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A Computational Technique for Determining 
the Class Number of a Pure Cubic Field 

By Pierre Barrucand, H. C. Williams and L. Baniuk 

Abstract. Two different computational techniques for determining the class number 

of a pure cubic field are discussed. These techniques were implemented on an 

IBM/370-158 computer, and the class number for each pure cubic field Q(D 1/3) for 

D = 2, 3, . . ., 9999 was obtained. Several tables are presented which summarize 

the results of these computations. Some theorems concerning the class group struc- 

ture of pure cubic fields are also given. The paper closes with some conjectures which 

were inspired by the computer results. 

1. Introduction. The theory of pure cubic fields Q(Dl /3), D rational, was founded 
in 1892 by Markov [12]; in his paper he gives some class numbers and fundamental 
units, not always in an explicit form. In [7] Dedekind describes a method for deter- 
mining the class number of a pure cubic field Q(Dl /3). He also gives a short table of 
class numbers for some small values of D. Cohn [6] implemented Dedekind's method 
on a computer and obtained class numbers for some fields in which he could easily 
determine the regulator. Cohn's technique was modified somewhat by Beach, Williams, 
and Zarnke in [4], and class numbers were obtained for Q(D1 /3) for D = 2, 3, .... 
999. Other tables of class numbers have been calculated by hand by Cassels [5] and 
Selmer [14]. It should also be mentioned that Angell [1] has recently given a list of 
class numbers for all cubic fields with negative discriminant greater than -20, 000. 

The purpose of this paper is to present a new technique for determining the class 
number of Q(D1 /3). This method is much faster than the computational technique of 
[6] and [4]. The algorithm was implemented on a computer and the class numbers 
for Q(D' /3) obtained for D = 2, 3, . . . , 9999. The total number of these fields is 

8122. We also describe here some of the results of these calculations. 

2. Some Properties of Pure Cubic Fields. Let K be any cubic field with discrim- 
inant A. If UK(S) is the Riemann zeta function in K, we have 

4(S) = SK(S)I?(s) = E a(f)s. 
j=1 

Here a(j) = Ed I ju(d)F(iId), where F(n) is the number of distinct ideals of norm n in 
K. Also, CRh = 4F(1), where h is the class number, R is the regulator and C is a con- 
stant. If A < 0, C = 21r/\/IAT and R = loge1, where e1 (> 1) is the fundamental unit 
of K. 
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If D is an integer which is not a perfect cube and K = Q(D' /3), the cubic field 
formed by adjoining D" 13 to the rationals, we call K a pure cubic field. Let D be a 
cube free integer and let D = ab2, where a, b are square free. We have A = -3k2, 
where 

3ab when a2 # b2 (mod 9), 

(ab when a2 b2 (mod 9). 

If a2 t b2 (mod 9), we say (after Dedekind) that K is of type 1; otherwise, we say that 
K is of type 2. 

In K, a(j) is a multiplicative function with ax(l) = 1; 

t(3f) = { 0 for K of type l, 
1 for Kof type 2; 

a(p') = 0, p is a prime, p 0 3, and p k. 

If p is a prime and p -1 (mod 3), ptk, 

n {1, n even, 
- 

0, n odd. 

If p is a prime and p 1 (mod 3), ptk, 

(pn)= 1 + n, when (DIp)3 = 1; 

otherwise, 
1, n=O (mod 3), 

0o{pn)j= -1, n-1 (mod 3), 

O, n=-i (mod 3). 

Mention should also be made of a special divisibility property of h. In order to 
do this we first need some notation. 

Let the number of distinct primes which divide k be co, the number of distinct 
primes of the form 3t + 1 which divide k be o1, and the number of distinct primes 
dividing k which are congruent to either ?2 or ?4 modulo 9 be coo . If coo = 0, put 
e = 0; otherwise, put e = 1; also, put co* = co - 1 - c. Let rn be the 3 n rank of the class 
group of K, and let r = Ern; then 3rllh. 

