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Abstract. This paper applies the asymptotic stability theory for ordinary differential 

equations to Gavurin's continuous analogue of several well-known nonlinear iterative 

methods. In particular, a general theory is developed which extends the Ortega- 

Rheinboldt concept of consistency to include the widely used finite-difference approx- 

imations to the gradient as well as the finite-difference approximations to the Jacobian 

in Newton's method. The theory is also shown to be applicable to the Levenberg- 

Marquardt and finite-difference Levenberg-Marquardt methods. 

1. Introduction. Many practical problems in applied science give rise to one of 

the following finite-dimensional problems. 

(A) Given f: n R 1 R, find x * E Rn at which f achieves a minimum. 

(B) Given F: Rn - Rn, find x* EC Rn for which F(x*) = O. 
(C) Given F: Rn - Rm, m > n, find x* EC Rn at which IIF(x)112 achieves a 

minimum. 

Usually, an acceptable approximation to x* is sought by means of an iterative 

process of the form 

(1.1) Xk+ 1 .= Xk -tkG(Xk), k = O, 1, . . . 

where xo is a given initial approximation, G is a vector valued function such that G(xk) 

indicates the direction to be taken by the iteration from xk, and tk is a scalar which 

determines the magnitude of the step. 

For example, in problem (A), G(xk) might be taken to be Vf(xk) and tk > 0 

might be chosen to minimize f(xk - tG(xk)) with respect to t in some interval (0, t]. 

This is, of course, the steepest descent method. Newton's method for problem (B) 

takes G(xk) = F'(xk)- 1F(xk). In this case and in the one below, tk is initially chosen 

to prevent divergence and eventually taken to be unity in order to give the maximum 

rate of convergence. In problem (C) one might use the Levenberg-Marquardt method 

which takes 

G(xk) = [p,kI + F (Xk)TF (Xk)] - lF'(Xk)TF(Xk) where P1k > 0. 

(If P1k 0, then the Gauss-Newton method results.) Notice that in all these examples 

the point x* is a zero of G. 
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These basic methods all have in common a need for first derivative information. 
Very often such information is either not available at all or else extremely expensive. 
In such cases it has long been standard procedure to use the basic algorithms with dif- 
ference quotients in place of derivatives. Thus, if one needs 

(1.2) ajf(x) = af(x)/ax1 forf: R -R1, 

one might use in its place 

( f(x + h1u1) - f(x) j 
(1.3) 6jf(x,h)- h hi#O j=l,...n, 

where uj = (6lj, . . nj)T and 6ji is the Kronecker 6-function. It is also possible to 
use a central difference quotient in place of (1.3), and we will remark on this at appro- 
priate places in the sequel. 

Theoretical and computational results surveyed in [6] indicate that if one chooses 
h properly, then the finite-difference forms of the Newton and Levenberg-Marquardt 
algorithms can perform very well indeed. 

In particular, it is shown that h should be chosen as a suitable multiple of IIF(x)ll 
or IIF'(x)TF(x)lI, respectively. Thus, the successive values of h decrease and this in 
turn raises the real possibliity of cancellation errors in the finite precision computation 
of 61f(x, h) which would swamp the small truncation error, a1f(x) - ,jf(x, h), associated 
with h. 

The use of a central difference only postpones the problem for one or two steps, 
and so it seems clear that any reasonable implementation of these ideas must admit 
the possibility that h is eventually held fixed in the iteration. 

In using Newton's method as described above, this does not affect convergence 
to x*, but does, at least theoretically, slow to linear the rate of convergence. In using 
steepest descent however, Vf will not in general have the same roots as its finite-differ- 
ence approximation which implies that convergence to x* is no longer guaranteed. The 

purpose of this paper, therefore, is to compute a bound between x* and the limit of a 

sequence {Xk} generated by using such an iteration. The bound obtained is a natural 
function of h and the conditioning of the problem. 

The nonlinear least squares problem is of special interest because it illustrates an- 
other way in which a parameter can enter the iteration. The Levenberg-Marquardt meth- 
od [13], [14], results from taking G(xk) = (IukI + F'(xk)TF'(xk)-lF'(xk)TF(xk), 
where ,uk is a nonnegative scalar. If F'(xk) has less than full rank, then the implementa- 
tion must either allow ,k to eventually be held constant at some positive value or else 
switch to the more costly and less understood Ben-Israel iteration, G(x) = F'(x)+F(x). 
(Here A+ denotes the Moore-Penrose inverse [19] of the rectangular matrix A.) 

Our approach to these questions is somewhat unusual and so we outline it here. 
Following Gavurin [8], we define the continuous analogue to (1.1). This is the initial 
value problem 

(1.4) x'(s) = -G(x), 0 < s < c*Y x(0) = x0. 



PERTURBED NONLINEAR ITERATIVE METHODS 201 

Notice that if Euler's method is applied to (1.4), then our original iteration (1.1) is re- 
covered. The stability theory for ordinary differential equations identifies conditions 
on G and xo that imply the existence of a solution curve x(s) such that limS_>,x(s) = 
x*. This provides quantitative information on the directions to be used. Although the 
connection is well known it usually fails to say anything new about the convergence of 
the iterations. 

On the other hand, we are not so much interested in iterations of the form (1.1) 
as we are in those of the form 

(1.5) Xk+ 1 = Xk tkG(Xk, P), 

where p is some parameter vector. The corresponding continuous analogue is 

(1.6) x'(s) = -G(x, p), 0 < s < oo, x(O) =x0. 

We write (1.6) as x'(s) = - G(x) + [G(x) - G(x, p)] and view (1.6) as a perturba- 
tion, controlled by p, to (1.4). In this case, the stability theory again provides qualita- 
tive information on solutions xp(s) to (1.6). Moreover, it also provides a bound on 

lim,_1 I[xcp(s) - x*II in terms of p, G and xo. The application of Euler's method to 
(1.6) now yields a similar bound on limk->. jxk - x*II where Xk is a solution to (1.5). 

