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Higher Order Approximations 
to the Boundary Conditions 

for the Finite Element Method 

By J. J. Blair* 

Abstract. We consider here the approximation of essential boundary conditions for 
the finite element solutions of second order elliptic equations in two dimensions. 
Nonhomogeneous boundary conditions on curved boundaries ate treated. 

The approach is to use trial functions which interpolate (in a generalized sense) func- 
tions satisfying the boundary conditions. The work is directed to showing in what man- 
ner this interpolation should be done to achieve the maximum accuracy and computa- 
tional simplicity. These methods can be used to construct approximations of arbitrary 
high order of accuracy. Several examples are given. 

1. Introduction. We consider here the approximate solution by the finite element 
method of the Dirichlet problem for second order elliptic equations in two dimensions. 
Nonhomogeneous boundary conditions on general smooth domains are treated. The 
case in which the boundary conditions are homogeneous and the domain is polygonal 
has received much study (cf. [ 10], [ 11 ], [ 14], [16] and [ 1 7] ). A natural approach 
to problems on smooth domains is to replace the domain with a polygonal approxi- 
mation; however, this approach has limited order of accuracy. The error, in the H1 - 
norm, is at best 0(h312)and in the L2-norm 0(h2) (cf. [4], [15]). The parameter h 
is the "mesh size". 

Another approach, taken by Berger, Scott and Strang in [3], is to approximate 
the boundary conditions. Specifically, they take as trial functions piecewise polyno- 
mials which interpolate smooth functions satisfying the boundary conditions. This 
means that the trial functions and, perhaps, some of their derivatives agree, at a finite 
set of points on the boundary, with functions which satisfy the boundary conditions. 

Our approach is very similar. The difference is that we use the term interpolate 
in a wider sense. We use as trial functions piecewise polynomials whose weighted 
averages over segments of the boundary are equal to the same averages of functions 
which satisfy the boundary conditions. We show that by using polynomial weights of 
the appropriate degree one obtains methods of arbitrary high order of accuracy and 
minimal complexity. As an example we show that using piecewise cubics and appro- 
priate approximate boundary conditions the error is 0(h3) in the H1 -norm and 0(h4) 
in the L2-norm. This method has the same complexity (a term made precise later) as 
the simplest method utilizing cubics on a polygonal domain. 

Bramble and Schatz ([8], [9] ) have also introduced a method -which eliminates 
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the necessity of using trial functions which satisfy the boundary conditions. Their 
method, like ours, has the optimal order of accuracy consistent with the approximation 
properties of the trial functions. Their methods, however, have greater computational 
complexity due to the fact that they require a Ritz approximation to the solution of 
a fourth order equation. Solving a fourth order equation causes additional difficulties 
for two reasons: (1) The condition number of the system of equations to be solved 
is larger. (2) Smoother (C 1) trial functions are required. Bramble and Nitsche intro- 
duced a method in [6] which, while still requiring the computation of the Ritz approx- 
imation of the solution of a fourth order equation, eliminates the first difficulty men- 
tioned above, because the fourth order term is multiplied by a small parameter. The 
second difficulty, however, remains. 

Bramble, Dupont and Thome'e give a method in [7] which yields the same order 
of accuracy as the method of this paper. Their method, though stated quite differently, 
is very similar to ours. 

2. The General Theory. We shall consider the problemn of approximating the 
solution u to the problem 

(1) Lu = f inQ2, u =g onF, 

where Q2 is a bounded open subset of the plane, F is its smooth (C') boundary, f and 
g are sufficiently smooth functions on Q2 and r, and L is a uniformly elliptic selfadjoint 
differential operator of second order, i.e. 

Lu = -ZD,aiD1 u + cu 
i,j 

with aii a symmetric positive definite matrix whose smallest eigenvalue is uniformly 
bounded away from zero. We shall assume that the coefficients are all bounded real 
valued C' functions and, in fact, that all functions which appear are real valued. The 
selfadjointness plays no essential role whatsoever, but it does simplify the exposition 
by allowing familiar words (norm, scalar product, orthogonal, etc.) to be used in 
place of expressions. 

