(1 ?P)mlPn+1 )v(mk 
m=O VIrV 

n-i n-1 p)m\/m\n 1l 
- , Va, (P ( P ) aip n1- B(a, m) 
a=l m0 n+l1f\ a=/p M= 

where 

B(a, m)-aP (1 + p)m aP (1 + (7)p + + (m)pn) (mod p+l) 

and 0 S B(a, m) <p J'. From the familiar identity (m) = r=O( r )(k-r)' we have 

pn_, (m)m pn, k m j + r) j ) ik t j (n i 1, (m) 
M=O m=O r=O tr) __j = 

But n 

E. (m)_ ( pn ) _ 0 (mod pn) 

for t + 1 <p, and we have 
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p- mni(m(\VMp P(mom\/m\ Z B(a, mZ ) aPZ ( p 'l0((modm)) 

fork +n + I <p. Hence 

1p-1nI 
- 
1 an - E B(a, m)m (mod pf), 
P a=1 P m-0 

1 P-1 pn 1 n_l 
i^-1 E, ain 1 P B(a m)() (mod pn), 

~a=1 Pm=0 

etc., and if the calculation is done in this order, only integers will be used. The inner 
sums must be computed modulo p2n+1 and the outer sums modulo pf +1. The cal- 
culation time is roughly proportional to pn + 1, the total number of terms. 

Let 'l = E%b1pl, b - = Ocj1pl', etc. The numbers b1, c;, d1, and e. which 
were calculated are shown in Table II. 

TABLE II 

p i bo b1 b2 b3 c0 cl c2 d0 dI e0 

37 31 16 6 32 32 29 20 28 2 13 22 
59 43 33 45 6 46 2 45 
67 57 46 56 6 55 35 64 

101 67 59 19 95 92 
103 23 49 30 102 40 
131 21 106 13 122 59 
149 129 70 67 140 123 
157 61 109 82 92 129 
157 109 106 30 29 141 

5. Programming Details. All calculations were done using multiprecision in- 
teger routines on the IBM 360/75 at the University of Illinois. The program for b3 
for p = 37 took two and one half hours and was the longest running one. Most of 
the other numbers had been calculated earlier on the IBM 360/91 at Princeton Uni- 
versity using floating point numbers in an unusual way. The largest single precision 
integer on the IBM 360 is 231 - 1, but integers as large as 256 are exactly repre- 
sented as double precision floating point numbers. Double precision floating point 
arithmetic is done automatically on the IBM 360, but double precision integer arith- 
metic is not, and the latter is much slower. Consider the inner sum TP_3 'B(a, m)m 
in the formula for i: (mod p3). We have B(a, m) < p4 and m < p3. There are p3 
terms so the sum is less than p' 0. For p = 37, a term in the sum might be too large 
to be represented as a single precision integer since 377 > 231. However, 3710 < 256 
so the whole sum can be computed in ordinary double precision floating point num- 
bers. For p = 59 and p = 67, we have p9 < 256 < p10 so the partial sum had to be 
reduced modulo p7 every so often to stay less than 25 6. Using this method, the 
entire computation of 3 1 3 (modulo 373) required only 38 seconds. 
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6. Computation of 'co and 'K. The p-adic integer 'i such that 1g('&) = 0 was 
computed modulo p5 for p = 37, modulo p4 for p = 59 and 67, and modulo p3 for 
p = 101, 103, 131, 149, and 157. The number iK satisfying (2) was computed modulo 
one lower power of p in each case. Let ix = Z7 'w.pi and ix = Ok.p'. Then 
wo = 0 and wl + ko-0 (mod p). Table III shows the values of w; and k, which 
were computed. The relations w1 -al/bo (mod p) and 0 < w1 < p determine 
w1. Forj= 2, 3, 4, w1 was computed by trying the values 0, 1,... ,p - 1 succes- 
sively and substituting into ig(w1p ? . . . ? wnpP) 0 (mod pi+'). Since w1 $ 0 
in all the cases computed, it follows for these that ko = p - w1 and k- (wsi) - w2 
-1 (mod p). Then for =2, 3, k, is the number which satisfies 0 6<1 < p and 
(1l+p)Kf(i)-1+ico (mod pi2) where K( pi+ -k0-ko p - k- kip'. 

TABLE III 

p i w1 W2 w3 w4 ko0 k1 k 2 k3 

37 31 24 33 8 35 13 20 30 8 
59 43 28 14 42 31 9 15 
67 57 8 43 60 59 51 7 

101 67 10 45 91 100 
103 23 21 22 82 84 
131 21 59 74 72 64 
149 129 55 1 94 142 
157 61 21 105 136 104 
157 109 36 72 121 86 

We were unable to discern any pattern in the numbers ico and 'K. It would be 
interesting, for example, if they were all rational numbers with small numerator and 
denominator. We searched for such a representation m/n with Iml, Inl < p2 for 
'col/p and 'K and for 1 + 'co, which has an important arithmetic meaning in the 
theory of cyclotomic fields (cf. [4, pp. 89-91] ). For p = 37, i = 31 we found only 

'c -77 (2p +3) (2p +3) ~o34 
p 652 18p - 14 21i + 1 

and 

i .-63- p+26 _ 2i+ 
14. 1K 

= 
19 3p -2 3p - 2 (mod 374). 

No such representation for 1 + 'i was found. Dozens of congruences like the two 
above hold modulo 373 so there is no reason to believe that either of these congruences 
holds modulo 375. 

Similar calculations were made for p = 59 and p = 67. But in these cases 'w/p 
and 'K are known only modulo p3 so we found dozens of congruences. In neither 
case was iK ---(2i + 1)/(3p - 2) one of them. 

The author thanks Professor Iwasawa for suggesting that he make these calcula- 
tions. He is grateful to the referee for suggesting numerous improvements in the 
original paper. 
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