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A Nearest Point Algorithm 
for Convex Polyhedral Cones 

and Applications to Positive Linear Approximation 

By Don R. Wilhelmsen 

Abstract. Suppose K is a convex polyhedral cone in En and is defined in terms of some 
generating set {ej, e2, . . , eN}. A procedure is devised so that, given any point q E 

En, the nearest point p in K to q can be found as a positive linear sum of N* < n points 
from the generating set. The procedure requires at most finitely many linear steps. 

The algorithm is then applied to find a positive representation 

N* 
Lf= XAif(xi), xi > 0, fE G4, 

i-1 

for a positive linear functional L acting on a suitable finite-dimensional function space (D. 

1. Introduction. Let K be a closed, convex set in Euclidean space En and q an 
arbitrary point in En. Given the usual inner product and associated Euclidean norm, 
we may speak of the unique point p p(q, K) in K which is nearest to q. 

Consider the case in which K is a polyhedral cone generated by a finite set of 
points E = {el, e2, ...,eN}. That is, 

N 
K = K(E) - E Xi > O, i = 1,... .. 

Then it is possible, using the algorithm of this paper, to find p in a finite number of 
linear steps.t More importantly, the algorithm gives the barycentric coordinates of p 
with respect to N* < n linearly independent points of E. 

This latter feature makes application to positive linear approximation possible. 
Given a linear functional L defined on a finite-dimensional function space F, the func- 
tions having a common domain D, the positive linear approximation problem consists 
of finding points xl, x2, * *, XN* in D, N* < n, and positive weights X 1 A 2 K .. . K 
XN* so that 

N* 
(1) Lf = E \f(Xi) 

1=1 

for all f E (. Positivity of the weights is not necessary to achieve a representation (1), 
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but it is necessary if the representation is to be a good one with respect to convergence 

and computational stability (see Davis [2, p. 352]). 
If p1, p2, . . . Pon is a basis for (A, then the imbedding 

M-(Lp,. .., L p)T and e(x)-(epl(x), .. ,son(x))T, x E D, 

converts the positive approximation problem into a two-part representation problem 

in En 
A. Find an integer N and vectors ei = e(xi), i = 1, 2, . . ., N, (if they exist) so 

that M is contained in the convex cone they generate. 
B. Find the barycentric coordinates X1, X2 ... X XN* of M with respect to N* 

< n points of the generating set E = {el, . . ., eN}, 

The existence question implicit in A can be answered affirmatively under quite 

general conditions which we shall state in the next section. 
Given existence of E, the algorithm may be used to solve A-B. At no point is 

there need to handle a linear system larger than n x n, and each pass through the algo- 

rithm produces an intermediate solution. Each intermediate solution is itself an approx- 

imation to the final solution of A-B. This will be discussed in more detail in Sec- 

tion 5. 
A related method for solving A-B has been given by Wilson [6]. It employs a 

sequence of applications of the simplex algorithm to progressively larger and larger 

systems. It can be shown, as in Wilson [6], [7] and Wilhelmsen [5], that the size of 

such systems in certain cases is asymptotically proportional to n2. Furthermore, no 

intermediate solutions are obtained. 
We discuss some background for the approximation problem and describe the 

tools needed for the algorithm in the next section. The algorithm is described in Sec- 

tion 3 and stated in Section 4. Section 5 contains some remarks on the application 

to A-B, and Section 6 has numerical examples. 

2. Background and Preliminaries. Most interest in the positive approximation 

problem centers on the integration functional 

(2) Lf = JD &(x)f(x)dx, W(X) > 0. 

The basic existence theorem is due to Tchakaloff [4]. Under rather general circum- 

stances, there always exists a positive representation 

N* 

(3) ~~~~~Lf = Xif(xi)5 f GE -4) 
1=1 

where Xi > > and xiE D, i = 1, ... VN* An. 
We shall refer to Eq. (3) as a Tchakaloff representation for L. If T is a subset 

of D and there exists a Tchakaloff representation for L which uses points only in T, 
then we shall call it a Tchakaloff set. The Tchakaloff base TL, of L is the aggregate of 

all Tchakaloff sets in D. 
A constructive proof of the Tchakaloff theorem was given by Davis [1]. Al- 

though his paper deals only with the integration functional (2), his results are easily 
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adapted to more general functionals. We shall state his theorem and its conditions for 
the more general case. 

