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Factoring Multivariate Polynomials 
over Algebraic Number Fields 

By Paul S. Wang* 

Abstract. The algorithm for factoring polynomials over the integers by Wang and 
Rothschild is generalized to an algorithm for the irreducible factorization of multi- 
variate polynomials over any given algebraic number field. The extended method 
makes use of recent ideas in factoring univariate polynomials over large finite fields 
due to Berlekamp and Zassenhaus. The procedure described has been implemented 
in the algebraic manipulation system MACSYMA.** Some machine examples with 
timing are included. 

1. Introduction. An algorithm for the irreducible factorization of multivariate 
polynomials over any given algebraic number field is presented. The algebraic number 
field is given as an extension field of the rational numbers by specifying a minimal 
polynomial over the integers. In other words, we describe an algorithm for finding all 
the irreducible factors of a given multivariate polynomial over the field of the rationals 
adjoined by a root of a prescribed minimal polynomial. This algorithm is a generali- 
zation of the factoring algorithm for multivariate polynomials over the integers by 
Wang and Rothschild [ 1 1 ] . 

The multivariate polynomial to be factored is first reduced to a polynomial in 
just one variable by substituting properly selected integers for all but one variable. The 
resulting univariate polynomial is then factored over the given algebraic field. 

There are two different approaches for the univariate factorization depending on 
whether a suitable small rational prime p exists such that the given minimal polynomial 
is irreducible modulo p. If p can be found, then the factoring is carried out via a 
finite field approach using methods suggested by Berlekamp [1] and Zassenhaus [131. 
Otherwise, if the minimal polynomial is reducible modulo every prime, a classical method 
is used which transforms the factorization into factoring a multivariate polynomial of 
much higher degree over the rationals. The univariate factors will then be used to con- 
struct the desired multivariate factors by a 'p-adic" interpolation described by Wang 
and Rothschild [I l]. 

Our interest in factoring over algebraic number fields, as that in factoring over the 
integers, originated in the problem of indefinite integration of elementary functions in 
finite terms [6], [9]. However, the algorithm is also useful in computations related to 
groups and algebraic number fields. The entire algorithm has been implemented in 
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MACLISP [5] for the algebraic manipulation system MACSYMA [14] at Laboratory for 
Computer Science at M.I.T. The routines for arithmetic and greatest common divisor of 
polynomials over a given algebraic field are implemented in MACSYMA by Barry Trager. 
A number of machine examples with timing are included in the appendix. 

Peter Weinberger, at the University of Michigan, has also been working on certain 

aspects of factoring over algebraic number fields. The author wishes to thank him for 

discussions and communications on this subject. He also wishes to thank Barry Trager 
and Joel Moses for their comments and suggestions. 

2. Preliminaries and Notation. The field of rational numbers is denoted by Q 

and the rational integers by Z. Any finite extension K of Q can be obtained by the 

adjunction of an algebraic number 0 which satisfies f(Q) = 0 where f(x) is an irredu- 

cible polynomial in Z [x] . This extension K is denoted as Q(G). The polynomial f(x) 
is called the minimal polynomial of 0 and [K: Q] = m = deg(f). We present an al- 

gorithm for the irreducible factorization of any multivariate polynomial U(x,x2, . . , x) 

E K[x, x2. . . xt] over Q(0) for any given minimal polynomial f(x). 
An element in K satisfying a monic polynomial is called an algebraic integer in 

K. The algebraic integers in K form a ring R. It is obvious that Z C R. Let f(x) = 

x2 + 1, for example; then R is the ring of Gaussian integers. It can be shown that if 

* C K, there exist z C Z such that za EC R. Thus, we may assume, without loss of 

generality, that f(x) is monic. Also, we may assume that U and all its factors have 

coefficients in R. 
An element in K can be written in the form Im lc1i/8, 6 and ci C Z. For 

elements in R, there exist positive integers D such that any ax C R can be written 

uniquely in the form a = IT- 1 ci/D, ci C Z. The set {1/ D, OD . . .,Om-'/D} is 

known as an integral basis of R. One such integer D is the largest integer A such that 
A2 divides the discriminant of f(x). We denote the discriminant by Discr(f) which is 

equal to the resultant of f(x) and df(x)/dx denoted by Res(f(x), f'(x)). 
By choosing a main variable, say x, we can write U(x, x2, . . ., xt) C 