It has been shown [3], [10], [11], [8] that 

(2.1) max(.o1,co*) < r1 < 
? + -*. 

Hence, if v = max(Qol, *), then 3'Ih. 

3. Estimation of P(1) for Q(D' 13). We start by defining the multiplicative func- 
tions ,B(j) and ,B*(j). We first put 3*(l) = ,(l) = 1. If p is a prime and p -1 (mod 3' 
we define 

13*(n) =(1(pn 1, n even, 

,n odd. 
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If p is a prime and p 1 (mod 3), we define 

1*@pn,=) = (p) = 1 + n. 

Finally, we define 3*(3n) = 0 and 0(3n) = 1. If K is of type 1, we have _1/42*(j) < 

ae(j) < ,B*(j); and if K is of type 2, we have -f/23(j) < ot(j) ?< ,(j). 
We also define M(m) = max((,B(t)/t), t > m). It can be shown that 

M(m) = max((,B(t)/t), t = m, m + 1, m + 2, . .. , 3m). 

This permits us to calculate M(m) easily. It is evident that 1ji)Iil < M(m) for j > m. 
Now 1?(s), the so-called Artin L function, is an entire function (Dedekind) and 

satisfies the functional equation 

F(l - s) = C-2s+ I (r(s)/r(l - s))(S); 

and from a result of Barrucand [2], it follows that 

00 00 

4F(l) = f Meic + CY oa(j)E(jC), 
j=l1 j-l 

where E(y) = f' (e-xIx) dx. Putting 

A(n) - i ?e-ic + C e(4j)E(jC), 
j=i i' j=l 

we have 

1I (l) - A(n)l < S1 + CS2 + T1 + CT2, 

where 

Si l = a e -jc S2 = Y, I a(j) IE (jC), 
j=n+- j=n-l 

00 00 

Ti = E |e jC, T2 = E jox(j)jE(jC). 
j=m j=m 

Since e-y/y > E(y) for y > 0, it follows that 

T1 + CT2 < 2M(m) 1 e-C 

If we put 

H(m) 2M(m)e-(M-)c (eC - 1) 
C 

G(n, m, x) - X 3 13(j)e-(2I \0x) + 3 3(j)E(27TrjfIVx), 
2nj=n+lI j=n+l1 

G *(n m, x) - 3Vx f (3*(j)e-(27r113 /TX) + : (3*(j)E(2!1/Yx) 
j=n+l j=n+l 
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we see that 

Mj) A(n)| SG*(n, m, x) +H(m) if K is of type 1, 
C C tG(n, m, x) + H(m) if K is of type 2. 

If n is selected such that 

I ((1)IC - A (n)IC I < Ih 3 vR, 

then h is the unique integer in the interval (h* - ?23',h* + ?3') such that 3"I h. Here 
h* = A(n)/RC. 

4. Tabulation of h for D = 2, 3, ... , 9999. Values of M(m) were calculated 

for m = 1, 2, . .. , i05 and it was seen that for D < 104 and m = min([25/C], 105), 

the value of H(m) was usually less than .1. The functions G(n, m, x) and G*(n, m, x) 
were also tabulated for x = 500(500)104 and n = x/10, 2x/10, 3x/1lO, ... ., 2x by put- 
ting 

m= min ([2 'V3x 105) for G 

and 

m= minm [7 3x 105) forG*- 

All of these tables were calculated by computer and then stored on a disk file for easy 
access. The following computer algorithm was then used to determine h. 

For any value of D, the computer first calculated the value of R by using Voronoi'" 

Algorithm (see [4]). It then put x equal to the first multiple of 500 which exceeded 
ab and selected n from the stored tables of G, G * and M to be the least value of ix/1 0 

(i= 1, 2, 3, . .. , 20) such that 

1l2A3vR > G*(n, m, x) + H(m) + .05 when K is of type 1, 
G(n, m, x) + H(m) + .05 when K is of type 2. 