If eP, .... , fpn are continuous and real-valued on D, we say F satisfies the Krein 
condition if there is at least one f C 4 which does not vanish on D. A linear functional 
L is said to be nonnegative if Lf > 0 whenever f(x) > 0 on D. L is (strictly) positive 
if Lf > 0 whenever f(x) > 0 on D and f is not identically zero. 

THEOREM 1 (DAVIS). Let 1' be the linear span of continuous, real-valued, linearly 

independent functions uPl Ip22.. . (pn defined on a compact set D. Assume 1 satisfies 
the Krein condition and that L is a positive linear functional on (D. If {xi}1 1, is an 
everywhere dense subset of D, then for sufficiently large m, the set { X.}i 1 is a Tchaka- 
loff set. 

What Theorem 1 says is that under suitable circumstances TL is nonempty. In 
fact, there are at least as many Tchakaloff sets as there are mutually disjoint dense se- 
quences in D. 

Following are some well-known properties of nearest points and support hyper- 
planes which are used in the algorithm. K is understood to be a convex polyhedral 
cone in En, and int(K) denotes its relative interior. 

Property P1. For q E K, p = p(q, K) if and only if H {y E En: (q - p, y= 
0} is a support hyperplane of K and p E H n K. That is, p C H n K and (q - p, k) < 

0 for all k E K. Observe that q - p I H. 
Property P2. If p C int(K), then K C H. 
Property P3. If el, . .. , eN are linearly independent and K = K({el, . .. , eNA 

then 

N 
int(K)= EXiei: X1>O,i= 1, . . . ,N. 

Let S be a linear subspace of En. The principal computational step in the algo- 
rithm is to compute p = p(q, S) as a linear sum of a given basis el, e2, . . ., eN of S. 
This is a restricted form of the classical least squares problem and may be solved in a 

variety of ways. 
Property P4. If S is one-dimensional, then p = (q, e, )e, / le1 112 for any el E S. 

Property PS. In general, p = VY X ei, where X1 X2X... X are the unique 

solutions of the N x N linear system (known as the normal equations) 

N 
(4) E .(e, e,) = (q, e1), /=1,2,... ,N. 

i= 1 

3. Description of the Algorithm. We are given a point q E En and a convex 
polyhedral cone K C En generated by the set E = {el, . . . , eN}. The object is to 
compute p = p(q, K), the nearest point in K to q, in terms of E. 

Briefly stated, the algorithm consists of computing a sequence of nearest points 

p1, P2, - .. , to q in subcones K,, K2, . . . of K. Each subcone K. is chosen so that 
p1 E int(Ki) and is closer to q than is p1,-1 Since there are at most finitely many sub- 
cones, the sequence must terminate at some step with p = pn. 
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Finding K1 and p1 is simple. We examine E for a vector el such that the scalar 
product (q, el) is positive and choose the half-ray containing e1 as K1. Then according 
to Property P4, p1 = (q, elel/lle, 112. 

The key step, of course, is to find p1 1, given p1. Suppose p1 = p(q, Kj) E 

int(K1), where K, is generated by some linearly independent subset Ej C E. If pi = q, 
then we are done. Otherwise, there is a hyperplane UH which contains K, and is orthog- 
onal to q - p1. Now, either H, is a support hyperplane of K, in which case p1 = p, or 
Hj is not, in which case at least one point e* E E lies on the near side of Hj with re- 
spect to q; i.e., (e*, q - pi) > 0. In the latter case, we adjoin e* to Ej and begin a sub- 
cycle of steps designed to extract from this union a generating subset E+ 1 for the next 
subcone K,+1. 

In a given step of the subcycle we have a cone C, a smallest subspace S S(C) 
containing C, and a point Q E C. Initially, for example, C = K({ e*} U E5) and Q = 

p,. Now, we compute P = p(q, S). If P E C, then p1= P and K1 1 is taken to be 
the smallest subcone, or face, of C which contains P. Ej+ 1 consists of the generators 
of Kj 1 . If P ? C, then there is a unique point R in the interval (Q, P) which inter- 
sects the boundary of C in S. This can be computed, and we can determine the small- 
est face C' C C that contains R. Notice that liq - R 11 < liq - Q 11, and R E int(C'). 
Furthermore, the generating set of C' is a strict subset of the generating set of C. Fi- 
nally, we make the reassignments C < C', Q ' R, S < S(C') and repeat the step. 

Because { e*} U E is finite and each step in the subcycle causes a reduction in 
the number of retained generators, the subcycle must eventually terminate successfully 
with P,+ 1 and K1+ 1 determined. 