R[x, x2,. ..,x] in the form 

U(x, X2 Xt) = V.x + + 

with Vi E R[x2, X3, . . ., xJ] for i 0, 1, . . ., n. Vn 0 O is the leading coefficient 
of U, denoted as lc(U). The content of U with respect to the main variable x, 
CONT(U), is GCD(VO, V1, . . ., Vn); and the principal part of U, pp(U) is U/CONT(U). 
U is primitive if CONT(U) = 1, and U is squarefree if U has no repeated factors. Any 

content of U, or repeated factors of U can be removed by relatively simple greatest 
common divisor (GCD) computations (see [3]). Thus, U may be assumed primitive 
and squarefree. As in factoring over Z, the leading coefficient plays an important role 

in the factoring process [7], [II]. Factorization is easier if the leading coefficient is 

1, for if U is monic, then any factor of U is monic. But if U is not monic, then ad- 

ditional computation is required to determine the leading coefficient of each factor. 

Therefore, we choose the main variable of U to make lc(U) 1 or small, in order to 

avoid or simplify later computations related to the leading coefficient. If several vari- 
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ables have a monic leading coefficient, it is best to choose the variable giving the small- 
est n, thus limiting the number of possible factors. 

Let p E Z be a prime and (p) be the ideal generated by p. We denote by Zp the 
quotient field Z/(p). If the minimal polynomial f(x) is irreducible mod(p), then R= 

R/(P) is isomorphic to the Galois field GF(pm). 
For any set F= {f, f2. * * fr} C Z[X2, X3. .., Xt] , the ideal generated by 

F, (fl1, 2 I' * *. r)' iS defined as the set 

{g1fl + g2f2 + + grfr: gi E Z[X2. Xt] Vi}. 

The set F need not be finite. For any integer k > 0 and any ideal 5, tk denotes the 
ideal generated by all products of the form h1h2 * * * hk, hi E 4, i= 1, 2, . . ., k. 

If A and B are polynomials and 4 is an ideal in Z[x, x2,, xt] , we define 
A -B mod 4 if A - B EE , i.e., if A - B is divisibte by an element of B. For ex- 
ample, if 4 = (X2 - a2, X3 - a3,. x *, Xt - at), ai E Z, then A(x, x2, . . ., xt) = 

A(x, a2, .. ., at) mod 4 for A(x, a2, . . ., at) is the remainder of dividing A by every 

xi -a, i= 2, . . ., t. k is the ideal generated by all polynomials of the form 

t C. t 

H (xi - ai) with E c, = k, ci > 0. 
i=2 i=2 

For this ideal 4 we define, for any positive integer k, 

A =B mod k if A B mod k and deg(A) in x2, xt < k. 

Similarly, A = B mod(q) for any prime power q > 2 if A =B mod(q) and the coef- 
ficients of A are between -q/2 and q/2. 

3. An Outline of the Factoring Algorithm. An overall view of the algorithm is 
presented in the form of a brief description of each key step. Details and examples 
are included in later sections. To begin with, we have a primitive and squarefree poly- 
nomial U(x, x2, ... . xt) E R[x, x2, . . xj] and a monic minimal polynomial f(x) 
E Z[x] with deg(f) = m. We can assume that the constant coefficients of U are of 
the form iT -fl clCi ci E Z. The algorithm takes the following steps in obtaining the 
irreducible factorization of U. 

I. Obtaining an integral basis. Compute Discr(f) = Res(f(x), f'(x)). Set A to 
the largest integer such that A2 divides Discr(f). Then the set { I/A, 0/A, ... , Om -'/,A} 
forms an integral basis of R. For certain forms of f(x) smaller values of A are known 
(see Section 6). In such cases these smaller values are used. 

II. Substitution. 
(i) Selecting integers. Find a set of integers {a2, a3, a,} (not necessarily 

distinct) such that U(x, a2, ... ., at) remains squarefree and has the same degree as 
U(x, x2, . . ., xt) in the main variable x. The ai should be small in absolute value. 
Best values for the ai are 0, ? 1, in that order [11]. 