With this value of n, A(n) and subsequently h were easily computed. 
The algorithm was implemented on an IBM/370-158 computer and run for all 

values of D such that a > b between 1 and 10, 000. The programs were written in 

FORTRAN with special assembler language routines being used for evaluating E(jC) and 

ax(j); also, all calculations were performed in double precision. The calculation of all 

the regulators required eight hours of CPU time and four additional hours were required 
for the evaluation of the class numbers. 

Some indication of the speed of this method is provided by noting that the tech- 

nique described in [4] required 8 minutes to evaluate the regulators for Q(D' /3) for D 
= 2, 3, ... , 999 and 42 additional minutes to evaluate the class numbers. Our current 
method required 8 minutes to obtain the regulators and only 5 additional minutes to 

obtain the class numbers for these values of D. 
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5. Evaluation of h by Using the Euler Product. Another formula for tK(1)/O(M), 
where K = Q(D' /3), is given by the Euler product 

(l) = tK(l)/I(l) =11 f(q), 
q 

where the product is taken over all the primes. Thus, for a given value of D, we define 
f(q) for prime values of q by the following formulas: 

if qlk, f(q)= 1; 

if 3+k, f(3) = 3/2; 

if q -- (mod 3), f(q) = q2 /(q2 -1); 

if q-1 (mod 3), f(q) = q/(q2) when (DIq)3= 1, 
q2l(q2 + q + 1) when (DIq)3 # 1. 

If we put the partial product P(Q) = H1 f(q), we can estimate a value for 4(1) 
by using a sufficiently large value of Q. The difficulty in using this formula lies in deter- 
mining how big Q should be. In [15] Shanks made use of a similar Euler product to 
obtain class numbers for some special cubic fields. He (private communication) evalu- 
ated his partial Euler products using the first 500, 1000, 1500, etc., primes. When his 
estimate for the class number remained within .1 of the same integer for 6 consecutive 
partial Euler products, he took this integer as the class number. 

We used this same criterion for estimating eD(1) and discovered that in most cases 
only 3000 primes were needed in order to evaluate h. This method is very simple to 

program and executes from two to five times more rapidly than the technique described 
in Sections 3 and 4. It must, however, be emphasized that this procedure is not as rig- 
orous as our first method. We cannot obtain bounds for the error on using the partial 
product that are as useful as the bounds we can obtain using our formulas for A(n). 
The criterion which we do use for estimating F(1) by P(Q) is one which is simply con- 
venient for our calculations. 

If, after Neild and Shanks [13], we put E(Q) = 1000(P(Q) - P(1))/?(1), the rel- 
ative error in parts per thousand on using P(Q) to approximate 'F(1); and if we use 
5000 primes to evaluate E(Q), we get the following distribution for E(Q) for the 166 
pure cubic fields Q(D1 /3) where 8000 < D < 8200. 

Q = 48611 

E(Q) 
-3% -3 -2? -2 -1? -1 - 0 ? 11% 2 2? 3 3? 

1 0 3 8 19 23 3 1 23 17 1 6 19 5 0 1 

This distribution is typical of the sort of distribution we get for E(Q) for the pure cubic 
fields Q(D'1/3) (2 SD < 104). 

6. Some Results of the Calculations. A large table, giving for each D between 1 
and 104 such that a > b, the value of k, the length of Voronoi's continued fraction 
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period for D' 13, the regulator of Q(D"13), the class number, and 'F(1), has been depos- 
ited in the U.M.T. file. We present here some selected results from that table. In 
Table 1 we give each value of h which occurs in the large table, the frequency g(h) 
with which this h occurs, and the least value of D such that h is the class number for 
Q(D1 /3). 