Clearly, some conditions on IIG(x) - G(x, p)II are necessary for such a result. In 
Section 2, we generalize the Ortega-Rheinboldt [17] idea of a consistent Jacobian 
approximation to provide a sufficient condition; and we also show that the specific 
instances of (1.5) mentioned earlier satisfy our condition. Sections 3 and 4 are devoted 
to the minimal amount of stability theory for (1.6) and (1.5) necessary for the results 
on specific methods which we present in Section 5. 

It is perhaps worth noting at this point that other authors, including Meyer [15] 
and Bosarge [3], have used the continuous analogue, numerical integration connection; 
but they work with a finite range of the independent variable. The advantages of our 
approach are set forth in Boggs [1] and provide motivation for our choice of an infi- 

nite range. 
An interesting different approach to the analysis of iterative methods by differ- 

ential equation techniques was given by Hurt [12]. In his paper, discrete analogues of 
Liapunov functions are defilned and used to prove certain stability results. These results 
are then used, for example, to obtain regions of convergence for Newton's method and 
to analyze the effects of round-off error. However, the resulting bounds depend on 
the Liapunov functions used; and thus, sharp bounds are quite difficult to obtain. Also 
for some iterative methods, finding any Liapunov function may require considerable 
ingenuity. Nevertheless, this approach does seem valuable and has been used by Boggs 
[2] to analyze certain algorithms in the presence of singularities. (See also Ortega [16] 
for a bibliography and an exposition of the basic results.) 

2. Consistent Approximations. In order to present a unified theory for the 
various multidimensional secant methods as well as the modification of Newton's metho 
in which the Jacobian matrix is replaced by the corresponding matrix of difference quo- 
tients, Ortega and Rheinboldt [17, p. 355] employ a very elegant formalism called a 
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"consistent approximation" to the Jacobian. A generalization of this concept to other 

than Jacobians will be useful to us. 
We use P to denote the closure of a set P. 
Definition 2.1. Let D C Rn, P C Rq with 0 C P. Let G be a mapping of D into 

Rm. A function G of the vector variables (x, p) defined on D x P is a consistent 

approximation rule for G on D if and only if 

(2.1) IIG(x) - G(x, p) II - 0 as IpIl 0, 

uniformly on every compact subset of D. In addition, if there are positive constants 

a, ,B and e such that for every x E D and IIpII < e, 

(2.2) IG(x) - G(x, p)II I< p IIp 11, 

then G is a strongly consistent approximation rule of order ca for G on D. 
Clearly, the property of consistency and the value of oa are norm independent 

while 3 is not. 
We now proceed to show that the iterations mentioned in the introduction are 

connected by this concept. In the lemma below we will assume that the functional f, 
defined from an open convex set D C Rn into the real numbers, is continuously differ- 

entiable on D. If x E D, then (1.2) is defined; but we must restrict x and h if (1.3) is 

to be defined. Choose Do C D such that Do C D and choose e > 0 such that 

D DN(DO, e) {x CERn: HIx -yII < e for somey EDo}. Now for (x, h)CDo x 

(0, ej n, 61f(x, h) is well defined by (1.3) for 1 < j < n. 

It is sometimes the case that the analyst might choose to compute some partial 

derivatives of f and approximate others. Hence, we define our approximation to the 

gradient as follows. For (x, h) E Do x [0, e] n take Af(x, h) to be a column vector 

where, for i= 1,... n, 

fbi(x, h), hi # 0, 
(2.3) Af(x, h) = if(x) h . 

It is obvious that we intend Af(x, h) as an approximation to the derivative of f 

at x. Since this derivative is, strictly speaking, a linear functional and so more natur- 

ally represented as a row vector, while Af(x, h) is a column vector, we invoke the 

Riesz Representation Theorem once here in order to avoid frequent use of superscript 
T and make the notational convention that Vf7x) is the column vector which represents 

f'(x) (cf. [9, p. 116] or Tapia [20] ). There is no need to be precise when dealing with 

f"(x). 
We omit the proof of the following lemma since it is so similar to the proof 

given in [17, p. 359]. 
LEMMA 2.1. Let f satisfy the conditions given above, then Af is a consistent 

approximation rule for Vf on Do, Furthermore, if for some K, a > 0 and every 

x, y E D, 

(2.4) 1IVf(x) - Vf(y)II S KIHx - y II, 
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then Af is a strongly consistent approximation rule of order a for Vf on DOI 
The following lemma proved in [7], is also just a restatement of a well-known 

result. We establish our notation before the statement. Let F = (f1 . I I fm)T be a 
continuously differentiable mapping from D into Rm where D is an open convex subset 
of Rn. Choose Do C D and e > 0 as before and define an approximation to the 
Jacobian matrix for F as follows. For (x, h) EDo x [0, e] set 

Afi (x, h)T 

(2.5) AF(x, h)= Afj(x, h)T . 
AIm(X, h)T 

IEMMA 2.2. Let F satisfy the conditions given above, then AF is a consistent 
approximation rule for F' on Do, Furthermore, if for some K, a > 0, and every 
x, y E D, 

(2.6) 1 IF'(x) - F'(y)I I < K IIx - y II', 

then AF is a strongly consistent approximation rule of order a for F' on Do, 
Let us now consider a quite different example. 
THEOREM 2.3. Let F map a bounded open convex subset D of Rn into Rm 

where m > n. In addition, assume that F is continuously differentiable on D and that 
the rank of F'(x) is the same for every x E D. For p > 0 and x E D, define the 
Levenberg approximation to F'(x)+ by L(x, p) = (pI + F'(x)TF'(x))- lF(x)T. Then 
the Levenberg approximation is strongly consistent of order 1 with respect to the param- 
eter p. 