We shall denote by Hk(2) the Hilbert space of functions whose derivatives up to 
order k are in L2(2). We use the usual norm on Hk(2) given by 

IuI12- = E IIDcu 112 = E D c'l D'2 U I1 k 
1 O1 Sk 2e 1 + 26 

where 11 * I,, is the usual norm on L2(Q). 
We associate with L the bilinear form 

a(u, v) = (Div, a1iD1u) + (cu, v), 
ij 

where ( , ) denotes the scalar product on L2(Q). We assume that 

la(u, v)l S EIIllull l aIvil for all u, v E H1 (Q), and 

(2) a(v, v) > efIVII1 2 for all v E H (Q), 

where e is positive constant ;and HM(M) consists of those functions in H1(Et) which 
vanish on F. We let 
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IIVII2 = a(v, v). 

From the second half of (2) we see that, restricted to H(Q), 11 " Ila is a norm equiva- 
lent to 11 * 111 a. We will call 11 " Ila the energy norm (even when applied to functions 
not in HI(U)). 

We will denote by (, ) the scalar product on L2(r). The integral is understood 
to be with respect to arc length. In fact we shall implicitly assume throughout the 
paper that each connected component of r is parametrized by the arc length t, along 
that component. Thus, when we say a function on r is a polynomial on some segment 
of r, we mean that it is a polynomial in the variable t. 

It is well known that Eq. (1) is equivalent to 

(3) a(u, 0) = (f, 4) V 
AAEHo(),yu=g, 

where y is the trace operator on H1(?), i.e. yu = the restriction of u to r. We shall 
often omit the symbol y when it is felt that no confusion will arise. The general 
approximation method we study here consists of selecting a subspace Fh of H1 (Q) and 
a space Sh of distributions on r and letting the approximation, ui, of u be the function 
in Fh which satisfies 

(4) a( )=(,0) V c E Foh, Yu -g 

The last condition means that ('yu, t) = (g, L) for all 4 E Sh, and Fh consists of 
those functions in Fh which are orthogonal to Sh on r (i.e. 4 E FT iff 4 E Fe* and (y4, y = 

O V 4 Ee Sh). Since we have in mind the finite element method, i.e. Fh consists of 
functions which are polynomials on "elements" of Q, we have introduced the positive 
parameter h which will later be used as the diameter of the elements. 

The approximation method, (4), is similar to the classical Ritz method, the differ- 
ence being that all boundary conditions are approximated. The fact that the approxi- 
mation ui does not satisfy the boundary conditions of the problem is relatively minor. 
The important point is that the test functions, 4, do not vanish on r. It is this fact 
which spoils the best approximation property characteristic of the classical Ritz method. 

In order for this method to be of any value, there must exist a unique solution 
to the pair of equations in (4). We shall make the assumption that for some positive e, 

(5) a(v, v) > eIIVI12 for all v E Fh 

which guarantees uniqueness. In many cases it is quite easy to verify this directly. We 
point out (without proof) that (5) will always be satisfied (for sufficiently small h) if 
the space Se has the uniform A-property of order 0, which will be defined in Section 
3. All of the spaces we construct in Section 5 have this property. The existence of a 
solution is guaranteed by (5) and two additional assumptions. The first is that Fo is 
closed in H1 (?), which is always true if Fh has finite dimension. The second is that 
there is a function in Fh which satisfies the approximate boundary conditions 
(,yu - g I Sh). It is, of course, tacitly assumed that the function g and all functions 
v E Fh are smooth enough that the linear functionals (g, 4) and ('yv, 4) are defined for 
all 4 E Sh. 
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We now tum to the problem of estimating the error in this approximation method. 
We first introduce the auxiliary function u E F h satisfying 

(6) a(u, )=a(u, ) V q EF Fo I u - S _ Sh. 