If in this table we had presented, instead of D, the least value of IAlI (in the 
range of A being considered) such that h is the class number of the pure cubic field 
with discriminant A, we would find that in most cases this value of A would correspond 
to the discriminant of the cubic field Q(D' /3) for the already given value of D. There 
are, however, several exceptions to this; for example, if h 4, the least D value is 113, 
but the least JAI is 3-2332 not 3-3392 

TABLE 1 

h g(h) D h g(h) D 

1 596 2 33 19 1618 
2 285 11 34 1 1719 
3 1847 7 36 262 322 
4 87 113 37 2 5545 
5 37 263 39 7 2597 

40 2 2733 
6 952 39 

41 1 6659 
7 26 235 

42 21 515 
8 32 141 

44 2 4817 
9 1258 70 

45 68 763 
10 9 303 48 30 561 

11 7 2348 
49 1 8171 

12 359 43 51 4 1037 
13 5 1049 52 1 4793 
14 7 514 54 172 614 
15 97 267 56 2 857 
16 9 681 57 5 1541 
17 1 8511 58 1 6814 
18 674 65 60 14 997 
19 2 667 63 29 1005 
20 6 761 64 1 9749 
21 51 213 66 5 3482 
22 4 281 68 1 9521 
24 96 229 69 4 3590 
26 1 3403 70 1 3467 
27 385 182 71 1 3539 
28 6 509 72 90 741 
30 38 524 74 1 3581 
32 3 2399 75 3 1657 
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TABLE 1 (continued) 

h g(h) D h g(h) D 

78 9 1801 216 17 2765 

80 1 4799 222 1 5823 

81 77 1298 225 3 5362 

84 9 1737 230 1 4451 

87 2 4103 240 2 5835 

90 27 970 243 6 3913 

93 1 2748 252 3 2786 

96 5 4307 254 1 8002 

99 8 995 255 1 2751 
102 4 2374 264 1 7297 

105 4 2737 270 4 4593 

108 87 511 276 1 4093 

111 2 5737 279 1 5149 

117 4 5215 288 1 5826 

120 10 1727 297 3 6487 
126 23 1141 300 1 9931 

127 1 2741 306 2 4694 

128 1 5987 312 1 9938 

129 1 2946 315 2 5359 

132 3 3045 324 10 2198 

135 11 1015 336 1 8005 
136 1 3209 342 1 3907 

141 1 6991 351 3 3605 

144 17 1730 360 1 7985 

150 1 8431 369 1 5829 

153 2 3661 372 1 7133 

154 1 9041 378 3 3155 

156 2 7461 390 1 9591 

162 36 813 396 2 7997 

168 2 2747 405 6 7970 

171 1 9198 432 4 6878 

175 1 5711 435 1 8006 

180 12 2702 459 1 9254 

186 1 4099 480 1 7415 

189 7 6430 486 4 6162 

192 2 7925 576 1 4291 

198 7 3374 585 1 9262 

201 2 2723 612 1 7995 
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TABLE 1 (continued) 

h g(h) D h g(h) D 

630 1 9933 972 1 9709 

648 1 4097 1017 1 8615 

696 1 5503 1170 1 7999 

747 1 2743 1296 1 8827 
756 1 8030 

In Table 1A we give the frequency v(p), p < 19, of the cases where pi h and the 

percentage of the occurrences. 
TABLE lA 

p v(p) p v(p) _ 

2 3510 43.22 11 62 0.76 

3 6954 85.62 13 36 0.44 

5 369 4.54 17 19 0.23 

7 202 2.49 19 9 0.11 

Moreover, we have 7409 fields such that h - 2'30 and 713 fields such that some 

prime > 3 divides h. 
In Table 2 we give the number m of values of D in the ranges 1000(i - 1) to 

lOOOi (i = 1, 2, 3, .. . , 10) for which the class number of Q(D"13) is unity. 
TABLE 2 

Range of D m Range of D m 

0-1000 98 5000-6000 55 

1000-2000 64 6000-7000 49 

2000-3000 56 7000-8000 54 

3000-4000 61 8000-9000 44 

4000-5000 65 9000-10000 50 

Denote by R(d) and I?d(l) the value of the regulator and the value of F(1) for 

Q(d1 13), respectively. In Table 3 we give those values of D and SD(l) such that 

(DD(l) < (Dd(l) for all 0 < d < L>. 