Proof F'(x)+ is a continuous function of x on D since F is continuously differ- 
entiable and F'(x) has constant rank on D (cf. [10, Theorem 4.3] ). Let F'(x) = 

B(x)D(x)C(x)T be a singular value decomposition of F7(x) with B(x) and C(x) unitary 
square matrices of order m x m and n x n, respectively. Then F'(x)+ = C(x)D(x)+B(x)T. 
Therfore, we drop the argument x and remembering not to confuse D(x) with the 
domain D we write 

E(x, p) = F'+ - (PI + F'TF')-'FIT = CD+BT - (pI + CDTDCT) ICDTBT 
(2.7) 

= C[D+ - (pI + DTD)-lDTIBT. 

Now let D(x) equal (A(x) g) where A(x) is the r x r diagonal matrix of positive singu- 
lar values X1(x), . . . , Xr(x) of F'(x). Thus, 

)c(A-i -(pI + A2)f'A 0)T 
0 O 

In order to bound E(x, p), we first note that since the diagonal elements of D(x) 
are the nonnegative square roots of the eigenvalues of F'(x)TF'(x), there is a neighbor- 
hood N(x) about x such that for y E N(x), Xi(y) > Xi(x)/2 for 1 < i < r. (See [18, p. 2821 
Choose a finite subcover N(x1), N(x2), . . ., N(xq) of the compact set D. Clearly then, 
for x E D, 
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i(x) > 1min min k(x)/2- c. 
1<~j<q 1<k<r ~ 

We now return to the task of bounding E(x, ,u). Since IIC(x)112 = IIB(x)112 = 1, we 
need only bound IIA-1 - (pI + A2)-'A1. But this is a nonnegative diagonal matrix 
so its 12 norm is its maximum diagonal element, 

1 Xi 1 
max 

- =p ma<x <~y~ pc 1<6a6r WE M 
* 

1? <i<,r Xi(/1 + X2 1t3 

which completes the proof. 
In proving convergence of the Ben-Israel iteration, we will need an estimate of 

IIL(x, p)F(x) - F'(x)+F(x)II which we obtain next. 
COROLLARY 2.4. Assume the conditions of Theorem 2.3. Assume further that 

there is a point x* E D such that F'(x*)+F(x*) = 0 and 

IIF'(x)+F(x) - F'(x*)+F(x*)Il < Klx - x*ll9, 

for all x E D. Then, for p > 0, 

I IL(x, p) F(x) - F'(x)+F(x) II < (p/ 3) KlIx - x* ll, 

for any ce > 0, which is a uniform lower bound on the nonzero singular values of 
F'(x), x ED. 

Proof. Clearly, L(x, p)F(x) = F'(x)+F(x) - E(x, p)F(x). Then, from (2.7) and 
the fact that DT(x)D(x)D+(x) = DT(x), we again drop the subscripts and write 

E(x, p) F(x) = C[D+ - (pI + DTD)-lDT]BTF = C[I - (,uI + DTD)-lDTD]D+BTF 

= C[I - (,uI + DTD)- lDTD] CT [F'+F - F'(x*)+F(x*)]. 

Therefore, 

I IE(x, Al)F(x)l I < I II - (i'I + DTD)- lDTDI I * Kl x - x*I 1 

< (p/c-3)KHx -x*IF, 

which completes the proof. 
In [4], Brown and Dennis gave theoretical and computational justification for 

the use of finite differences in the Levenberg and Gauss-Newton methods. We will 
prove the consistency of the finite-difference Levenberg approximation to F'(x)+. For 

,> 0, llhll <e, xE=-Doset 

L(x, (p, h)) = (,uI + AF(x, h)TAF(x, h))-fAF(x, h); 

but we must restrict the parameter vector p = (A,l h) somewhat. Notice that if Al goes 
to zero faster than h, then there is no guarantee that AF(x, h) has the same rank as 
F'(x), and so, it is not clear that AF(x, h)+ - F'(x)+ as lIhil O+ 0. Thus, we define 

the parameter set P= {p = (,u, h) C (0, oo) x N(O, e); and if {Pk} >O0 as k c, 

then Ilhk I I/ik ,- 0 as k > oo}. Here P C R + and a is from (2.6). 
THEOREM 2.5. Let F satisfy the hypothesis of Theorem 2.3 as well as the Lip- 

schitz condition (2.6). Then L as defined above on Do x P is a consistent approxima- 
tion to F'(x)+on Do. 
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Proof Set E(x, p) = L(x, p) - F'(x)+ for x E D0, (,u, h) = p GP. If we add 
and subtract L(x, ,u), we need only show that IIL (x, p) - L(x, ')II Io 0 as IIpII 0 

uniformly on compact subsets of DO, since, by Theorem 2.3, IIL(x, ,u) - F'(x)+ II- 0 
as llpll > 0 independent of x E DoI Now for p = (,u, h) G P, 

(2.8) LL(x, p) - L(x, ,u) = L(x, p) - (4I + AF(x, h)TAF(x, h))-lF'x)T 

+ (4I + AF(x, h)TAF(x, h))-1F1(x)T - L(x, ,u). 

The first two terms on the right reduce to 

(4I + AF(x, h)TAF(x, h))- I (F'(x)T - AF(x, h)T), 

which is bounded in norm by CKI Ih ll , for some C. The second two terms reduce to 

[(4I + AF(x, h)TAF(x, h))-1 - (4I + F'(x)TF'(x))-1] F'(x)T. 