If v is any function in Fh which satisfies 'yv - g I Ss, then (lu - UIlla < (lu - v((a. To 
show this we note that since a(u - Tq) = 0 for all b E F h we have 

a(u -u, u - = a(u - u, u - W) + a(u -u, u -v), 

or 

IU-Ia =a(u -u, u -v). 

Using the Schwarz inequality, 

u -U iIa2 < IIU - 'IlaIU - Vlla 

and dividing by ((u - "la give the result. 
Thus, we see that u, although it does not satisfy the boundary conditions, has 

the best approximation property which is characteristic of a true Ritz approximation. 
Also, since u - u is orthogonal (with respect to the energy scalar product) to F h and 

u- E F we have 

(7) ||u- = uu a | -u a 

We shall obtain bounds for each term on the right-hand side of (7) separately. Note 
that since this is an equality, a lower bound on either term yields a lower bound for 
the error. 

The obtaining of a bound for (lu - Ila is a standard approximation theory 
problem which we will not treat in any detail until Section 5. To estimate u - u 
we introduce the Green's formula 

(8) a(u, v) = (Lu, v) + (8u, oyv), 

which is valid for any u and v with u E H2(E2) and v E H1 (Q2). This is easily estab- 
lished by integrating the expression for a by parts, which also yields 

8u E viajDu, 
i,j 

where (v1, v2) is the unit (outward) normal to F. Using the definition (6) of u and 
Green's formula,we have 

a(u, )=a(u, ) =(f, b) + (8u, yq) q5EF . 

From the definition, (4), of u, 

a(ui, 5)=(f, ) V qE F . 

Subtracting, we have 

a(u - ui, 4 ) =(u, -y) Vq EFg. 
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Since u - u E Fh we have 

g) |lu -u|| = hsup (5u, 'yq). 
(9) 

- ~EFo; 
II""' 

lla 
h 

Thus, we see that the error separates into two distinct parts, an approximation term 
u - u and a boundary term u - ui. The boundary term (9) depends only on the 
properties of elements of Fo on r. 

To obtain the appropriate estimates for the boundary term we must introduce 
the Hilbert spaces Hs(r) (for arbitrary real s) of distributions on r. If s is a nonnega- 
tive integer, HI(r) consists of all functions on r whose derivatives, up to order s, are 
in L2(F). For nonintegral s, Hs(F) is an interpolation space between spaces with 
integral s; and H-s(F) is the dual of Hs(F). We refer the reader to Chapter 1 of [12] 
for the details. We note that since H-s(F) is the dual of Hs(F), we have the general- 
ized Schwarz inequality l(u, v)lI I ullI r llvlIIS I which is valid for all s. We also have from 
the trace theorem (e.g. [12, Theorem 9.4] ) that for p > 3/2, 8 is a bounded operator 
from HP(Q2) onto HP-32(r), and y is a bounded operator from HP-1(2) onto 
Hp-3/2(r). We obtain immediately from (9), the trace theorem and the Schwarz 
inequality that 

(10) 1' 
- 

U^la 6 ClilyUp Q suhp l<Y1ll3/2-p,r 
0EFo; IlkIIa?l 

where C = C(p, Q2, L) is a constant. 
We wish to analyze the rate at which the right-hand side of (10) goes to zero as 

h goes to zero. For this we must assume that the pair (Fh, Sh) belongs to some 
fixed family (E, S) of spaces. We shall use C as a generic constant which does not 
necessarily have the same value at each occurence. 

Definition 1. The pair (Fh, Sh) is said to have the approximation property of 
order p if for every v E HP(Q2) there is a v E Fh satisfying 

7(v-V) IS/ and |v|-V ||1 , a 6Chk llv1VIlk,n, 

where C = C(p, Q2) and 2 6 k 6 p. An operator P from HP(Q2) into Fh with the 
property that Pv can be substituted for iv above will be called an approximation oper- 
ator of order p for (Fh, Sh). 