(ii) Normalizing the leading coefficient. Compute the inverse of a 
lc(U(x, a2. . . ., at)) E R. Let 

rn-1 
0-1= E ciOiIa, c1 E Z, 6 E Z. 

i=l1 
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Set U(x) = a- U(x, a2, ... , at) so that lc(U) is an integer. 

III. Choosing a prime. Find a small prime p E Z which satisfies the following 

three conditions: (1) p does not divide lc(U), (2) U(x) is squarefree modulo p, and 

(3) f(x) is irreducible over Zp. If such a prime p is not found within a given number 

of trials, the algorithm then uses a different factoring procedure as described in Sec- 

tion 8. Otherwise, the algorithm continues to the next step. 

IV. Factoring over GF(pm). Compute u(x) = U(x) mod(p). Factor u(x) over 

GF(pm) into irreducible factors (see Section 5): 

(1l ) U(X) = u 1 (X)U 2 (X) ... 
U,(X)- 

If r = 1, then u(x) is irreducible over Zp(6) which implies that U(x), and therefore, 

U(x, x2, . . , xt) are irreducible over K. The algorithm ends in this case. If there 

are several small primes that satisfy the requirements in step III, it is usually advanta- 

geous to try more than one prime in this step. The smallest prime that produces the 

minimum r will be used. 

V. Construction of factors of U(x). 

(i) Coefficient bound. Find a number B such that for any rational number ,B 

in any coefficient of any divisor of U(x), B > AO. Let d be the least integer such 

that p2d > 2 lc(U)B. Let b - 

(ii) Constructing factors. From (1) we have 

(2) U(x) u (x)u2(X) 
... 

Ur(X) mod(p). 

A "p-adic" algorithm by Zassenhaus is used to construct from (2) factors u1(x), 

2W, ... I, r(X) such that U^i(x) i mod(p) and U(x) -1u2 ... *r mod(b). 
VI. Actual factors of U(x) over R. The algorithm TRUEFACTORS in Section 7 

is applied with respect to the ideal (b) to obtain from the ui a factorization over R: 

(3) U(x) = Ul (X)U2(X) * Usx), 1 ? s ? r 

If s = 1, U is irreducible and the algorithm terminates. The Ui are distinct and rela- 

tively prime and they may have rational numbers in their coefficients. 

VII. Construction of factors of U. 

(i) Coefficient bound. Letyi =xi - ai, i = 2, . . ., t,and 

V=6cr-1U(x,y2 +a2 . * 'yt +a). 

Find a number B such that for any rational number ,B in the coefficients of any factor 

of lc(V)V, B > 2Af.3. Let d be the smallest integer such that p2d > B. Let b = 

max(b, p2d) The prime power b is used as a modulus in part (ii). 

(ii) Constructing factors. First the coefficients in the JUi are reduced modulo b. 

It follows from (3) that 

V--U1(x) *.** Us(x) mod(b, 

where 0 is the ideal (Y2, y3y .., yt). A Hensel type construction by Wang and 

Rothschild [11] is used to compute, from the above congruence, polynomials 

Vi(x,y2. Y), i = 1,... ,s, such that Vi Ui(x) mod(b, B) and 
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VV1(x, Y2 Y V (X,y2. * t) mod(b, ), 

where h = 1 + degree of U in x2, X3, ... I. Xt 
VIII. Actual factors of U. The Vi give rise to possible factors of V. Irreducible 

factors U, of U are obtained from the Vi by using the algorithm TRUEFACTORS de- 
scribed in Section 7. All factors will be found and we obtain 

U(X, x * xt) = 61 U(x, X2. * x ) U(X, X2.XX), 1 < j < S. 

