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Pseudospline Interpolation for Space Curves 

By D. H. Thomas 

Abstract. A method for interpolating a curve through points in space is described. 

It is the direct analogue of Fowler-Wilson or pseudospline interpolation for plane 

curves in that local coordinate systems, cubic polynomials of suitable parameters, 
and mildly nonlinear equations are used to obtain a continuous interpolating curve 

with continuous tangent and curvature vectors. 

1. Introduction. In the last two decades advances in computer-aided design and 
numerical control technology have stimulated considerable interest in the development 
and use of practical algorithms for the interpolation and approximation of points 
representing plane and, to some extent, space curves. Much of this interest surrounds 
the design and representation of smooth free form shapes by curves exhibiting at least 
"visual" C2 continuity. For problems of this type it has become fashionable to adopt 
techniques based on various analogies and approximations to the draftsman's or the 
mechanical spline. A milestone in the history of mechanics, Bernoulli-Euler's eigh- 
teenth century treatment of the elastica was, in effect, the first definitive mathe- 
matical result on the latter subject [10]. In 1906 the physicist Max Born gave an 
elegant account of both the two-and three-dimensional elastica using an intrinsic co- 
ordinate formulation to "solve" the problem (in terms of elliptic functions) under a 
variety of boundary conditions [3]. In recent years the nonlinear spline and, more 
generally, the elastica have attracted renewed attention, this time, strictly from the 
point of view of interpolation theory with obvious implications for curve fitting 
methodology, [2], [8], [9], and [12]. 

On the more mundane side, most of today's users and developers of curve 
fitting routines continue to rely heavily on new or established methods usually con- 
nected with the linear theory of interpolation and approximation of functions 
(whether motivated by splines or not). For example, if the intended curve is "func- 
tional" in some fixed Cartesian frame of reference, the approximation method (what- 
ever it may be) is most easily applied once and/or twice, respectively, using the 
special parametric representations (x, f(x)) for plane curves and/or (x, f(x), g(x)) 
for space curves. Of course, more generally and usually at no additional programming 
expense (only computational) the parametric representations (f(s), g(s)) and 
(f(s), g(s), h(s)) are employed, where s is some parameter monotone with the as- 
signed ordering of the data points. Although now the available procedure is called 
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on two and three times, respectively, the resulting method makes no distinction 
between functional and arbitrarily varying curves. It is in the folklore to most com- 
monly use accumulated chord length for s, perhaps because of the obvious interpre- 
tation of it as an approximation (posterior) to the intrinsic parameter (arc length) of 

the interpolant itself. This parametrization using linear cubic spline interpolants for 
the coordinate functions was recommended by Ahlberg in [2] and recently Cline [4] 

combined it with Schweikert's spline in tension method [13]. Among other approaches 
which are closer in spirit to the one described below we mention the parametric or 
vector-valued cubic splines in which the interpolating curve is represented by cubic 

polynomial coordinate functions in a variable u between every pair of data points 
(u varying between 0 and 1). The imposition of C2 continuity requirements does not 
determine this parametrization uniquely but only up to certain normalization factors 
for each segment which, when varied, give rise to different cubic spline interpolants 

[5], [6], [11]. 
As a departure from the above philosophy, A. H. Fowler and C. W. Wilson in 

an earlier unpublished laboratory report [7] describe a C2 planar curve fitting algo- 
rithm based on a nonlinear interpolation method, what we have called pseudospline 
interpolation in [2], which uses cubic polynomials in local coordinate systems. 

As is well known, linearized cubic spline interpolation is derivable from the 
theory of the slight bending of thin beams via the interpretation of fy"2 dx as a good 
approximation to the line integral f v.2ds (where K is the curvature as a function of 

arc length). The cubic polynomial provides a minimum of the first integral, and sub- 

ject to the interpolatory and C2 smoothness conditions, the linearized cubic spline 
results as the solution of a simpler variational problem (cf. [1] ). Fowler-Wilson's 
use of the rotated system of cubic polynomials more fully exploits the optimum 
variational property of a basic cubic polynomial in that large variations in slope from 
one end of the curve to the other are removed. Thus, not only are arbitrarily varying 

curves well modeled but, roughly, one expects the "strain energy" in a Fowler-Wilson 

interpolant to be more accurately represented by fy" 2 dx than in its linearized 

counterpart even to the same interpolatory conditions. Although effecting the inter- 

polation depends on solving a set of nonlinear rather than linear equations, these are 

of a special type, and the computational process is still very rapid when compared 
with true nonlinear spline interpolation recently considered, for example, by Forsythe 
and Lee in [9]. In this author's opinion the Fowler-Wilson method has proven to be 
a usable and competitive approach to planar curve fitting of the type which exhibits 
the mechanical spline syndrome. 