Since F'(x) is uniformly bounded on compact subsets of DO, we need only consider 
the difference of the inverses. Each inverse is bounded in norm by 1/,u; and so, the 
difference is bounded by 

IIF'(x)TF'(x) ? F'(x)TAF(x, h) - AF(x, h)TAF(x, h)II/P2 

which is 0(1IhI I"/,I2) on any compact subset of DoI If p O 0, then because of the 
definition of P, IIhII01/,?2 > 0; and the proof is complete. 

The situation is greatly simplified if F'(x) has full rank for every x C Do There 
is no longer any need for the restriction of P or for condition (2.6). 

ITHEOREM 2.6. Let F satisfy the hypothesis of Theorem 2.5, and assume in addi- 
tion that the rank of F'(x) is n for every x E Do. Let PO = {p = (P, h): u > 0, hE 

En, and IIhII < e}. Then L defined on Do x PO is a consistent approximation to 

F'(x)+ = [F'(x)TF'(x)] - l Ff(x)T. 

Furthermore, if Do is compact then there is some e such that if P1 = {p = (,u, h) 
> 0, h C En and I Ih II < e } then L defined on Do x P1 is a strongly consistent 

approximation of order ot to F'(x)+ on Do, In particular, the finite-difference Gauss- 
Newton method is a strongly consistent, order oa approximation to the Gauss-Newton 
method in this case. 

Proof Let D1 be a compact subset of Do. Since F is continuously differentiable 
and F'(x) is of full rank on D; the smallest eigenvalue of F'(x)TF'(x), X(x) is a posi- 
tive continuous function of x on the compact set D1. Hence, there is some positive 
X < X(x) for every x C D1. From the definition of AF(x, h) and the hypotheses on 
F, for some constant C, I IAF(x, h)TAF(x, h) - F'(x)TF'(x)I I < ClIhI 1? on D1. There 
is, hence, an e such that for any x C D1, and llhil l< -, (AF(x, h)TAF(x, h))- 1 
exists and is bounded in norm by 2/X, i.e., the smallest eigenvalue of AF(x, h)TAF(x, h) 
is bounded below by X/2 for every (x, h) C D1 x [0, e'] '. This is a standard Banach 
lemma argument and need not be detailed here. 

We point out here that the reason ,u = 0 is excluded from PO is that AF(x, h) 
does not necessarily have full rank for I Ih II < e. However, if Do is compact then D1 
in the above paragraph could be taken equal to D.; and for lihil < 6, AF(x, h) has 
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full rank so L(x, (0, h)) is defined. Essentially, this is the only difference between the 
two parts of the proof. 

From this point on, we argue as in the proof of Theorem 2.5 that we need only 
bound either side of (2.8), in this case, by Cl hil', to complete the proof. Break up 
the right side of (2.8) and note that for IIPII small enough, and some C, 

Il(,uI + AF(x, h)TAF(x, h))- (F'(x)T - AF(x, h)T)II 

< CKI Ih 1I1/( + X/2) < 2K IIh I Ic. 

Similarly, 

[(II + AF(x, h)TAF(x, h))- _ (pI + F'(x)TF'(x))-l ] F1(x)T, 

is bounded in norm on D1 for I11PI small enough by a constant times 

llhIIa/{(L + X/2)(j + X)}, and so is O(Ilhil'?), and the proof is complete. 

3. Stability Analysis for the Continuous Analogue. This section is devoted to 
a development of asymptotic results for the continuous analogue initial value problems 
(1.4) and (1.6). Our technique will be to first view (1.6) as a perturbation of the 
continuous analogue initial value problem (1.4), which is in turn treated as a perturba- 
tion of an easily analyzed affine problem. Thus, we write (1.6) as 

(3.1) x'(s) = - A(x) + [A(x) - G(x)] + [G(x) - G(x, p)] x(O) = x0, 0 S s < oo, 

where A(x) Ax - b is an affine transformation. 
Before proceeding with the analysis, let us illustrate (3.1) with steepest descent. 

The discussion in Section 1 leads us to want an asymptotic analysis of 

x'(s)=-Af(x, h), x(O)=x0, 06 s< 0, 

=- Vf(x) + [Vf(x) -Af(x, h)] 

= -f"(x*) (x - x*) + ff"(x*) (x - x*) - Vf(x)] + [Vf(x) - Af(x, h)]. 

Now if the Hessian at x*, f "(x*) = (aj1f(x*)) is symmetric and positive definite, then 
it is well known (cf. [5, Chapter 3]) that the affine equation x'(s) = -f"(x*) x ? f"(x*)* 
is solved by x(s) - x* = (xo - x*)e-f (x *)s, which (we will see) has the curve ?(s)-x 
as an asymptote. If x* is a local minimizer for f, then Vf(x*) = 0; and so, the second 
group of terms can be written as the negative of a Taylor series remainder [Vf(x) - 

Vf(x*) - f"(x*) (x - x*)]. Thus, in a neighborhood of x*, the continuous analogue 
of steepest descent, x'(s) = - Vf(x), is a perturbation of the affine problem. If we 
assume f"(x*) is the Frechet derivative of Vf at x*, then for any e > 0 there is a 6 > 0 
such that this perturbation, associated with the idealized iteration, is bounded in norm 
by elIx - x*II for IIJx - x*ll < 6. An asymptotic analysis for this case of the continuous 
analogue (1.4) can be accomplished by standard means, and its asymptotic behavior is 
essentially unchanged. 

We have to extend the standard results in order to incorporate the third term into 
the stability theory for initial value problems. This term has the continuous analogue 
effect of using an approximation to the idealized iteration. Our extended theory cannot 
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really be expected to imply the same sort of asymptotic convergence as before, since 
Vf(x) - Af(x, h) depends on h instead of x - x*. 