4. An Example. In this section the factoring algorithm is applied to a specific 
polynomial in three variables. The computation follows the steps outlined in the 
previous section. Let 0 be a root of f(x) = x4 + x3 + x2 + x + 1 = 0 and let K = 

Q(0). The polynomial to be factored over K is 

U(x y, z) = x8 + 2x7 + (-y _ z2 - 8)x6 + (-4y + 6z2 - 40)x5 
+ (y2 + (2z2 - 48)y + z4 + 32z2 + 256)x4 
? (-4? + (2z2 + 32)y - 4z4 + 32z2 + 960)x3 
+ (-y3 + (-3z2 + 28)y2 + (2z4 _ 4z2 + 384)y _ Z6 - 32z4 

+ 144Z2 - 1152)x2 

+ (2y3 + (_4z2 + 72)y2 + (6z4 + 24z2 - 576)y 
+ 2z6 -48z4 - 576z2 + 3456)x 

+ y4 + (_z2 - 12)y3 

+ (z4 + 24z2 + 144)y2 + (_Z6 + 24z4 - 432z2 - 1728)y 
+ Z8 _ 12z6 + 144z4 - 1728Z2 + 20736, 

which is primitive and squarefree. If x is chosen the main variable, then t = 3, m = 4, 
n = 8. 

I. Since f(x) is a cyclotomic polynomial, we know A = 1 and {1, 0, 02, 03} is 

an integral basis of R. 
II. The values a2 = a3 = 0 are selected and 

U(x) = U(x, 0, 0)=x8 ? 2x7 -8x6=-40x ? 256x4 

+ 960x3 - 1152X2 + 3456x + 20736. 

III. The primes 7, 13 and 17 are found to satisfy the three conditions in Step 
III. Both 7 and 13 give eight factors in Step IV while 17 gives only four factors. Hence, 
p = 17. 

IV. U(x) = x8 + 2x7 -8x6 -6x5 + x4 + 8x3 + 4X2 5x-4-U(x) mod(17). 
And it is found that 

U(x) (X2 - 20x - 503)(X2 - 202x - 50) 

*(x2 -203X + 503 + 502 + 50 + 5) 

*(x2 + 2(03 + 02 + 0 + I)x - 502) mod(17). 

See the example in Section 5 for details of this step. 
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V. The computer program computed 1723 = 6975757441 as a coefficient bound 

at this point. For simplicity let us use 174 = 83521 as a bound in both the univariate 

and multivariate stages. The Hensel construction gives 

U(X)-( 20x + 1203)(X2 - 202X + 120) 

(X2 203X - 12(03 + 02 + 0 + 1)) 

* (X2 + 2(03 + 62+ 0 + 1)x + 1202) mod(172). 

It turns out that the same congruence holds mod(174). 

VI. Division tests in algorithm TRUEFACTORS show that the above congruence 

is actually an equality in K. Thus, U(x, y, z) has no more than four irreducible factors. 

VII. Since a2 = a3 = 0, the ideal 4 = (y, z). We have 

U(X, y, Z) (X2 - 20x + 1203)(x2 - 262X + 120) 

(X2 - 203X - 12(03 + 02 + 0 + 1)) 

(X2 + 2(03 + 02 + 0 + 1)x + 1202) mod(174, t), 

U(X, y, Z) = (X2 -26x + 02y + 1203)(x2 - 202X _ (03 + 02 + 0 + 1)y + 120) 

(x2 203 +?6y - 12(03 +02 +0 + 1)) 

(X2 + 2(03 + 02 + 0 + 1)X + 03y + 1202) mod(174, 02), 

U(X, y, Z) (X2 -26x + 02y _ (03 + 02 + 0 + 1)Z2 + 1203) 

(X2 202X-(03 + 02 + 0 + I)y + 03z2 + 120) 

(X2 - 203X + oy + 02Z2 - 12(03 + 62+ 0 + 1)) 

(X2 + 2(03 + 02 + 0 + 1)X + 03y + OZ2 + 1202) mod(174, t3). 

VIII. There is no need to go to a higher power of e since the last congruence is 

an actual equality over K. 

5. Univariate Factorization Over Zp(6). Let u(x) be a polynomial of degree n 

in Zp(6)[xl, where p is a small prime in Z and 0 is a zero of the minimal polynomial 

f(x) E Z [xl. Let deg(f) = m and q = pm. An algorithm for the complete factoriza- 

tion of u(x) over Zp(6) is given. All arithmetic is in Zp(6) which is isomorphic to 

GF(q). The main ideas are due to Berlekamp [1] and Zassenhaus [13]. 