In this note we describe a direct extension of their basic scheme to points in 

space, detailing the relevant formulas and offering some remarks on the resulting 
method. The reader can review planar pseudospline interpolation as a special case of 
the discussion given below. 

Let PO, P1, . . ., P, be an ordered sequence of points with coordinates (xi, Yi, 
Zi). Let tangent vectors T, in be prescribed at PO and Pn. Each segment of the 
curve between points Pi_ 1, Pi will be described in the parametric form (Q, r7(7), iQ)) 
where r7(t), il(t) are cubic polynomials of t relative to Cartesian coordinates with 
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h-axis parallel to the chord Pi_ Pi. These cubics are determined by requiring con- 
tinuity of tangent and curvature vectors at each joint (i.e., interior point). The detailed 
description of the scheme is divided into a number of steps and is most conveniently 
given in the language of vector analysis. 

2. Constants for Local Coordinate Systems. One of the main problems in es- 
tablishing local orthogonal systems stems from their nonuniqueness, specifically, the 
77, il coordinate directions, which are unique only up to a plane rotation. The follow- 
ing choice of coordinate systems seems to have the most computational merit. Let 
uW be i, i, or k, the unit vector in the direction of the component of 6i = (xi - 

ys - ys- 1 zi - zi- 1) of least magnitude. Define 7ij, ri by the equations 

(I a) X x 

and 

(Ib) 7Ii .=X77i, i=1,2,... ,n, 

where "x" denotes vector or cross product and "II 11" denotes ordinary Euclidean 
length. The system 5i, i, fli then represents three mutually orthogonal unit vectors, 
i.e. a local Cartesian coordinate system with origin at (Pi_ 1 + Pi)/2. By construc- 
tion, u7 always makes an angle of at least 600 with -i. Hence, the vector products in 
(1) are mathematically (and numerically) well defined for any given set of distinct 
points PO, Pi, * * *, Pn - 

The 3 x 3 matrices Ai with columns given by the components of the vectors 

(2) Ai|62 72 772|, i12-,n 

\63 n3 n3 

are orthogonal transformation matrices. Any vector u with coordinates (a,, x2, a3) 
given in the original system is represented in the ith local coordinate system with 
coordinates (IB 132, 13) given by 

(3) (01' 02' 03) (I1 2' 03) Ai. 

The matrices Ai are needed later to represent evaluated points (off the space curve) 
in the original coordinate system and hence, should be retained, once computed, as 
a part of the final complete description of the interpolating curve. 

In order to obtain coupling conditions at joints, it is also convenient to compute 
the n - 1 3 x 3 matrices Bi defined by the matrix equations 

(4) B. = A'Ai i =1, 2, . ., n -1 

(where A' is the transpose of Ai) which relate conditions in one local coordinate sys- 
tem (the ith) with those of the immediately adjoining system (the (i + 1)st). 
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3. Coupling Equations from Continuity Conditions. Let R be the position vector 
of points on the intended space curve relative to the given local coordinate system. 
Thus, as before, R has the form 

(5) R = Qt, 77(t), 72()) 

where 7?(t), iQ(t) are cubic polynomials of t. The unit tangent vector dR/ds (where 
s is arc length) is given by 

(6) ~~~dR (don de) 
+ 

(dn)2 d^ )2 1/2 
ds k 'd~'~ d~j ? 

and the curvature vector, d2R/ds2, by (cf. [14]) 

(7) - dR [V1- -J- --Q-R)R I(R R2 
ds2 

where R = dR/dt, R = d2R/dt2 and the notation (i iv) denotes the inner or dot 
product of vectors l, v. 