The concept of consistency developed in Section 2 will allow us to draw some 
interesting conclusions about the behavior of solutions to (1.6) as s becomes large. In 
the case of (1.4) under the usual hypotheses, we expect any solution x(s) to have the 
property that for any e there is an S such that llx(s) - x*11 < e for s > S. For (1.6) 
this property holds generally only for e greater than some lower bound which depends 
on llpll. For steepest descent, we will conclude roughly that 

lim I lx(s) - x * I I < 0 (I Ih I l?tk(f(x), 

where k2( a ) is the 12 condition number of the matrix argument. 
We state the following lemma because the results will be useful; but we omit 

the proof because it is not central to this paper and it can be found elsewhere [5] . 
LEMMA 3.1. Let A be a real n x n matrix and let A = C A C- 1 be its Jordan 

canonical form. Assume that the real part of X is positive for X chosen to be the eigen- 
value of A with minimal real part. For any real t, define 

e-At =+ E (- 1)ktkAklk!. 
k=1 

Then, there exist positive constants v, a, such that I le-At t1 < ve-at. The values of 
v and a depend on A and the norm as follows. 

(i) If A is symmetric, then a = X; and if the 12 norm is used, v = 1. 
(ii) If the largest Jordan block corresponding to X is 1 x 1, then a is the real 

part of X; and if the 12 norm is used, v = k2(C). 
(iii) If the largest Jordan block corresponding to X is not 1 x 1, then v = k2(C)/c 

in the case of the 12 norm; but in any case, a is one half the real part of 'X. 
Now we are ready to give the stability result we require. It is a modification of 

a well-known theorem which can be found in [5]. 
THEOREM 3.2. Let r E (0, 1) and let D be an open convex neighborhood in Rn 

of x*, a zero of G: D - Rn. Assume that the Frcchet derivative G'(x*) = A exists, 
that its eigenvalues all have positive real parts; and let the constants v and a be defined 
by Lemma 3.1. Finally, let G be a consistent approximation rule for G on D. Then, 
there is an e > 0 and a neighborhood Dr of x* such that any solution to 

x'(s) = -G(x, p), x(O) = x0 E Dr IIpII <S, 0 <S, 

satisfies 

lim HIx(s) - x*II < [su IIG(x) - G(x, p)I]v/u(1 r). 

Proof. From [5, p. 328] , every solution of problem (3.1) satisfies 

x(s) - x* = e-As(x(0) - x*) 
S 

e-A (s-u) [A(x) - G(x)] du 

+ eA (s-u) [G(x) - G(x, p)] du. 

Define q(p) = supXED IIG(x) - G(x, p)Il and let e < ar/v. Choose 6 > 0 so that 
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IA(x) - G(x)II = I,(x) - G(x) + G(x*)II < elI x - x*II for I - x*II < 6. By Lemma 
3.1 we have 

Ix(s) - x*I < ve- Itx0 - x*II? sef e-(s-u)IIx(u) -x*II du 

(3.3) ?+ 
vf 

e-a(S)q(p) du 

Since a > 0 < s, e-S' 1 so for any s > 0, 

lix(s) - x*II 6 vtlxo - x*II + ve max lIx(u) - x*ll + vq(? 

which resolves to 

(3.4) max llx(u) - x*t <S -llX x*I ? vq(p) [vtltxo - x*II + vq(p)] 
o0u?s a - ve a -e (1 - r)a 

Now choose t and Dr so that the right-hand side of (3.4) is bounded above by 6. 
It remains for us to bound wy Elim5, lix(s) - x*tt. Choose a sequence {sj} -?0 

such that I Ix(S,) - x *I I S- y? y. From inequality (3.3) we obtain 

tlx(s1) - x*l I IIlxo - x* lve-as + vef "j e-g(Sipu)ttx(u) - x*ll du 

? vf 
S 

e-g(S-u)H x(u) - x*1I du 

(3.5) sj12 
( 35 S? e-(sj-u)q(p) du. 

Let 7r be arbitrary in the interval (0, wy). Then there is an integer ji such that for 

every j > ij y, - 7 < Itx(s,) - x*lI < y + 7r. Thus for j > j/, (3.5) implies 

y- 7 < tlxo-x * I lve OSi + (e6 ve-asI/2 )/ 

+ e(y + r)v/la + q(p)v(l - e a/J. 

As oo , this becomes -y - 71 < r(y + ri) + q(p)v/a; and since q was arbitrary, we 
get 

(3.6) -y < ry + q(p)v/a 

from which the result follows. 
We remark here that the proof of Theorem 3.2 rests on obtaining a bound on 

the integral representation of a solution to (3.1) and thus also demonstrates the exis- 
tence of at least one solution to (3.1). 

It is interesting to note at this point that the choice of Dr, t right after inequal- 
ity (3.4) in the proof could have been less arbitrary. We could have decreased the final 
bound (3.6) by decreasing t and this would have allowed a wider choice of xo to 
achieve the bound. On the other hand, we could have restricted xo very sharply and 
allowed a wider latitude with respect to the parameter p. Furthermore, the parameter 
r accelerates this interdependence as it is taken nearer zero. We can paraphrase all this 
as follows. No matter how small we choose Illpl > 0 and Ilxo - x*II > 0, we cannot 
expect to come closer than SUpxED ItG(x) - G(x, p)Ilv/l to x *. 
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4. Numerical Integration of the Continuous Analogue. In the previous section 
we gave a theorem which established the asymptotic behavior of the continuous ana- 
logue. Our purpose here is to first give a certain class of numerical integration procedures 
which mirror this behavior when applied to the affine part of the problem (3.1). We 
then show that the effects of nonlinearity and consistent approximations are just the 
same for these numerical solutions as for the analytic solutions. 

We assume that the reader is familiar with linear multistep methods for initial 
value problems, and we present only the following definition which generalizes one 
given in [1] for a class of methods having the desired properties. 