As a filrst step, a basis {vl(x), v2(x), . .. ., V,(x)} for the solution space of 

V(X)q=v(x) mod u(x) 

is computed by finding the null space of the matrix Q - I, where I is the n x n identity 

matrix and Q is the n x n matrix whose ith row is the coefficient vector of the re- 

mainder of xq(i- 1) divided by u(x). Here the principal computation involved is the 

triangularization of Q - I. 

Now, if m = 1, i.e., Zp(6) = Zp, we can factor u(x) directly from 

ll(x) = TI GCD(u(x), vi(x) - a), i = 1, 2, . .. , r; 
aEcGF(q) 
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because q = p is small. In the case m > 1, the size of GF(q) usually makes this straight- 
forward approach of trying every element in GF(q) unfeasible. What is needed here is 
a way of finding, for a given vi(x), all the a C GF(q) that make GCD(u(x), vi(x) - a) # 

1. We call such an a nontrivial. A method to this end has been suggested by Zas- 
senhaus [13]. The residues modulo u(x) of 1, vi(x), vi(x)2, . . . are computed until 
a power of vi(x) which is linearly dependent on the previous powers is found. It can 
be shown that 1, vA(x), . . ., vi(x), are always linearly dependent modulo u(x). The 
linear dependence relation is in the form of a monic polynomial Gi(vi(x)) = 12g1(x)' E 

O mod u(x). It can be shown that 

Gj(Vj(x)) = JI(v1(x) - a), a nontrivial. 

Hence, Gi(x) splits and its roots are the nontrivial a's for vi(x). Thus, the problem of 
finding factors of u(x) is reduced to that of finding the roots of Gi(x) in GF(q). For 
p small, the roots of a nonlinear polynomial G(x) which splits over GF(pm) can be 
computed using an algorithm of Berlekamp [1]. Let 

m-1 i 
Tr(x)= ExP mod G(x). 

i=o 

Berlekamp shows that the relations 

G(x) = n GCD(G(x), Tr(6 'x)-,/), j = 0, 1. .. , m -1, 
pEzp 

lead to all the linear factors of G(x) over GF(q). In actual computation the residues 
of x', . xpm 1 generated in computing Tr(x) are stored for possible later 
use in calculating Tr(6 'x). 

It frequently happens that the prime p chosen in step II causes u(x) to split over 
GF(q). Thus, in our process for generating the matrix Q, the residues of xP, xP 2 .... 
xpm1 mod u(x) are stored away. If the algorithm finds r = n, then the procedure 
for obtaining nontrivial a's is bypassed and the linear factors of u(x) are found directly 
by the above root finding procedure. 

As an example, let us consider factoring the squarefree polynomial 

U(X) = X8 + 2x7 - 8x6 -6x5 + x4 + 8X3 + 4X2 + 5x - 4 

over Z1 7(0), where 0 is a zero of f(x) = x4 + X3 + X2 + X + 1. 

Triangularization of the matrix Q gives (see [3]) {x5 + X4 - 8X3 - 3X2 - 7x, 
x6 + 2X4 - 2X3 + 8X2 + 8X, X7 + 2X4 + 5X3 + 8X2 - 5x, 1} as a basis of the sol- 
ution space of V(X)835 2 1 = v(x) mod u(x). This means that u(x) has 4 irreducible 
factors. Taking v I(x) to be the first polynomial in this basis, we find 

G1(x) = X4- 3X3 + 2X2 + 6x + 2, 

with the property Gl(vl(x)) 0 mod u(x). The four roots of G1 are then found to 
be 303 + 402 + 40 - 5, 03 + 302 + 0 - 8, 02 - 40 + 8 and -403 - 0 + 8. These 
roots turn out to be sufficient for obtaining the four factors of u(x) by GCD computa- 
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tions: 

U(X) = (X2 _ 202X - 50)(X2 + 2( 3 + 02 + 0 + l)x - 502) 

(X2 - 203X + 5(03 + 02 + 0 ? 1))(X2 - 20x - 563). 