Relations (6) and (7) will now be used to obtain two functionally independent 
conditions for each interior point of interpolation. As in [2], the conditions that 
71 = Q() and iZ = i() be cubic functions of t are satisfied by setting 

(8a) X7(t) = (t2 - C2)(a1.t + pi), < Cil 

and 

(8b) i?(i) (22 - c +)(&.i ? 13 1 < ci, 

where the constants ozi, &i,, fi, fi determine the tangent vectors at the (i - 1)st and 
ith points and c1 =IIII/2. If we define \i, Xi, pi, ji by 

(9a) d(-i X d&-Ci)= 

and 

(9b) dSl (Ci) = ~ i (Ci) = 

then these constants depend linearly on Xi p1i, , ji1 and are explicitly given by 

(lOa) ?ti=- 4C2 4c. 

and 

(l Ob) 2. ~i~i ~ i 4c ' 4c. 

At the ith interior point the condition of tangent vector continuity means that the 
vector represented by 

in(the1it coordint sstem is oe ad te( + a2 + v p2)1/2 
(in la) p oriaesse soeadte aea h etrrpeetdb 
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(lilb) -hi+ = (1, Xi+1, Xi+l)/(1 + X2 1+ l \2)1/2 (I I b) Ti+ X i+11 ~~~ i+1 i 

in the (i + 1)st local system. Therefore, ( lIa) and (1 Ib) are related by the orthogonal 
matrix Bp, i.e., 

(12) Ti- Ti+ Bi. 

Equation (12) is a vector equation equivalent to three scalar equations, of which only 
two, however, are independent. Equating the ratios of the second to the first com- 
ponents in (12), one obtains 

(1 3a) Pi=21 22 i+ 1 23 i+1 
bil + bl X. + blX 

1 1 12 i+1 13 i+ 1 

(the bak, 1, k = 1, 2, 3 are the elements of Bi). Similarly, equating the ratios of the 
third to the first components in (12) gives 

b1 + b1 X. + b X 
(1 3b) 31 32 i+ 1 33 i+W1 

bl +bl X ?+bl X 
1 1 12 i+ 1 13 i+ 1 

This pair of fractional linear transformations connecting the ,ui, Pi to the Xi+ 1 ~it+ 
is the exact analogue of the single bilinear transformation in [2, Eq. 11 ] . By virtue 
of these relations, (1 3a) and (1 3b), the original set of 4n - 4 unknown parameters 
have been reduced to half that number. The remaining 2n - 2 parameters X2, 2 
X3, X . Xn Xn are now considered as "the unknowns" to be computed by 
requiring continuity of the curvature vector. This latter condition leads to 2n - 2 
nonlinear determining equations which we now derive. 

Relation (7) for the curvature vector may be rewritten in terms of the cubic 
polynomials r7(I), iQ(t) in the form 

(14) VI - +(1 ?7 + ?, 

(the dots denote differentiation with respect to t). From (8)-(10) we obtain (cf. 
[2, Eq. 13]) 

(1 5a) 
,(-c.)= (2p, + X.)/c., X(-C.) = (24. + X.)/c. 

and 

(15b) iX(C1) =- 
(2X. + pi)/C, i(C) =- (2X + i)lc- 

The curvature vector -i at the ith point may now be computed in two distinct ways: 
namely, in the ith coordinate system by substituting (9b) and (15b) into (14), and 
then in the (i + 1)st system by substituting from (9a) and (1 5a) (with i replaced by 
i + 1) into (14). The results of these substitutions are 

(16a) _= (Yip y2, y)/c(1 ? Hz ? Hi2)2 
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and 

(16b) Ki+= (xi, x, x3)Ic (1 + + ?+ 

where the yl, yi, y' and x'., x', xi are given by 

(17a) y i = 2 + 2i2 + Xtpi + Xi.i 

(17b) Y=i -(2p. + X -i Xifi + Xiji2), 

(17c) Y= - (2fi ? Xi - j2Xip. ? iXi) 

and 

1 -(2.+ 1 22+ 1 i+ 1 i+ 1 i+ 1 i+ 1 

(I18b) xi =2X. ? -aX. +~ P ~2 X2 2i+ 1 +pi+ 1 Hi+ 1 +1 X+ 1 + i+ 1 X+ 1 

(18c) X~3 2i+ 1 + i+l s+ 1 i+ 1 i+1 i+ s1\+ 1 

respectively. As before, (16a) and (16b) are related by an orthogonal transformation: 

(19) acid Hi+ ~Bi., i = 1, 2, ... ., n -1. 