Definition 2. The space Se is said to have the weak A-property of order q with 
respect to Fh if there is a C = C(q, Q2) such that 

sup 117lylK 6Chs+ 12 for 0s?q. 
OE-Fho ;ll 0 l l a <1 

THEOREM 1. If the pair (Fh, Sh) has the approximation property of order p, Sh 

has the weak A-property of order p - 3/2 (with respect to Fh) and the solution u of 
(3) belongs to HP(Q2), then 

ii -ul U1n < CIIuIIP nhP- 1, 

where uz is the solution of (4), C = C(p, Q2, L) and p > 2. 
Proof Since (Fh, Sh) has the approximation property of order p, there is a 

u* E Fh satisfying Py(u - u*) I Sh and 
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IIU - U*ll 1n Q ChP - 1IUjIIP Q. 

We then have for the function u defined in (6), 

IIu - i111,Q 6 Ellu - Uja < Ellu - U*lla < (E/e)11u - u*11in, 

where the inequalities follow from (2), the best approximation property of ui and (5), 

respectively. Thus, we have the bound for llu - iu111,a. The bound for llu - ui7111, 
follows directly from Definition 2, (10) and the equivalence of the energy and H1(92) 

norms on Fo . 
We should point out that since 6 maps HP(Ql) onto Hp-32 (r) and the error 

equation (9) is an equality, the weak A-property of order p - 3/2 is necessary for the 

error estimate of Theorem 1 to hold. 

3. On the A-Property. We introduce here stronger forms of the A-property 

which will be used later. 
Definition 3. The space Sh is said to have the strong A-property of order q with 

respect to Fh if there is a C = C(q, Q2) such that 

sup 117011s,r ? Chs+ l+/2 for 0 < s 6 q. 
OC-FO ;I ̂ to 11 1/2 ,F < 1 

In this definition (unlike Defmition 2) no reference is made to the behavior of p in 

the interior of Ql. The theorem below gives a useful relationship between the strong 

and weak A-properties. 
THEOREM 2. If 5h has the strong A-property of order q with respect to Fh, 

and Fh has the property that 

l7l'YI I /2 ,r < Chp 11011i ,Q2 

for all 0 E Fh and some p > 0, then 5h has the weak A-property of order q + p with 

respect to Fh. 
Proof Since 5h has the strong A-property 

II7Y/AI_s,F ? Chs+ 1l/2 7 <I/2 , S Chs+P+ 1/2 j11,,Q for 0 E Fh and 0 S s S q, 

the last inequality following from the hypothesis. The result follows from the fact 

that 

1[?Y4AL(s+p),r C1hY Ls-s,r . 

Since y is a bounded operator from H1(E2) onto H'12(r), the inequality in the 

statement of the theorem always holds for p = 0; and therefore, the strong A-property 

implies the weak A-property of the same order. 

Definition 4. The space 5h is said to have the uniform A-property of order q if 

Sh n H- 1/2(r) has the strong A-property of order q with respect to H1 (E2). 

This means that if a is any function in H1'2 (r) and 4 1 Sh fl H- 12 (r), then 

ll0QsllS, S Chs+l/2I4 1104/2,, for 0 6 s S q. 
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If Sh has the uniform A-property, then it has the strong A-property (of the same order) 
with respect to any subspace of H1(92). 

THEOREM 3. If Sh has a subspace Sho C L2(F) with the property that for any 
v EI H (), there is a v E SO satisfying liv - vll Chqllllq then Sh has the uni- 
form A-property of order q. 

Proof We let P be the orthogonal projection operator (in L2(r)) onto Sh and 
Q = I - P (I = the identity). The hypothesis of the theorem is that 

(1 1) ~~~~~~IlQvllo,r 6Chq llVllq, r - 

We wish to show first that if 0 < s, t < q then 

(12) 11Qv1lL_sr S Chs+' llllt, r 

From (11) this holds with (s, t) = (0, q); and since Q is a bounded operator (with 
norm 1) on H1(F), (12) holds with (s, t) = (0, 0). From the inequality for s = 0 and 
t = 0 or q we obtain, by interpolation (cf. [5, Corollary 1] or [13, Theorem 3.1]), 
the same inequality for s = 0 and t E [0, q], i.e., 

(13) llQvllo,r < ChrlltvAr for 0 < r 6 q. 