6. Coefficient Bound. Factors of U and U can be assumed to have coefficients 
in R. Thus, coefficients of factors of U or U when written in terms of the chosen in- 
tegral basis fl/A, 6/A, . .. , 6' - '/A} are in the form Z' 

- 
1'cO'/A where c1 E Z. The 

factoring algorithm depends on finding upper bounds for the magnitude of the ci in 
both the univariate and the multivariate stages of computation. 

It is advantageous to have A as small as possible. In some cases the smallest A 

is known. If f(x) = X2 + a, a squarefree, we have A = 1 when a 2 or 3 mod (4); 
and A = 2 when a 1 mod(4). Also, A = 1 if f(x) is a cyclotomic polynomial. 

If P(x) = 12%p x1 is a polynomial with complex coefficients, we define PIll = 

(1Ipi12)1/2 . Let z, z2 . . . , Zk (distinct or not) be those zeros of P(x) with absolute 
value > 1. Mignotte [4] has shown that 

kl i < IIPII and lp I S (n)Iz1 * Z. k iPI. 

From this we can deduce the following lemma. 

LEMMA. If b is a coefficient of any primitive factor g(x) of U(x), and if lc(g) 
is a rational integer, then lIb < (nf2)IIU1I. 

Proof. If g(x) = bo + b1x + ? * + bjx', bj E Z, then Ibjl S (<)IIU1I; because 

lc(U) E Z and Ilc(U)) I lbj1. Since deg(U) = n, the lemma follows. 
Recall that 0 is a root of the minimal polynomial f(x) = xm + am_ lxml + 

+ a1x + aO. Let 11 611 be the largest absolute value of any of its conjugates: 0, 
02 . .. I m - 1 11011 is bounded by the largest positive root of 

xm - lam 1 |xml I - * - *-a lx-laOI =0. 

If c E R and Ic I < B, and if c is expressed in the form c = im lc Oi/A, ci E Z, then 

Weinberger [12] shows that 

max lci I < ABm! 110 llm 1/det(M), 

where det(M) is the determinant of the matrix 

/1 1 . ..1 \ 

0 0 2 * M-1 

o2 o2 
622 

M= . 

OM-1 Om-1 om-1 6ml 2 M -l 
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Thus, a bound for the ci exists and can be computed in the univariate case. Since the 
factorization of any multivariate polynomial can be done by univariate factoring using 
the Kronecker method, a coefficient bound in the multivariate case can also be com- 
puted. These theoretical bounds are often too large. In our factoring program we 
provide the following optional heuristic bounds that are much smaller and easier to 
compute: 

B = A(,2) IIUII and B = MAX(B, Ahv( 2) ), 

where vmax is the greatest absolute value of the integer coefficients in V(x, Y2, l... , Y 
Care should be taken in using the heuristic bounds for they may not, though very 
rarely, be large enough and thus produce reducible factors. 

7. Obtaining True Factors. Recall that 

V(X,y2 yt) =U(x,y2 + a2. yt + at). 

We have the factorization 

V(x, Y2 Yt) = V1 (x, Y2 yt) * V(x,y2 Yt) mod(b, Bh), 

where s > 2 and 0 is the ideal (Y2, y3 . Yt). The Vi are distinct and irreducible 
and Vi Ui(x) mod(b, e). The Vi are unique up to units in the quotient ring F= 

R[y2. , yt] (b, h). 

If U is monic, then V and the Vi are all monic and any irreducible factor 
G(x, Y2. Yt) of V over R satisfies G H mod(b), where H is either some Vi 
or the product of two or more Vi reduced mod(b, oh). Then G is computed as 

G = H*IA over R where H* = AH mod(b). 

If U is not monic. then G H mod(b, u Up to units in (. Thus, if 

H* = A lc(JV)lc(H)- 'H mod(b, th), 

then G = pp(H*/A) over R. The quantity lc(V)lc(H)- 1 is computed from the leading 
coefficients of the Vi. For example, 

t 

lc(J)lc(Vi- . I lc(V.) mod(b, Bh). 
j=1 ,joi 

In actual computation, the H* are formed in a systematic and efficient manner from 
the Vi by multiplying an increasing number of them together modulo (b, B h). Any 
H* that divides lc(V)V over K produces a true factor pp(H*/IA) of V over R. True 
factors of U(x, x2. xt) are obtained from those of V by the substitutions yi = 

xi - ai, 2 < i < t. The reader is referred to [11] for more details. 