4. The Algorithm. Begin with a point q E En and a convex polyhedral cone 
K C En generated by the set E = {el, e2, ... , eN}. 

Step 0. Find a point ei E E such that (q, ei) > 0. Set El = {ei} and compute 
p1 =(q, eieil/ le, jj2. If no such point exists, then take the origin as the nearest point 
in K to q. Otherwise, go to Step 1. 

Step 1. Set 71 = q - pi. If i~i = 0, then q = p, so stop. Otherwise, find e* e 

E such that (ii1, e*) > 0. If no such point exists, then p1 = p, so stop. Otherwise, let 

F = {f1, f2, . . . ' fm } be a reindexing of {e*} U Ej, let X1, ... . X)m be the barycen- 
tric coordinates of p1 in terms of F; that is, p' = T -1 Xifi, and go to Step 2. 

Step 2. Denote S = span{f, ... .f,, } and compute (using Property PS, for ex- 
ample) P = p(q, S) = XT 1 gii. If Pfi > 0, i = 1, .. ., m, then set E+ ={fE F: 
Bi > 0}, pj 1 = P, and go to Step 1. Otherwise, compute 

5 1,1> Xi, 
P i= X i-l , ..<,m, 

X il(i - 
9d5 Pi < Xis 

p= min Xi 
1 aidM 
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,Ys = (I - P)X + Ppi, M ,...m 

Go to Step 3. 
Step 3. Set F' = fi C F: zy > O} andr = i: Yj > o, i = 1, ... ,m}. Reset 

m as the cardinality of F', F = {f , . ... fm' } as a reindexing of F', {X1, ... X Xm} as 

a reindexing of r, and go to Step 2. 
When p is not the origin, it is clear that if the algorithm terminates successfully, 

it will do so from Step 1. In this step we always have p1 as a candidate known in terms 
of its barycentric coordinates with respect to Ej C E. That is, after reindexing, 

N. 

(5) p1 = E e 

where W Xi. , XjN are positive constants, given by construction. For instance, if / = 

1, then X1 = (q, ej)/lleI 112. If j > 1, then the coefficients are supplied from Step 2. 
What has to be shown is that Step 2 supplies the appropriate pr+ 1 and Ej+ 1 in 

a finite number of steps upon each successful completion of Step 1. If Step 1 cannot 
be completed, then we must have a solution p = p1 given by (5). The reason is obvious 
if q = pj. Otherwise, by Property PI, Hi {y c En: (67j y) = O} is a support hyper- 
plane of K1 with normal q - pi. If e* cannot be found, then H, is also a support hyper- 
plane of K with normal q - p,. So, p = pi. 

By showing Ej is always linearly independent, we obtain N1 < n. Finally, in show- 
ing that Ilq - pi+ 11 < 1Iq - pll1, we can conclude that the algorithm will terminate in 
a finite time, since the number of distinct subsets Ej C E is finite. 

LEMMA 1. Ej is linearly independent for all j. 
Proof Using induction, we assume E, is independent; certainly E, is. By Prop- 

erty P3, pi E int(K,), since its coefficients Xi, . . ., Xxj are all positive. Property P2 

implies Ej C H,, but e* f H,. Consequently, {e*} U E, is linearly independent, and the 
lemma follows because Ej+1 C { e*} U Ej. 

Step 2 consists of taking a point Q = T lfi in C, the convex cone generated 
by F, computing P = Em 1 gifi as the nearest point to q in the subspace spanned by F, 
and finding R = pQ + (1 - p)P as the unique point between P and Q which intersects 
the relative boundary of C. This is repeated as often as possible, letting R be the new 
Q and diminishing F by those generators which correspond to zero coefficients in the 
expansion of R. The step terminates as soon as P E C. This must happen eventually, 
since F cannot be diminished indefinitely. 

The next lemma describes what happens in Step 2. 
LEMMA 2. If P f C, then 0 < p < 1, R is a nonzero point in the relative bound- 

ary of C, and lIq -Rul < Iq -QiI. 
Proof Notice that p is computed only if at least one !3i is negative, and each coef- 

ficient Xi in the expansion of Q is positive except when Q = p,. In the latter case, X* 
= 0, where X* is the coefficient of e*. In any event, p < 1. To show 0 < p, we must 
show that j3* > 0 when Q = p1. Here, f3* is the coefficient of e* in the expansion of P. 