Each of the n - 1 vector equations in (19) expresses only two functionally independ- 
ent conditions (not three). It is again advantageous to select these conditions by first 
equating the ratios of the second to the first components in (19), and then the ratios 
of the third to the first components. The fourth degree polynomial factors 
C( + p2 + i2)2 and ci+1(I + X2 1 + X2 1)2 thereby drop out of the equations 
(and hence out of consideration). After this has been done and the equations ration- 
alized, one obtains 

(20a) F. =y' (bxi + b ?X2 + b 3x )-y'(b'x1 + bl2 x1 + bl3x)= 0 

and 

(20b) G =yi(blx' + bl2x1 + blx1) -y1 (bl x' + b1 x1 + blx1) = 0 i 3 1 1 1 2 13 3 1 31 1 32 2 33 3 

for i = 1, 2, . . , n - 1. This pair of nonlinear equations, (20a) and (20b), for each 
interior point of interpolation is the desired analogue of the single nonlinear equation 
per point in [2, Eq. 16]. 

4. The Nonlinear Equations and the Interpolation Problem. The system to be 
solved consists of the 2n - 2 nonlinear equations of (20a) and (20b) which may be 
written (after the pj5, fi have been substituted for from (13)) in the form 

(2 l a) F. FA(i i i i i i 

and 

(2 1b) Gi = Gi(X i_15 Xi- 1 Xi, Xi, xi+ 1 xi+ 1)? 

or in vector form as 

(21c) F.=Fi(X ? 
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for i = 1, 2, . . ., n - 1, with four end conditions specified (X0, X0, ) , Xn); i.e., the 
two end tangent vectors. This vector "tridiagonal" system is the nonlinear analogue 
of the simple tridiagonal linear system one associates with ordinary cubic spline inter- 
polation [11. 

The author is unable to offer a general theorem on existence and/or uniqueness 
of solution of this system. Moreover, real solutions of the equations may or may not 
lead to the determination and uniqueness of an actual C2 interpolating curve. In order 
to gain some insight into the complications that arise, consider the situation depicted 
in Figure 1. 

P3 

Pi P2 

FIGURE 1 

PI, P2 and P3 are three points a unit distance apart with end tangent vectors given 
parallel to P1P2 and P3P2, respectively; and 0 is the turning angle between P1P2 and 
P2P3 (- ir < 0 < IT). The system of nonlinear coupling equations reduces to the 
single cubic equation 

(22) (p sin0 - cos 0)2(Q COS 0 - sin 0) + -O 

for the slope pu (at P2) referenced in the first coordinate system. 
At 0 = ? ir any real P satisfies the coupling condition but, obviously, no C2 

interpolant exists. For 0 = 7r/2 (- 7r/2) the coupling condition leads to essentially 
three possibilities for A: 0, 0o, and 1 (0, 00, - 1). The first two possibilities do not 
lead to a proper interpolant as one of the cubics is undefined, leaving p = 1 (A = - 1) 
as the only candidate which does, in fact, determine a C2 interpolant. For arbitrary 
0 the three solutions of (22) are given explicitly by 

p = tan 0/2, 

(23) p = F(1 - 2 cos 0) cot 0/2+ 1 /3 cos 2COS0. 

From (23) we see that for 101 > cos- 1(/3) there will be three distinct real 
solutions of (22). A more careful examination will reveal that for "very large" 
turning angles, namely, in the range 7r/2 < 101 < ir only p = tan 0/2 defines a legiti- 
mate C2 interpolant. The other two solutions for p lead to curves with cusps at P2 
(although the segments have the same right- and left-handed curvature at P2). For 
"large" turning angles, specifically, in the range cos- 1(/3) < 101 < 7r/2 it can be 
verified that each of the three roots leads to a distinct C2 interpolant. Finally, for 
any "reasonable" turning angle, defined here to be in the range 0 < 101 < cost 1(1/3), 
p = tan 0/2 is the only real root, and it (happily) leads to the existence and uniqueness 
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of solution to the interpolation problem. As one perturbs the end slopes and unit 
spacing of Figure 1, a similar situation occurs although conditions on the data are 
accordingly more complicated. For N points (N > 3) we have a concrete existence 
and uniqueness result in the trivial case of all points lying in a straight line (albeit 
with arbitrary end slopes given). In this situation the equations in (21) specialize to 
the familiar linear ones determining an ordinary cubic spline interpolating zero values 
and the given, end conditions. Combining this observation with the local considerations 
above, it follows by a continuity argument that existence and uniqueness also holds 
for data perturbed from a straight line. Although these results are of limited interest, 
they suggest that more generally one might anticipate existence and uniqueness if the 
data are organized in an "agreeable" way, meaning, for example, when the points are 
regularly spaced, and turning angles between neighboring points and planes are suf- 
ficiently small. Computational experiments tend to support this loosely worded con- 
jecture. However, in practice, the method seems to be applicable to more bizarre 
data configurations than might be expected from what we have just stated. As matters 
stand, the author knows of no procedure for a given data set, of resolving the question 
other than by obtaining the real solutions of the algebraic system in (21) and then, 
subsequently, examining their validity. 