8. Univariate Factorization Over K by Multivariate Factorization Over Z. Ra- 
tional primes satisfying conditions (1) and (2) in step III exist. They are small and 
easy to find in almost all cases. However, condition (3) is more difficult to meet 
because there are polynomials that are irreducible over the rational integers which are 
reducible modulo any rational prime. If the given minimal polynomial belongs to this 
class, no prime p can be found such that f is irreducible over Zp. Our factoring pro- 
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gram attempts to find a suitable p by trying members from a list of small primes. If 
a suitable p cannot be found after a set number of trials, the algorithm proceeds with 
the factorization of U(x) over K = Q(0) by a different procedure which is not depend- 
ent on factorization over Zp(0). 

Let g(x, 0) be a polynomial in x with coefficients in R which is given by the 
minimal polynomial f(x) E Z[x]. Since deg(f) = m, there are m conjugates of 0: 

01 02 ... 0om. The nonm of g(x, 0), N(g(x, 0)), is defined as 
m 

N(g(x, 0)) = AI g(x, O). 
i=l1 

N(g(x, 0)) is equal to the resultant of g(x, 0) and f(0) with respect to 0, 
Res(g(x, 0), f(0)) and N(g(x, 0)) E Z [x]. 

Given U(x, 0) and f(x), U can be factored over K by the following procedure: 
(a) Compute V(x, y) = Res(U(x - yO, 0), f(0)) over Z. 
(b) Factor V(x, y) into irreducible factors over Z (see [ 1] ). 

V(x, y) = VI(x, y)V2(x, y) * * Vs(X' y). 

(c) Compute the contents with respect to the variable y, 

c1(x, 0) = CONT(V(x + yO, y)). 

(d) The irreducible factorization of U(x) over K is given by 

U(x, 0) = II GCD(U(x, 0), cj(x, 0)), 

with the GCD computed over K. 
The above procedure, when used, replaces steps IV, V and VI in our algorithm. 

The prime power needed as a modulus in the construction of factors of U can be 
formed with any prime p that satisfies the first two conditions in step III. 

A proof for this procedure can be found in [10, pp. 136-137]. It can be seen 
that if deg(U = n and deg(f) = m, the degree of V(x, y) is mn in either variable. 
Tlherefore, almost all the work in this procedure lies in the factorization of V(x, y). 
Although a rather efficient algorithm for multivariate factoring is available, it is still 
best to use this method only when a suitable prime cannot be found after considerable 
effort. 

Appendix. Eleven examples of factoring polynomials over algebraic number 
fields are given. They are done by the MACSYMA system (version 254) at Project 
MAC, M.I.T. In MACSYMA, the command FACTOR(U, f(0)) causes the polynomial 
U to be factored over Q(0) with f(0) the given minimal polynomial. If f(0) is omitted, 
then it means factoring over Q. The command GFACTOR is implemented for the con- 
venient use of factoring over Gaussian integers. It is equivalent to FACTOR(U, A2 + 1). 
In MACSYMA, labels (Ci) and (Di) are used for the ith command and display lines, 
respectively. The symbol %oI is used for I-i and % for the previous expression. The 
times indicated are in milliseconds measured on a PDP-10 computer with a memory- 
cycle time of about two microseconds. 
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4 
(01) X - 1 

(C2) GFACTOR('(); 
TIMIEc 625 MSEC. 
(02) (X - 1) (X + 1) (X + I) (X - XI) 

4 3 3 2 2 
(03) X + %I X + 2 X + 2 %I X + 5 X + 2 %I X + 6 X + 6 

(C4) GFACTOR(D); 
TIMIE= 1280 MSEC. 

2 
(04) (XI + X + 1) (- XI + X + 1) (X XI + X + 3) 

4 4 3 3 2 2 
(05) 2 %I X + 3 X +3 %I X - 2 X - 2 XI X - 2 X + XIX -1 

(C6) GFRCTOR('(); 
TIMIE= 11866 MSEC. 