Recall that P = R*e* + h, where h E H,. If R* < O. then (, P) < 0. If Q = p1 
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= p(q, H,), it follows that 1Iq - P11 > 1Iq - Q 11. But P is the nearest point to q in the 
linear span of { e*} U Ej and is certainly as close or closer to q than any point on the 
segment (Q, e*). Such a point, say U = Iue* + (1 - u)Q, satisfies 

I1q - UII = [11 7Ij2 - 2(1 - 
-e*) 

+ (1 -)2Ie*-QII2 ] 1/2. 

For small enough positive Mu, 1Iq - UII < IIIj 11 = 1Iq - Q 11. Thus, 1Iq - PII < I1q - Q 11, 
so 3* > 0. 

It is clear from the definition of p that the coefficients in the expansion of R are 
nonnegative but not all positive. Property P3 and Lemma 1 then imply that R belongs 
to the relative boundary of C. 

Now, q - P is normal to the linear span of F, so 

1Iq - R 11 = [Iq - Pil 2 + (1 -p)2 lIP- Q112] 1/2 

< [11q -P12 + IIP Q112]?12 

= 11q - Q11. 

Finally, if R = 0, then 1q 11 < 1Iq - Q 11 < 1Iq - pi 11, a contradiction of the fact that p, 
= p(q, K,). 

The condition R / 0 is important. It shows that F, hence E,+ 1, is always non- 
empty. At worst, Step 2 might reduce F to a singleton F = {f, }. In this event, we 
obtain P = (q, f1)f1/ 11fl 112. If (q, fl) < 0, then R = 0. This cannot happen, of course, 
so P E C and Step 2 terminates. 

In summary, we have 
THEOREM 2. The algorithm described above supplies in a finite number of steps 

positive constants X1 X2, ...,XN*,N < n, and points el, . . ., eN* in E (after re- 
indexing) such that 

N* 

(6) p =ENei- 
i=l1 

Proof. Lemmas 1 and 2 and the arguments preceding this theorem. 

5. The Positive Linear Approximation Problem. Suppose T is a known finite 
Tchakaloff set. Then the positive linear approximation problem is solved by using the 
algorithm in Section 4 with q = M and E = { e(xi): xi E T}.tt 

In practice, however, all we know is that any given everywhere dense (in D) se- 
quence S = {xi}' 1 contains a finite Tchakaloff set. According to Theorem 1, given 
suitable conditions on D, (F and L, each set T = {x1}m 1 is a Tchakaloff set for suffi- 
ciently large m. Let m* be the smallest such number, and denote T* = {xi} ,. It 
is not necessary to know what m* is, only that it exists. 

Suppose we apply the algorithm to the infinite set { e(xi)}i1 in an attempt to 

ttNotice that this provides an alternative to the Steinitz algorithm used in [ 11 to reduce 
the size of a positive representation of M. 
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find M. If the search for e, in Step 0 and for e* in Step 1 is always carried out in the 

order e(xj), e(x2), . .. , then the fact that T* E TL guarantees that ej or e* will be 
encountered within the set e(xj), e(x2), . . . , e(x. *). Since M is in the convex cone 

of these points, the algorithm must terminate eventually with M = p1, yielding a Tcha- 
kaloff representation of L from the set T*. 

When T* is large it might be profitable to stop the algorithm early; that is, accept 

an approximation to L rather than carry out what might be time-consuming computa- 
tions to find an exact representation. This is a feasible alternative due to the "inter- 

mediate solution" characteristic of p1, p2, p 2 . - 
For example, suppose we have computed p1 = im 1 Xie(xi). Let f E 4) have the 

expansion f(x) = afp1(x) + - + anqp(x). Denote the vector (a,, . .. , an)T by An 
and define the functional L, by 

m 
Lif = Xif(Xi). 

1=1 

Then, we have 

l (L -Lj)f I = I(Anj, M- pj) l < II An 11 "IM pa Pi 

As j increases, IIM - pi 11 decreases (eventually vanishing), so at some stage a reasonable 
approximation to L is given by Li. This reasonableness becomes more apparent if we 
view the problem in a larger setting, that in which L is the restriction to 4) of a larger 
operator. 