TABLE 3 

D (1) D () 

2 0.8146240593 1510 0.6672743355 
74 0.7323553491 2740 0.6496367445 

166 0.6767319520 4630 0.6251252454 
276 0.6733957020 9770 0.6199747135 
830 0.6684533198 
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In Table 4 we give those values of D and 4D(l) such that (D(D) > (Dd(l) for all 
0 <d <D. 

TABLE 4 

D @(1) D @(1) D D 

2 0.8146240593 307 2.8227637445 
3 1.0176145615 559 2.9367139608 
5 1.1637304168 629 2.9626689819 

6 1.1668639154 827 2.9707482692 

7 1.2650247640 883 3.0623905474 

13 1.5743940270 1009 3.0683245965 

29 1.6791537873 1457 3.0931407438 
35 1.7499243062 1513 3.3383074285 

53 1.8171807443 1945 3.3680857678 

55 2.1254129939 3457 3.5990411752 

71 2.2034566301 4789 3.6257791705 

127 2.3311172521 5669 3.7254983552 
181 2.6622437425 9017 3.8119134914 

Finally, in Table S we give those values of D, R(D) and J, the length of Voronoi's 
algorithm period of D"13, such that 

R(D) >R(d) for all 0 < d <D. 

TABLE 5 

D R(D) J D R(D) J 
2 1.347377348 1 951 1521.5849715 1352 
3 2.524681405 3 1163 1818.3574652 1595 
5 4.811986540 5 1301 2549.9434350 2307 
6 5.789932142 5 1721 3669.3791260 3320 

15 9.692951678 5 2003 3675.2829265 3255 
23 22.595071214 21 2283 4340.6136141 3959 
29 40.270821121 35 2927 4671.7189737 4076 
41 56.289370200 49 3543 4681.9661909 4096 
69 103.810793808 100 3557 6170.2103314 5393 

137 134.626355970 122 3821 7106.2863230 6388 
167 220.571825346 206 3921 8909.1586123 8014 
227 224.944023983 206 4523 9440.9625040 8545 
239 431.942240996 390 5153 9766.3676264 8576 
411 555.643020852 488 5433 12019.3087665 10702 
419 711.993772506 646 6999 13777.0095919 12338 
447 778.588027713 719 8093 15231.6425197 13591 
573 991.930184538 877 8429 17248.5337519 15481 
771 1321.452703846 1202 
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7. Some Results on the Class Structure. We shall employ in this section the 
same notation as that introduced in Section 2. We also define j = e2 niI3 and let the 
symbols p, q represent primes. By (n 1 [)3 we represent a cubic character modulo 1, 
where I is either a prime of the form 1 + 3t or 1 = 9. Since (nil)3 = j, i2, or 1, the 
character is completely determined when we select a cubic nonresidue no and define the 
value of (nO I) as either j or j2. 

From the inequality (2.1), we see that r1 is known exactly in four cases. 
(1) co1 =0, r1 . 
(2) D=p, p-- (mod 9), r1=1. 
(3) D = p, 3p, 9p, p-4, 7 (mod 9), r1 = 1. 
(4) D= pp pp2, D-1 (mod 9), e = 1, r= 2. 