To obtain the inequality (12) for positive s note that 

IIQVlL_,r = sup (Qv, O), 
IIl )IIs,F 

and that for any ( E? Hs(F), 

(Qv, O = (Qv, QOb S llQvllo0,rlQ0k0,r S Cllvllt,rlWll0S] hs+t. 

The last inequality is obtained by applying (13) for r = s and r = t. Taking the sup 
over l1l1s,Lr 6 1 establishes (12) for arbitrary (s, t) E [0, q] x [0, q] . 

To complete the proof of the theorem we note that v I Sh implies v I SO which 
means that v = Qv and hence (from (12)) that 

1101-_s,r 6Chs+ 1/2 IIVI11/2,r. Q.E.D. 

COROLLARY. Let r be expressed as the union of nonoverlapping intervals of 
length 6 h. If Sh contains all functions which are polynomials (in the arc length 
variable) of degree < q - 1 (q > 1) on each interval, then Sh has the uniform A-prop- 
erty of order q. 

3. L2 Error Estimates. For true Ritz approximations (i.e. when the trial functions 
satisfy the boundary conditions) the error in the L2-norm is smaller than the error in 
the H1 -norm. For finite element methods, where h is the maximum diameter of the 
elements, the error in the L2-norm is O(hP) when the error in the H1 -norm is O(hP-1). 
We show below that this remains true for the class of methods considered in this paper 
under a variety of conditions on (Fh, Sh). We will need first the following result which 
is a special case of Theorem 6.6 of [12]. 

LEMMA. Let v E H1(Q2) satisfy.Lv = 0; then 101-, < ClIIVII1112,r 
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Proof Let 0 be an arbitrary function in H2(Q) nf Hol(Q2); from the Green's 
formula (8) we have 

a(v, )=(L v, 0)- (5 v, -f)= O, 

the last equality due to the fact that Lv = 0 and 'y = 0. Since a(v, 0) = a(O, v), 
we have 

0 = a(P, v) = (LO, v) - (8 1, yv), 

which gives 

(LO, v) = (&p, 'Yv) S< 110111 /2,rlIIVIL_ 1/2,r 

6 CIkII212 nlviKl _1/2 ,r < CIIL(II0,Q IvIL_ 1/2 ,r- 

The last inequality follows from the regularity theorem for elliptic equations (cf. [1, 
Theorem 9.8]; [12, Theorem 5.1]). Since L maps H(2 () n Ho'(Q2) onto L(2 () we 
have 

I0vIIo,' = sup (LO, v) < CIIVII_112,p 

which completes the proof. 
In the proof of the theorem below, we will denote the restriction of L to Ho() 

by B. Note that B is an isomorphism from Ho'(Q2) onto H-1 (2), and that if 
E L2(Q), then B-1 ( E H2( ) n Ho'() and 

IB- '0112, < C110110 a. 

THEOREM 4. If in addition to the hypotheses of Theorem 1 we assume that: 
(i) Sh has the uniform A-property of order 1/2, and 
(iia) Sh has the strong A-property of order p - 3/2 with respect to Fh, 

or: 
(iib) Sh has the strong A-property of order p - 3/2 - s with respect to Fh and 

there is an approximation operator P of order p for (Fh, Sh) with the property that 

117Pw11/2,F < Chl+SIIw12, a for all w E H2(Q) Hl 

then 

Ilu - ullo a < ChP"Iullpa 

or if: 

(iic) u E HP+ 1 (2) and Sh has the weak A-property of order p - 1/2 with 
respect to Fh, then 

Ilu - u llo,Q < ChP liull + ,. (u - ? 