In spite of the nonlinearity and reservations on the question of existence and 
uniqueness, the method has a number of practical merits. Numerical experimentation 
suggests the system is rapidly solvable by ordinary Newton iteration once reasonably 
good initial estimates for the {Xi} have been made. This is true even for large numbers 
of points because the basic iterative step involves only a banded (6-diagonal) linear 
system. Moreover, for this particular system of equations there is a geometrically 
natural way of obtaining good initial estimates for the unknown parameters, namely 
through local interpolation methods. For example, for data exhibiting reasonable 
smoothness the author has found adequate estimates obtained from local interpolation 
with circles as follows: 

P. P. P.P. 
(24) 9 l-1 I- + 2 ? _ X 

ll~ip Pi IIP+1 1 

is the tangent vector at Pi to the circle interpolating to three points P_1, P, i+1. 
This vector should be represented in the (i + I)st coordinate system (by multiplying 
its components relative to the original system by the transformation matrix Ai+ 1)- 
After this has been done the tangent vector in (24) will have components u1, u2, u3. 
The initial Xi, Xi are now given by 

(25a) Ui u /ui 

and 

(25b) Xjl = u /uV for i= 1,3,. l. ., -1. 

Once the 'i, Xi have been found that satisfy (21a) and (21b), the Ai and jii can 
be obtained from (13). The ozi, oil &, f ; and hence the cubics n, f. are then deter- 
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mined by means of (10). The final numerical description (output) of the interpolated 
curve consists of the coordinates of the original points of interpolation, PO, P1 . . ., 

Pn, the 2n cubic polynomials (i.e., the parameters ai, fi3i & j i ci, i = 1, 2, . . . , n), 
and the n 3 x 3 orthogonal matrices Ai given by (2). 

5. Discussion. The salient features (both good and bad) of this generalization 
are comparable to those of the plane curve method. Briefly, it is a class C(2) method 
which is invariant under translations and rotations of the data (and, more generally, 
the Euclidean group). The well-known practical and visual advantages of cubic spline 
curves have been preserved, as "cubics" are used exclusively and in a highly intrinsic 
way. The nonlinear equations involved are somewhat more complicated than what one 
might expect from [21, but are still rapidly solved by the usual iterative techniques. 
Moreover, the method has the ability to interpolate through arbitrarily bent and 
twisted data point configurations (one of the main advantages in resorting to the para- 
metric and nonlinear techniques). Finally, if points all lie in a plane, the method (and 
any computer program) reduces to planar pseudospline interpolation. 

This interpolation scheme may also be considered related (loosely) to the three- 
dimensional elastica with clamped end conditions. This interpretation rests on the 
validity of the representation of "localized strain energy" by the expressions 

i+ i '2)dj. This connection with the elastica can perhaps be more fully exploited 
in the data smoothing problem. Specifically, the question of approximation (rather 
than interpolation) has not been addressed here. However, the method described 
above could conceivably be made the basis of a general fitting and smoothing pro- 
cedure in much the same manner that the Fowler-Wilson code [7] "fits" points rather 
than interpolates them. Individual point movement based on minimizing certain func- 
tionals related to the "strain energy" is a natural way in which this might be accom- 
plished. In general, such a functional involves both curvature, a, and the torsion, T, 
and in its simplest form is given by the line integral f(AU2 + Br2)ds [3]. 
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