In the other cases, it was shown by Gerth [8] and Kobayashi [11] that r1 = O1+ ?0* 

- s, where s can be computed by evaluating Hilbert symbols in Q(V/=3) or, what is the 
same thing, cubic residuacity symbols in Q(N/ja). The case of e = 0 is troublesome; 
consequently, we shall restrict ourselves to the case of e = 1 only. If col = 1, we have 
k = pk*, where p is a prime congruent to 1 modulo 3 and no prime which divides k* 
is congruent to 1 modulo 3. From this we can deduce 

THEOREM 1. If D = p, 3p, 9p, where p 4, 7 (mod 9) and (31 p)3 A 1, then r1 
=1 r2 = 0 and, consequently, 311h. 

THEOREM 2. If D = pq, where p -q 1 (mod 3), (qlP)3 # 1, and e = 1, then 
r- 1, r2 =0. 

THEOREM 3. If D = pq # ?1 (mod 9), where q 2 (mod 3), p 4, 7 (mod 9), 

(31P)3 = 1 and (qjp)3 # 1, the ideal ramifying (3) in K = Q(D'1/3) is principal. 
To prove Theorem 1, we use the fact that r1 = 1 and remark that we have a 

rational genus character system, that is if p is a principal ideal in K = Q(D1 /3), then 
(N( 0)IP)3 = 1. Since (31p)3 # 1, we have an "ambiguous" class Cl such that if p* 
E C1, then (N( *)I )3 = j-a contradiction. (The proof may be compared to the well- 
known proof of the result that 21h(V7p) when p 5 (mod 8).) 

TABLE 6 

p,q (P19)3 (ql9)3 (31p)3 (3qlP)3 h 

7,2 / 1 / 1 3 

13,2 j2 j 2 3 
7,11 j 1 / X 3 

61,2 / / 1 / 12 
67,2 j j2 1 / 3 
73,2 1 3 1 / 3 
19,2 1 j2 3 
19,23 1 X / 1 6 
7,17 j 1 2 3 

13,17 1 1 1 1 3 
61,17 / 1 1 / 51 
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To prove Theorem 2, we require a list of D values in which all possibilities for the 
distribution of characters are present. It can be verified in Table 6 that, if (nip)3 is 
defined by (qlp)3 = j, in each case we have 311h. The proof that r2 = 0 is similar to 
that of Theorem 1. Theorem 3 is a simple corollary of Theorem 2. 

8. Remarks and Conjectures. We present in this section some conjectures based 
on observations made of various phenomena in the table and verified for all D S 9999. 

Conjecture 1. If D = p, 3p, 9p, where p 4, 7 (mod 9) and (31P)3 = 1, then 

r2 = 0. 

Conjecture 2. If D = pp', where p p' 1 (mod 3) and D 1 (mod 9), then 

271 h if and only if (PI0')3 = (P'i p)3 or if p 1 (mod 9), (31 P)3 = (P'lp)3 = 1. 
Both Theorem 1 and Conjecture 1 are false if p 1 (mod 9); for, in some cases 

we have 91 h which implies that r2 > 1. This happens for p = 199, 271 . Simi- 
larly, Conjecture 2 becomes false when pp' 1 (mod 9) even if e = 1, as may be in- 
ferred from the fact that h = 27 for D = 7.31. 

With the exception of the results of Theorems 1 and 2, almost nothing appears to 
be known about r2; however, it is perhaps worth mentioning that r2 = 1 for some D = 

qq'q", where q q' q"- --1 (mod 3). For example if D = 2-5-101, h = 54 and r1 
- 2. 

Conjecture 3. If p 1 (mod 9) and q --1 (mod 9), (qIp)3 # 1, D = pq, then 

rl = 1 and r2 = 0. 

Conjecture 4. If q-q'-2 or 5 (mod 9) then r1 = 1, r2 = . 

A part of these conjectures may be proved by using some unpublished results of 
Gerth [9], but no theory concerning r2 seems to be known. For example, if D = p 
1 (mod 9), we may find r2 = 0 (p = 19) or r2 = 1 (p = 199). 

Generally, the class number remains small; but in some rare cases it may be un- 
usually large as in the case of D = 8827, h = 1296. 
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