Definition 4.1. A linear multistep method is weakly A-stable if for any matrix 
A which satisfies the hypothesis of Lemma 3.1, there exist positive constants t < t 
for which the following is true. If the method with step lengths tk E [t t], k = 0, 1, 

is applied to 

x'(s) = -A [x - x*], x(O) = xo, 0 < s, x* arbitrary, 

then the sequence {Xk} generated by the method converges to x*. 
We mentioned in Section 1 that all the methods of interest here can be viewed 

as Euler's method applied to (1.6). Hence we will restrict our attention to Euler's 
method. 

LEMMA 4.2. Euler's method is weakly A-stable. 
Proof: Let x* be arbitrary and ek = Xk - x*. Apply Euler's method with step 

size tk to x'(t) = - A [x - x*], x(O) = x to obtain 

ek+ 1 = ek - 
tkAek = H (I - t,-4) eO. 

i=O 

Thus, {IIetll} converges to zero if the spectral radius of I - t1A is uniformly bounded 
by some number less than 1. Let X, = a1 + ibj be any eigenvalue of A. Then aj > 0 
and pi = 1 - ta1 - itb1 is the corresponding eigenvalue of I - tA and l,j 12 <1 for any 
t E (0, 2a/ Xj 12 ). Thus, take 0 < t < t = min 1 < i< n 2ai/IXi12 and the proof is complete. 

The following theorem is a partial extension of a result in [1 1 . It shows that even 
in the more general problem (3.1), the desired results hold for step lengths controlled by 
the affine term. Roughly, this is because this term dominates as s gets large. 

THEOREM 4.3. Assume the conditions of Theorem 3.2 and let 0 < t < t < 
min{2a/1X12: X = a + ib is an eigenvalue of Al. 

Then there are constants ,, ? > 0 and a neighborhood Dr of x* such that any 
solution to 

Xk+l Xk tkG(Xk, P), Xo E Dr 
(4.3) 11 

IIPII < #, tk E it, t, k > 0, 

has the property that 

1im llXk -x*I < [ sup IIG(x) - G(x, p) I I/a(l r), 

where a is defined for A in Lemma 3.1. 
Proof Define ek = Xk - X* and rewrite (4.3) as 
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(4.4) ek+ 1 k(I tA)ek = tk [Aek - G(xk) + G(xk) - G(xk, p)I = tk - dk 

which defines dk. Now in a manner similar to that in [11], we construct a solution to 
(4.4) in the form ek = Yk + Zk, where Yk is a solution to the homogeneous problem 
((4.4) with dk 0) satisfying the initial condition and Zk is a particular solution to 

(4.4) with zero initial data. The reader may verify that Yk and Zk are given as,follows. 

Let Mio =I, i> O, and 
j-l1 

M = J7 (I-ti 1-mA), j>O. 
m=0 

Then, Yk = MkkeO, k > 0, and 
k 

o= 0 Zk ? Mkk1ltiljdij, k > 0. 
i=l 

For any e there is a 6 > 0 such that for Ile,11 < 6 we have Ild1ll < elle1ll + q(p), 
where again q(p) = SUpXED IlG(x) - G(x, p)ll. We now have that if lle1l1 < 6, j = 0, 

k ,- 1, 
_k 

(4.5) Ilekl k llkll + llZkll < ILkll ? t ? IMk,k-1l [1llei-1l ? q(p] 
i=l1 

Then, since ILYkII is monotonically decreasing and yo = eo, it follows that 
k k 

(4.6) max leill < I leOll + t max Ileill E INk,k-ill + tq(p) Z IMkk-1 Il- 0 <i <k O?<i< k 

Now z2k=1 l[k,k_ill can be bounded as follows. Let t* maximize IlU - tAll for 

t E [t, t Then for M = I - t*A, [lMI < 1 by Lemma 4.2 and 

k k - 1 

E I[Mk, k- 1 1 1 < E | | |k-1 < E l wl li = _ 
i= 1 ~~~~~i=0 

Thus, from (4.6) 

max I lei I I < (lleo Il + tq (p)?)/(l - te;); 

and for e = r/t; and lleo II and q(p) sufficiently small, maxO<i<kllellt < 6 for all k. 

We now compute limk_l HIkll-kI y. For every 7 > 0 there is an integer k,, and 

an infinite set of integers N = {i: i > k and IleiII > -y - q}. Also, there is an integer 
k, such that y? 77 > IleiII for all i > k. We may rewrite (4.5) as 

i/2 i 

Ileill < ILvill + 1 IlMii-jjI Ildill + 2: I[ ji-ijII 
- 

Ildill; 
j=1 j=i/2+1 

and thus, for all i C N such that i/2 > kn, 

i/2 

y - 7 < Ileill < ILvill + t6e5 1W,i_jjI? + te(y + n)? + tq(p)@. 
1= 1 

As i > oo, 5 l=21 Il[Mi i_jjI 0 and yi -+0. Therefore, in the limit as i > oo, 

(4.7) 7 -y-q < te(y + 77)? + tq(p)?. 

But (4.7) must hold for all 77; and therefore, y < tq(p)?/(1 - tet), and the result follows. 
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Note that here, as in the case of Theorem 3.2, the proof also implies the exis- 
tence of at least one solution. 

If A is symmetric and t, instead of being maximized, is chosen so that the eigen- 
values of I - tA are positive, then ? = 1/ta where a is the smallest eigenvalue of A. 
Moreover, the result is then identical to Theorem 3.2, since v = 1 in this case. 

In some cases, e.g. Newton's method (cf. Section 5.2), the use of consistent 
approximations does not prevent convergence of the iteration to x*. In these cases, 
the expression [G(x) - G(x, p)] satisfies a stronger condition which enables it to be 
handled in the same manner as the term [A(x - x*) - G(x)]. We state the following 
useful corollary. 