Proof We let u - =r and decompose r as r = r, + r2 with 

Lr1 =Lr, yr, = 0 and Lr2 = , 'Yr2 = yr. 

We first derive the bound for r2: 
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Vl2110,n -< ChIzrIL,12,11 -< Ch11'Yr11112,r < ChIlr1j,' a ChPilullp a. 

The first inequality follows from the lemma and the fact that 'yr2 = yr, the second 
because r I Sh and Sb has the uniform A-property of order 1/2, the third from the 
fact that y is a bounded operator from H1(E2) onto H1/2(r), and the fourth from 
Theorem 1. 

We now obtain the bound for r,. To do this we let ? be an arbitrary function 
in L2(2) and show that (r,, q) 6 ChPilIo a5'. Since yr1 = 0, we have 

r1 =B-Lr = B- 1Lr. 

This gives us immediately that 

(r', 4) = (B-1Lr, k) = (Lr, B-1) = a(r, B-14). 

The last equation holds because B- 1 vanishes on r. We now let P be an approxima- 
tion operator of order p for (Fh, Sb) and Q = I - P. We write the equality above as 

(14) (r,, /) = a(r, QB-1O) + a(r, PB-1O), 

and estimate each term on the right-hand side separately. 
From (2) we have 

a(r, QB- '4) ? Ellrll a, IIQB- ll1 1 . 

From Theorem 1 we know that jjrljj,, < ChP-l11ullIpa. Also, since IIB-0112, a < 

0l0llo,n and (Fh, Sh) has the approximation property of order 2, we have 
IIQB- llO a, < ChlllI0,oa. These results establish the appropriate bound for the first 
term in (14). 

To estimate the second term in (14) we note that PB-1 ; E F h and recall that 
r = u - u^. For arbitrary 4 E H1 () we have from Green's formula 

a(u, 0) = (f, ) + (u, 'y4), 

where f = Lu. From the definition of u^, we have 

a(, 0) = (f, ) for all 0 E Foh. 

Subtracting these two equations gives us 

(15) a(r, PB-10) = (au, 'yPB-10). 

We assume now that condition (iib) is satisfied. From (15) we have 

a(r, PB-10) S< 116ullp-3/2,rll'YPB-'0113/2-p,r. 

Since 5 is a bounded operator from HP(Q2) onto HP-312(F) and eh has the strong 
A-property of order p - 3/2 - s with respect to Fb, the above yields 

(16) a(r, PB-l1 ') < ClluI 1hP-1h1 -sll'YPB- l'lli/2,r 

To obtain the desired result we must show that II'yPB-1j11/2,21 r ChF+sjlllIOjQ. 
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This follows directly from the hypothesis and the regularity result immediately preced- 
ing the statement of the theorem. 

If (iia) is satisfied, then (16) holds for s = 0; and we must show that 

II'yPB-'bII 1 12,l/ < ChilbIlo n. Now, since B- 1 b vanishes on F, yPB- 1 q = -'YQB- 1I ; 
and therefore, 

II,yPB- 'ofil l 12 r, < CIIQB- 01 ol , 

The quantity on the right has already been shown to be bounded by ChIllloIn so the 
result is established. 

If condition (iic) is satisfied, we have from (15), 

a(r, PB- 
1 

) < 115ull, - 112 ,r IIyPB 'oil l 12 -p, r < Cilull, + 1 n hP I[PB- 1 oill 

Since IIPB- 1Oil 1n < CIbII0, a, the proof is complete. 

We should point out that condition (i) is only used to establish that 

II'y(u - ^)II 1/2 r < ChP. If the boundary data satisfy more than the minimal smooth- 

ness requirement (which is g E HP - 1/2 (F)), this result can often be obtained when 
condition (i) is not satisfied. 

The usefulness of condition (iib) of the theorem was discovered by Berger, 
see [2]. 