2 2 
(06) (-2 XI 13 X + 3) (2 XI + 3) (X XI + X -1) 

13 

2 2 
(07) Y + X 

(C8) GFACTOR(Z); 
TI ME= 807 MSEC. 
(08) (X XI + Y) (Y - XXI) 

2 
(D9) X + X - 1 

(CIO) FRCTOR(Z,R^2-5); 
TIME= 745 MSEC. 

(2 X + A + 1) (2 X - A + 1) 
(010) 

4 

4 2 
(D01) X + 3 X + 4 

(C12) FACTOR(Y, R2+R+2); 
TIME= 2563 MSEC. 
(012) (X +R) (X + R + 1) (X - R) (X -R -1) 

6 
(013) 64 X - 4 

(C14) FACTOR (U, RA3+2); 
TIME= 5938 MSEC. 

2 2 2 2 
(D14) (2 X + R) (2 X - R) (4 X - 2 R X + R ) (4 X + 2 R X + R) 

4 3 2 
(D15) 16X +8X +4X +2X+1 

(C16) FACTOR (/,R4+R^3+R^2+R+1); 
TIME= 12777 MSEC. 

2 3 2 3 
(016) (2 X - A) (2 X - R ) (2 X + A + R + R + 1) (2 X -R) 

4 4 
(017) X + Y 

(C 18) FACTOR (/,R4+1); 
TIME= 27702 MSEC. 

3 3 
(018) (X + R Y) (X - R Y) (X + R Y) (X - R Y) 
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8 7 2 6 2 5 
(019) X + 2 X + (- Y- Z - 8) X + (- 4 Y + 6 Z -46) X 

2 2 4 2 4 2 2 4 2 3 
+ (Y + (2 Z -48) Y + Z + 32 Z + 256) X + (- 4 Y + (2 Z + 32) Y - 4 Z + 32 Z + 960) X 

3 2 2 4 2 6 4 2 2 
+ (-Y (- 3 Z + 28) Y + (2 Z - 4 Z + 384) Y - Z - 322 + 144 Z - 1152) X 

3 2 2 4 2 6 4 2 4 
+ (2 Y + (-4 Z + 72) Y + (6Z +24 Z -576) Y+2Z -48Z -576Z +3456) X Y 

2 3 4 2 2 6 4 2 8 6 4 
+ (-22 - 12) V 

3 
(2 . 24 Z i 44)V Y (- 2 .242 -4322 - 1728)VY+Z - 122 .144Z2 

2 
- 1728 Z + 20736 

(C20) FACTOR (tt,PA4+A'3+A^2+.+i); 
TIME= 118613 MISEC. 

2 3 2 3 2 2 
(D20) (P Z + V Y + X + (2 A + 2 A + 2 A + 2) X + 12 A) 

2 2 2 3 3 2 
(P Z + V Y + X - 2 A X - 12 - 12 A -2A- 12) 

3 2 3 2 2 2 
(P Z + (- A -R - A - 1) Y + X -2 X + 12 A) 

3 2 2 2 2 3 
((- A - R - A 1) Z + A Y + X - 2 A X + 12 A ) 

S 3 3 2 2 2 2 2 2 2 2 3 
(021) X -5 V Y X - 5 U Z X + 5 U Y X +5 X + 5 V Z X + 5 \ U X - 5 Z Y X 

22 2 3 3 2 2 3 5 3 2 2 

+5V V X-5VUZVX-5U VX-5VZ X.SU 2 X-5V UX.Y -5VUV .5V2 V 

2 2 3 3 2 2 5 2 2 3 5 5 
+ 5 U ZY -5UZ V-5V ZY+5V U Y+Z +5V UZ -5VU Z+U .V 

(C22) FACT0R (P0LY,A44+A^3+.A2+A+1); 
TIME= 94927 MSEC. 

3 2 3 2 
(022) (X + Y + Z + U + V) (V (- A -A - 1) + U A + Z A + Y A + X) 

3 2 3 2 3 2 3 2 
(U (-P -A - - 1) + Y +VR R+ Z + X) (Z (- A - R - 1) + V A + Y A + U A + X) 

3 2 3 2 
( (- -A -A- 1) + Z A + U A + V A + X) 
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