COROLLARY 4.4. Assume the hypotheses of Theorem 4.3 and let the following 

condition hold: For every e > 0 there exists 6 > 0 and a vector p such that 

IIG(x) - G(x, p)I I eIlx - x*I Ifor lIx - x*II S?6. Then, any solution of (4.3) tends 
to x* as k - oo. 

5. Application to Specific Methods. In this section, we will identify each of the 

methods of Section 1 with Euler's linear multistep method in order to apply Theorem 
4.3. The results give insight into the effect of using a consistent approximation to 
one of the well-known methods. Our intent is really more negative than positive; and 
it is to warn that for some problems, such as unconstrained minimization and non- 

linear least squares, the parameter which controls the approximation must be allowed 
to get small in direct proportion to the accuracy required in the final answer. Our 
bounds will always include a constant factor C, which is a device which allows us to 
avoid cluttering details about the particular norms used in various parts of the bounds. 

5.1. Steepest Descent. 
THEOREM 5.1. Let f: D C Rn R 1 be Frechet differentiable on the open 

convex set D. Assume x* E D has the properties that Vf(x*) = 0 and f has a second 
Frechet derivative H* at x* which is symmetric and positive definite with smallest 
eigenvalue a. Let r E (0, 1) and t be a positive number smaller than 2/IIH* II2. Then 
there exist positive constants p and t and a region Dr such that any solution of 

(5.1) Xk+1 = Xk - tkAf(Xk, h), 

xo C Dr9 llhll < 2,tk E [t, t],9 k > 0, 

where 0 < t S t, satisfies 

lim llxk - x*11 < sup IlAf(x, h) - Vf(x)lIpIa(1 - r). 
k-+m ~ xE-D 

Furthermore, if there are constants K, a > 0, such that for every x, y C D, II Vf(x) - 

Vf(y)I I < KI Ix -yI 1', then 

ln ImXk - x*ll < CKilhll'p/a(l - r), for some C> 0 independent of h. 

Proof. We write (5.1) as 

) Xk+ 1 = Xk - tkH*(Xk - X*) + tk [Vf(X*) - Vf(Xk) 
+ H*(Xk - x*)] 

+ tk [Vf(Xk) - Af(Xk, h)]. 
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By identifying H* with A, Vf(x) with G(x) and Af(x, h) with G(x, p), the result 
follows from an application of Theorem 4.3 to problem (5.1). 

COROLLARY 5.2. Let the hypotheses of Theorem 5.1 hold and assume that for 
some constants L, a, and every x, y E D, f is twice differentiable and 

llf"f(x) - f"t(y) I S_ L I Ix - y, I 1E (O, 1] . 

Then, any solution {Xk} to the difference equation (5.1) satisfies 
k-~~~c Cpllhll Lk* e 

(5.3) lim I Xk Xl (I r) 2(H*) + sup I - x*l] 

Proof The result follows easily from the well-known fact that a first order 
Lipschitz constant for a function in a convex region can be taken as a bound on the 
norm of the derivative of the function in the same region. Thus, in the conclusion 
of Theorem 5.1 we can take a = 1 and 

K = sup I tf"(x)1 12 = IIH* 1 12 + sup Il1f"(x) -H* 1 12 
xEED xED 

S IJH*II2 + sup LlHx -x*II2 
xEED 

Of course, I1H*112/a = k2(H*). 
The main point of this paper lies in expressions like (5.3). If you use a fixed 

step size finite-difference gradient to try to minimize even a very smooth function 
(o = 1), then the distance by which you should expect to miss the minimizing point 
is directly proportional to the magnitude of the perturbation used in the gradient 
approximation. Furthermore, the constant of proportionality is composed of two 
parts; one depends on the conditioning of the quadratic Taylor approximation to f 
near the minimum, and the other depends jointly on how much f actually deviates 
from that quadratic model (L = 0 if and only if f is quadratic) and how far one 
starts from the minimizing point. 

Now, clearly it is not always impossible to find x* using fixed size finite-differ- 
ence gradient, but rather the point is that neither is it necessarily always possible. 
Dennis [6] considered the strictly convex quadratic function f(x) = xTH*x where 

/ 2.6 2.4 
H* = - 

- 2.4 2.5/ 
The iteration xk 1 = Xk - tk f(x*, 10- 3x), xo = (100, 105)T was carried out in 
double precision (APL) on Comell University's IBM 360/65. In this computation, tk 
was computed from a formula for the exact minimizer for f(xk - tAf(xk, 10 -3x0)). 
The choice of h or p = 10-3x0 was made because it is often used in practice. 

Let (4 be the angle between Af(xk, h) and Vf(xk). Initially, the approximate 
gradient was excellent with cosO0 = .99998. After forty-two iterations, the progress 
towards the minimum at the origin was excellent with cosO42 - .75 and x42 = 

(.34678, .38640)T. After fifty iterations, the method had fallen into the trap predicted 
by the theory with x50 = (.00083, .00490)T, cosO50 - - 4 x 10-7 and convergence 
to six decimal places apparent. If we had switched to a central difference at this point, 
it would probably have been possible to decrease the function a bit further. 

5.2. Newton's Method. In this case, it is well known that it is even possible 
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to implement the finite-difference analogue in such a way as to preserve the second 
order convergence of the original method. See [6]. We include this result for com- 
pleteness and because it allows a greater latitude of step size than previous results. 

THEOREM 5.2. Let F: D C Rn - Rn have a continuous Frechet derivative 

F'(x) on the open convex set Do, Assume x* E D is such that F(x*) 0 O and that 

F'(x*)- 1 exists. Then there exist a positive constant , and a region Dr such that if 

t E (0, 2) then any solution of 

(5.4) Xk+l = Xk - tk AF(Xk, h) 1F(xk), 

xo E Drs I lh I l < tk E [t , 2), k > O, 

satisfies xk - x*. 