5. Construction of Spaces. In this section we construct spaces which have the 
approximation property of order 3 and 4 and have the corresponding optimal order 
of accuracy in both the H' -norm and Ho -norm. The spaces are slight modifications 
of the spaces of piecewise quadratics and cubics on a triangulation of Q2 (cf. [3], [10], 
[14], [15 ], [16] ) which are commonly used in the finite element method on polyg- 
onal domains. The resulting equations which must be solved have the same compu- 
tational complexity as in the corresponding methods which have been used in polyg- 

onal domains. By this we mean that the same number of unknowns must be solved 
for and that the matrices associated with the equations have nonzero entries in 
exactly the same places. The constructions given here, and the proofs of the optimal 
order of accuracy, extend very easily to the spaces of higher order polynomials pre- 
sented by Bramble and Zlamal in [10]. 

In all of the constructions below we shall assume that Q2 has been subdivided 
into triangles, the subdivision satisfying certain restrictions which we describe here. 
First of all, any two triangles in the subdivision which intersect are required to have 
either a common vertex or a common side; no other situations are allowed. Next, we 
assume that there is a fixed constant 0 > 0 such that every angle of every triangle is 

greater than 0. A triangle is allowed to have one curved side which coincides with a 
segment of F; otherwise, all sides are straight line segments. The parameter h will 
denote the length of the longest side of any triangle in the subdivision. 

5.1. Space no. 1. The space Fh consists of all functions which are quadratic in 
each triangle and continuous on Q2. To describe Sh we refer to the picture below of 
a triangle in the subdivision. The side AB is a curved side on r. The space Sh 



260 J. J. BLAIR 

A/ 

/4\ ~~G * F 

C 

FIGURE 1 

is the space spanned by delta-functions with support at vertices on r (such as A and B) 

and functions which are constant on each segment (such as AB) of F which is the side 

of a triangle. 
The pair (Fh, Sh) has the approximation property of order 3. This can be shown 

by constructing, for each u E H3(Q), its interpolate, uh, in Fh and showing that the 

error u - uh has the correct asymptotic behavior in the H1 (2)- and L2 (2)-norms. The 

interpolate of u on a triangle with a side on F is the polynomial of degree two which 

agrees with u at A, D, C, F and B and which has the same average value as u on the 

segment AB. On other triangles the interpolate is the quadratic which agrees with u 
at the vertices and midpoints of the sides. The approximation result then follows from 

a slight modification of the arguments given by Bramble and Zlamal in [101. 
From the corollary to Theorem 3, the space Sh has the strong A -property of 

order 1. Also, Sh has the weak A-property of order 2. This follows from Theorem 2 

and the inequality 

(17) 11501 l 12 ,r -< Chll551l 1 2,Q 

which is valid for all 0 E Foh. This inequality can be derived by using a slight modifi- 
cation of the argument used by Berger, Scott and Strang in [3] (to derive their (13)) 
to obtain 11/110,r r Ch312,IkPa, using similar reasoning to obtain lIINll ,r ? Ch" /2IlWIl a, 

and then interpolating to obtain (17). 
Since (Fh, Sh) has the approximation property of order 3 and the weak A-prop- 

erty of order 3/2, we have, from Theorem 1, 

(18) Ilu - u^l a11, < ChP - l lullp a for 2 < p S 3. 

To obtain the optimal error estimate in the L2-norm we will need the inequality 

(19) wIIi-112,r < Ch3121w121a V w E H2(2) n ( 

where wi is the interpolate of w described previously. In order to derive (19) we will 
denote by 2h the union of the triangles, in the subdivision of 2, which intersect F 

and note that (cf. [3]) (17) holds with 2 replaced by 2h, i.e. 

(20) Ilwll 1/2,r < Chllwll 1 ,2 h 

Using the fact that (Fh, Sh) has the approximation property of order 2, we have 

(21) IiwiI a1n < ? Wt - wil 1ah + IlWIl ,,h < ChIlwI2, +? IWhl 'Q 
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From [4, Lemma 3.2] we obtain *1l1w . h < Chl 1211wll2,a for all w E H2(Q) n 

H1(Q2). Substituting this into (21) and the result into (20) gives (19). 
The fact that Sh has the uniform A-property of order 1 and the inequality (19) 

establish that (Fh, Sh) satisfies the hypothesis (iib) of Theorem 4 with p = 3, s = 1/2 
and P being the operator of interpolation; hence, 

Ilu - ui10,&2 < ChlulIIpg for 2 < p < 3. 