Let <j, p2, .... be a basis for the infinite-dimensional linear space A. Assume 
that evaluation functionals (f f(x)) are bounded and that each f E A has a uniformly 
convergent expansion 

00 

f(x) = E akok(x). 
k=1 

Let L be the restriction to 4) of a bounded linear operator L on A, and define L1 by 

Lif = 1m 1 Xif(xi). Then 

(7) (L- Ljf = (An, M -PP) + Rnif, 
where 

00 

Rnjf = E ak(L - Lj)sok- 
k=n+1 

It is normally the case in practice that the order of magnitude of Rnif is small 
relative to that of Lf and changes very little as j increases. So in order to make 
(L - Lj)f have approximately the same order of magnitude as that of (L - Li)f, where 
J is such that Pj = M, it suffices to make (Ans M - p1) small. This, of course, happens 
automatically as j increases; in fact, we have an estimate for the size of (Ans M - Pi), 
since IIM - pi 11 is known. 
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The selection of e* in Step 1 should be made with some concern about the re- 
sulting computational difficulties inherent in the finding of P. The smaller (rh, e*) is 
with respect to the size of q1, the more ill-conditioned will be the system whose solution 
yields P. The next theorem states a guideline which can be used to maximize (n1, e*). 

THEOREM 3. Assume that at least one function P E F is bounded below by i > 
0 on D. Choose any 6 E (0, 1). If T is a Tchakaloff set and r#j 

= 0, then it is always 
possible to fine e* in Step 1 so that 

(8) (rq,, e*) > 8gq11n1l2/nL P. 

Proof. The Tchakaloff representation (3) may he written as M = ZN* Xic., where 

ci = e(x,), i = 1, . .. , N*. Since p1 = p(M, K1), we have (77r, pi) = 0. But 1111l2 = 

(7j1, M- pi) = (n7, M), or 

N* 
II 112 = E Xi((, ci). 

i=l1 

At least one term in the sum must satisfy 

(9) i77 i) 1 ; l2/n. 
Now, 

NON* 
LP= Xi XP(xi)>Z pE 

i-1 i-1 

showing that no Xi can exceed L P/M Using (9), we get 

(pj, ci)> , 11 111/nL P>611j11 2/nL P. 

It suffices to take e* = ci. 

6. Numerical Results. We used the algorithm to obtain positive numerical inte- 
gration rules of polynomial precision k = 3, 5, 7 for the hexagon, k = 2, 3, 4, 5 for 
the quarter disc, and k = 3 for the 3-simplex (Figures 1-6). 

Rather than use a dense sequence S = {xi}'U1 (see Theorem 1), we employed a 
set sequence Si, S2' ...such that U1 1 Si was dense in D. These sets are defined as 
follows: when D is a bounded set in Er, then there is a hypercube (or "pie slice" for 
polar coordinates) C {sk < Xk <S k + dk, k = 1, .. ., r} which contains D. We 
denote by (md) the set of all points (midl, - . . , mrdr) obtained as m = (ml, M2, 
. . . , Mr) ranges through the lattice of points in Er which have nonnegative integer 
coordinates. Taking s = (s1, ... , sr), we can define 

S= {s + cx1(md)} n D, 

where a, is a positive scalar. If aXj 0, then U111 S, is dense in D. In applying the 
algorithm, we arranged for the search in Step 1 to exhaust first the points in Si, then 

S2 and so on. 
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IF 
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FIGURE 1 FIGURE 2 

d (1, lr/2) 

FIGURE 3 FIGURE 4 

S= (0, 0, 0) 
d =(1, 1, 1) 
. = 31-A 

FIGURE 5 FIGURE 6 

The test results can be found in Table 1 and the figures. The weights of the rules 
have not been recorded, since these are easily computed once the points are known. 

Observe the striking symmetry present in each example. This appears to occur when- 
ever the sets S1, S2, . . . reflect the symmetry characteristics of D. Also, note that the 

rule for the 3-simplex is a minimum point rule (see Stroud [31). 
In Table 1, k refers to the polynomial precision, n to the dimension of the poly- 

nomial space (D, and N* to the number of points used in the rule. The number of 

passes through Step 1 is denoted by N1. We found that Step 2 almost always yielded 

Pj+ = P on the first try; consequently, each pass through Step 1 corresponded to the 
solution of slightly more than one linear system on the average. The size of the largest 

linear system encountered in Step 2 is given by Nmax' and Nave denotes the average 

system size. This average was computed as [(2N3)/N1] 1/3, where the sum ranges over 
all systems solved in Step 2. 
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TABLE 1 

Figure Region k Nf n Nmax Nave N1 

1 Hex 3 5 10 6 4 6 

not shown 5 13 21 13 10 16 

2 7 27 36 28 20 36 

not shown Disc 2 5 6 5 3 5 

3 3 9 10 10 7 10 

4 4 15 15 15 13 29 

5 5 21 21 21 19 60 

6 Simplex 3 8 20 1 1 8 13 
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