Proof We write (5.4) as 

xk+ X xk tk(Xk X *) - tkF (xk) tF(Xk) - F(x*) -F'(xk)(xk-x*)1 

+ tk [F'(Xk)f F(Xk) - AF(Xk, h)f F(xk)] . 

We again identify I with A, F'(x)- F(x) with G(x) and AF(x, h)- 'F(x) with G(x, p). 
Now, however, 

IIF'(x)-'F(x) - AF(x, h)-'F(x)II < II F'(x)' -AF(x, h)- I *I- I IF(x)II 

< IIF'(x)- ' I I IIF'(x) - AF(x, h) II IIAF(x, h)- ' I I IlF(x) - F(x*)Il. 

Since F'(x*)-f exists we may assume without loss of generality that F(x)-1 exists 

and is uniformly bounded on D. Similarly, by the consistency assumption, we may as 

well assume AF(x, h)-1 exists and is uniformly bounded on D for I lh II sufficiently 
small. The consistency assumption also implies that there is a function q(h) such that 

I IF'(x) - AF(x, h) II < q(h) and q(h) 0 as I Ih I I 0 uniformly for x E D. Thus, 
there is a constant n > 0 such that 

I IF(x)- fF(x) - AF(x, h) 1 F(x) II I r q(h) IL - x * I I. 

Now for any e > 0 there is an h such that 

IIF'(x)-'F(x) - AF(x, h)- 1F(x)I I< e lx - x*I1, 

and the result now follows immediately from Corollary 4.4. 
5.3. Levenberg-Marquardt/Gauss-Newton. In Section 2 we proved that the finite- 

difference Levenberg-Marquardt iteration could be viewed as a consistent approximation 
to the Ben-Israel iteration which is the same as the Gauss-Newton iteration if F'(x) 
has full column rank. The following theorem gives the appropriate convergence result. 

THEOREM 5.3. Let F: D C Rn - Rm, m > n, have a continuous Frechet first 
derivative at each point x of the open convex set D, and let the rank be a constant 

independent of x. In addition, let x* E D have the properties that it'is a zero of 
F'(x)TF(x) and that this function has a positive definite Frechet derivative at x* with 

largest eigenvalue X1i Let the smallest eigenvalue of F'(x*)TF'(x*) be X2. 

Then for any r C (0, 1) and any ,u > 0, there exist constants a, ,, p and a neigh- 
borhood Dr of x* such that any solution of 
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Xk+1 = Xk - tk(II + AF(Xk, h)TAF(Xk, h))fAF(xk, h)TF(xk), 

xo G Dr5 llhll < #, tk E [t,5 2/X1 , t > O,5 

where X is the largest eigenvalue of 

(HI + F'(x*)TF'(x*))- [F (x*)TFF(x*) + Efi(x*)fi (x)] 

and 2/)X < 2(j + X2)/X1 satisfies 

M IlXk - X*11 <IsIup IIF'(x) - AF(x, h)l lp/u(1 - r). 

Furthermore, if for some K, a > 0 and every x, y ED, IIF'(x) -F'(y)II ?KIIx -yII1, 
then for some C > 0, independent of h, 

lim I IXk -X lI < C * KI Ih I Icpla(l -r). 
k-+wo 

Proof The proof follows simply from Theorem 4.3 once we identify G with 

(4I + F'(x)TF'(x))-l F'(x)TF(x), A with 

G'(x*) = (,ul + F'(x*)TF'(x*))- [(F'(x*)TF'(x*) + fi(x*)fi"(x 

and G(x, p) with L(x, (,, h)). Note that if the rank of F'(x) is not n, then , May not 
be taken to be 0. 

In the full rank case, we may take , = 0 and obtain the convergence of the Gauss- 
Newton iteration. One interesting sidelight is the following corollary. 

COROLLARY 5.4. Under the hypotheses of Theorem 5.3 with F'(x) of rank n, if 
the largest eigenvalue of 

[F'(x*)TF'(x*)] -1 [F'(x*)TF'(x*) + E f,(x*)f1"(x*)] < 2, 
1=1I 

then the Gauss-Newton (with tk = 1) iteration is locally convergent to x*. 
Proof Take p = 0 and notice that t > 1. 

The reader will find a similar but less general condition in [4], namely that 
KIIF(x*)Il < X1. The condition is, of course, to be expected since it is the same as the 
spectral radius of G'(x*) less than 1; and so, it would be predicted by Ostrowski's 
Theorem [18]. 

We complete this section by giving a convergence proof for the Ben-Israel iteration 
in the rank deficient case. To do this, however, we need a somewhat stronger condi- 
tion on F. This is necessary to compensate for the fact that at x* the A matrix 
(G'(x*) for G(x) = F'(x)+F(x)) is singular, which means that the asymptotic character 
of the solution is determined by the perturbations. An alternate approach, to handle 
this and other singularities, is given in [2]. 

THEOREM 5.5. Assume the conditions of Theorem 5.3 except that the rank of 
F'(x) may be less than n. Assume the conditions of Corollary 2.4 with j > 1. Then 
for any r E (0, 1) and for any , > O,there is a neighborhood Dr such that any solution 
of 

Xk+ I = Xk - tkF'(Xk)+F(Xk), 

xo E Dr, tk E [t, 2g/Xi], t > 0, X, as in Theorem 5.3 

tends to x*as k -o . 
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Proof Identify G(x, u) with (,I + F'(x)TF'(x))-l F'(x)TF(x), A with Gx(x*, ,) 
and G(x) with F'(x)+F'(x). Then apply Corollaries 2.4 and 4.4. 

Note that to use an arbitrarily large step length we must, by Corollaries 2.4 and 
4.4, start correspondingly close to x*. 
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