5.2. Space no. 2. This pair of spaces has the approximation property of order 
4, the strong A-property of order 2 and the weak A-property of order 3. The space 
Fh is a slight modification of the commonly used (cf. [3], [10], [14], [16]) space 
of piecewise cubics. This consists of all functions which are cubic on each triangle, 
continuous on Q2 and have continuous first derivatives at all vertices. The modification 
consists of relaxing the requirement of continuity of first derivatives at the vertices on 
the boundary, r. To describe this we again refer to Fig. 1, which shows a typical 
boundary triangle, and use point A as a typical boundary vertex. Our relaxed continuity 
requirement is then as follows: The first derivative, in the direction AC, of the cubic 
defined in triangle ABC equals the first derivative, in the same direction, of the cubic 
defined in the triangle which shares side AC with triangle ABC. This continuity require- 
ment allows discontinuities in the derivatives tangent to F at the vertices on r. 

The space Sh consists of delta-functions at the vertices on r and functions which 
are polynomials of degree one on each segment of F which is a triangle side. From the 
corollary to Theorem 3, Sh has the strong A-property of order 2 with respect to Fh. 
One can show that Sh has the weak A-property of order 3 with respect to Fh by 
showing that " <"1/2 r ChlI,l 'a for all b E Fh and applying Theorem 2. The 
inequality above can be deduced by the same method discussed in Section 5.1. 

The proof that the pair (Fh, Sh) has the approximation property of order 4 fol- 
lows the standard procedure (cf. [10]) of constructing, for any u E H4(Q2), an interpolate 

Uh E Fh which satisfies u - uh I Sh, and showing that uh approximates u with the 
required accuracy. 

Since (Fh, Sh) has the approximation property of order 4 and the weak A-prop- 
erty of order 5/2, we have, from Theorem 1, 

llu - Uila, < ChP-1 ltulip, for 2 < p < 4. 

Using the same argument as in the previous section establishes that this pair of 
spaces satisfies condition (iib) of Theorem 4 (with p = 4, s = 1/2); and therefore, 

Ilu - Ui110,E < ChIIuIIpj for 2 < p < 4. 

5.3. Comments. The constructions given above easily extend to higher order 
polynomials. The general result is: If Fh consists of polynomials of degree p - 1 
(with the appropriate continuity conditions), Sh consists of delta-functions at the ver- 
tices on r and polynomials of degree p - 3 on the segments between the vertices; and 
the solution to the boundary value problem belongs to HP-S(2), then the 1-norm of 
the error is O(hP 1 S) (for 0 < s < p - 2); and the L2-norm of the error is O(hP-s) 
(for 0?<s ? p - 2). 
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An essential ingredient for this result is that, since Fh consists of piecewise poly- 
nomials, Sh has (with respect to FP) the weak A-property of one order higher than it 
has the strong A-property. This idea, stated in different terms, was first utilized by 
Berger, Scott and Strang in [3]. 

Our space no. 1 was constructed because it is the simplest nontrivial example of 
a method which can be used to obtain any order of accuracy desired. 

We should point out that there is a method which appears superior to using our 
space no. 1. Zlamal has shown in [17] that if one makes a slight modification of the 
usual space of piecewise cubics (our space no. 2) a method with second order accuracy 
(in the 1-norm on a polygonal domain) is obtained which has less computational com- 
plexity than using piecewise quadratics. If we modify space no. 2 in the same manner 
(keeping Sh the same), we obtain a method with second order accuracy in the 1-norm 
and third order accuracy in the L2-norm on smooth domains. The resulting method 
has the same computational complexity as Zlamal's. 
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